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1 Introduction

The htSeqTools package provides an easy-to-use toolset to efficiently per-
form a variety of tasks with high-throughput sequencing data. Although rel-
atively simple-minded, we found the tools to be extremely helpful in quality
control assessment, routine pre-processing and analysis steps and in produc-
ing useful visualizations. When using the package please cite Planet et al.
[2012]. The supplementary material of the paper should be a useful resource,
as it contains a detailed description of the methods and additional examples
(including ChIP-Seq, MNase-Seq and RNA-Seq) with R code.

Emphasis is placed on ChIP-Seq alike experiments, but many functions
are also useful for other kinds of sequencing experiments.

Many routines allow performing computations in parallel by specifying an
argument mc.cores, which uses package parallel. As this package is not
available in all platforms, in this manual we do not use parallel computing.
Please see the help page for each function for more details.

We start by loading the package and a ChIP-Seq dataset which we will
use for illustration purposes.

> options(width=70)

> library(htSeqTools)

> data(htSample)

> htSample

RangedDataList of length 4

names(4): ctrlBatch1 ipBatch1 ctrlBatch2 ipBatch2
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> sapply(htSample,nrow)

ctrlBatch1 ipBatch1 ctrlBatch2 ipBatch2

102866 195304 59809 99320

htSample is a RangedDataList object storing the chromosome, start
and end positions for reads mapped to the first 500kb of the drosophila
melanogaster chromosome 2L. htSample contains 2 immuno-precipitated and
2 control input samples obtained in two separate Illumina sequencing runs,
which we named Batch1 and Batch2. The standard Illumina pipeline was
used for pre-processing the data. Following the Bowtie defaults, only uniquely
mapping reads with at most 2 mismatches in the first 28 bases were kept.
We do not give any further details about the experiment, as the results have
not yet been published.

You can easily build a RangedDataList to store multiple RangedData

objects (coming from different BED files read as data frames for instance).
We will extract two elements from htSample in order to simulate a batch of 2
externally loaded samples. Ctrl and IP1 will be two data frames with ’space’,
’start’, ’end’, ’width’, and ’strand’ columns. Please note that ’space’, ’start’
and ’end’ are necessary in order to directly generate a RangedData object
from a data frame. The ’width’ column will not be present in the output
by default, and all other columns will be added to the RangedData object as
additional value columns (’strand’ in our case).

> Ctrl=as.data.frame(htSample[[1]])

> IP1=as.data.frame(htSample[[2]])

> head(Ctrl)

space start end width strand

1 chr2L 499167 499206 40 +

2 chr2L 377930 377969 40 -

3 chr2L 306297 306336 40 -

4 chr2L 174413 174452 40 +

5 chr2L 322795 322834 40 +

6 chr2L 415508 415547 40 +

> head(RangedData(Ctrl))

RangedData with 102866 rows and 1 value column across 1 space

space ranges | strand

<factor> <IRanges> | <factor>

1 chr2L [499167, 499206] | +

2 chr2L [377930, 377969] | -

3 chr2L [306297, 306336] | -

4 chr2L [174413, 174452] | +

5 chr2L [322795, 322834] | +

6 chr2L [415508, 415547] | +



7 chr2L [ 39662, 39701] | +

8 chr2L [103052, 103091] | -

9 chr2L [417508, 417547] | -

... ... ... ... ...

102858 chr2L [144776, 144815] | +

102859 chr2L [357681, 357720] | -

102860 chr2L [149927, 149966] | +

102861 chr2L [334243, 334282] | +

102862 chr2L [318650, 318689] | +

102863 chr2L [294283, 294322] | -

102864 chr2L [420010, 420049] | +

102865 chr2L [292888, 292927] | -

102866 chr2L [252943, 252982] | -

> htSample2 <- RangedDataList(Ctrl=RangedData(Ctrl),IP1=RangedData(IP1))

> htSample2

RangedDataList of length 2

names(2): Ctrl IP1

> head(htSample2[['Ctrl']])

RangedData with 102866 rows and 1 value column across 1 space

space ranges | strand

<factor> <IRanges> | <factor>

1 chr2L [499167, 499206] | +

2 chr2L [377930, 377969] | -

3 chr2L [306297, 306336] | -

4 chr2L [174413, 174452] | +

5 chr2L [322795, 322834] | +

6 chr2L [415508, 415547] | +

7 chr2L [ 39662, 39701] | +

8 chr2L [103052, 103091] | -

9 chr2L [417508, 417547] | -

... ... ... ... ...

102858 chr2L [144776, 144815] | +

102859 chr2L [357681, 357720] | -

102860 chr2L [149927, 149966] | +

102861 chr2L [334243, 334282] | +

102862 chr2L [318650, 318689] | +

102863 chr2L [294283, 294322] | -

102864 chr2L [420010, 420049] | +

102865 chr2L [292888, 292927] | -

102866 chr2L [252943, 252982] | -



2 Quality control

2.1 A PCA analogue for sequencing data

PCA is a commonly used technique to assess overall quality and identify
problematic samples in high-throughput experiments. PCA requires to de-
fine a common set of entities (e.g. genes) for all samples and obtain some
numerical measurement for each entity in each sample (e.g. gene expression).
Therefore, unfortunately PCA is not directly applicable to sequencing data.
One option is to pre-process the data so that PCA can be applied, e.g. com-
puting the number of reads falling in some pre-defined genomic regions. The
inconvenient of this approach is its lack of generality, since different kinds
of sequencing data generally require different pre-processing. For instance,
while in RNA-Seq we can obtain a PCA based on RPKM expression measures
[Mortazavi et al., 2008], this same strategy is not adequate for ChIP-Seq data
where many reads may be mapped to promoter or inter-genic regions.

Instead, we propose comparing the read coverage across samples and using
Multi-Dimensional Scaling (MDS) to obtain a low-dimensional visual repre-
sentation. Read coverage is a universal measure which can be computed
efficiently for any type of sequencing data. We measure similarity between
samples i and j with ρij, the correlation between their log-coverages, and
define their distance as dij = 0.5(1 − ρij). Pearson, Spearman and Kendall
correlation coefficients are available. We compute correlations in the log-
scale to take into account that the coverage distribution is typically highly
asymmetric. In principle, Spearman is more general as it captures non-linear
associations, but in practice all options typically produce very similar results.
MDS is then used to plot the samples in a low-dimensional space, in a way
such that the Euclidean distance between two points is closest to the Pearson
distances. Our approach is implemented in a cmds method for RangedDataL-
ist objects. We illustrate its use by obtaining a two-dimensional MDS for
our sample data.

> cmds1 <- cmds(htSample,k=2)

Computing coverage...

Computing correlations...

> cmds1

Object of class cmdsFit approximating distances between 4 objects

R-squared= 1

The R2 coefficient between the original distances and their approxima-
tion in the plot can be seen as an analogue to the percentage of explained
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Figure 1: 2-dimensional MDS plot. Samples with similar coverage appear
close-by

variability in a PCA analysis. For our sample data R2=1 (up to rounding),
which indicates a perfect fit and that therefore a 3-dimensional plot is not
necessary.

> plot(cmds1)

Figure 1 shows the resulting plot. The IP samples from both runs group
nicely, indicating that they have similar coverage profiles. The control sam-
ples also group reasonably well, although they present more differences than
the IP samples. This is to be expected, since the IP samples focus on a
relatively small genomic regions. The MDS plot also reveals a minor batch
effect, as samples from the same batch appear slightly closer in the map.

2.2 Exploring coverage uniformity

In some next-generation sequencing experiments we expect some samples to
exhibit large accumulations of reads in certain genomic regions, whereas other



samples should present a more uniform coverage along the genome. For in-
stance, in ChIP-seq one should observe higher peaks for immuno-precipitated
(IP) samples than in the controls. That is, IP samples should present cov-
erage rich and coverage poor regions, whereas differences in coverage in the
controls should be smaller.

In these cases we propose to measure the unevennes in the coverage using
either the coverage standard deviation or Gini’s coefficient [Gini, 1912], which
is a classical econometrics measure to assess unevennes of wealth distribution.
Comparing these statistical dispersion measures between samples can reveal
samples with innefficient immuno-precipitation (e.g. due to an inadequate
antibody). Both measures can be easily obtained with the functions ssdCov-
erage and giniCoverage. Simple algebra shows that the expected value of
the coverage standard deviation is proportional to

√
n, where n is the number

of reads. Therefore ssdCoverage reports SDn = SD/
√
n as a measure that

can be compared across samples with different number of reads. Similarly,
simulations show that the expected Gini also depends on n. Since no closed-
form expression is available, we estimate its expected value by generating n
reads uniformly distributed along the genome and computing the Gini coef-
ficient. The adjusted Gini (Gn) is the difference between the observed Gini
(G) minus its estimated expected value Ê(G|n).

> ssdCoverage(htSample)

ctrlBatch1 ipBatch1 ctrlBatch2 ipBatch2

55.98648 169.15785 18.14517 100.43349

> giniCoverage(htSample,mc.cores=1)

Simulating uniformily distributed data

Calculating gini index of original data

Simulating uniformily distributed data

Calculating gini index of original data

Simulating uniformily distributed data

Calculating gini index of original data

Simulating uniformily distributed data

Calculating gini index of original data

gini gini.adjust

ctrlBatch1 0.8038884 0.6076504

ipBatch1 0.9378820 0.7961173

ctrlBatch2 0.4813761 0.2272019

ipBatch2 0.9127399 0.7134312

The coverage exhibits higher dispersion in the IP samples than in the
controls, which indicates there were no substantial problems in the immuno-
precipitation. The function giniCoverage allows to graphically assess the
non-uniformity in the coverage distribution by plotting the probability and
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Figure 2: Lorenz curves to assess coverage uniformity. Left: control; Right:
immuno-precipitated sample

cumulative probability function. The top panels in Figure 2 show the log
probability mass function of the coverage, and the bottom panels show the
Lorenz curve (Gastwirth [1972], see Lc from package ineq for details). We
observe a more pronounced non-uniformity in the IP sample.

> giniCoverage(htSample[['ctrlBatch2']],mc.cores=1,mk.plot=TRUE)

> giniCoverage(htSample[['ipBatch2']],mc.cores=1,mk.plot=TRUE)

2.3 Detecting over-amplification artifacts

High-throughput sequencing requires a PCR amplification step to enrich for
adapter-ligated fragments. This step can induce biases as some DNA re-
gions amplify more efficiently than others (e.g. depending on GC content).
These PCR artifacts, caused by over-amplification or primer dimers, affect
the accuracy of the coverage and can create biases in the downstream analy-
ses. The function filterDupReads aims to automatically detect and remove
these artifacts. The basic rationale is that, by counting the number of times
that each read is repeated, we can detect the reads repeating an unusually
large number of times. The argument maxRepeats can be used to elimi-
nate all reads appearing more than this user-specified threshold. However,
notice that ideally this threshold should be determined for each sample sep-
arately, as the expected number of naturally occurring repeats depends on



the sequencing depth, and may also depend on the characteristics of each
sample. For instance, sequences from IP samples focus on a relatively small
genomic region while those from controls are distributed along most of the
genome, and therefore we expect a higher number of repeats in IP samples.
When specifying the argument fdrOverAmp, filterDuplReads determines
the threshold in a data-adaptive manner.

Although this filtering can be performed with a single call to filterDu-

plReads, we now illustrate its inner workings in a step-by-step fashion. We
add 200 repeats of an artificial sequence to sample "ctrlBatch1", and count
the number of times that each sequence appears with the function tabDu-

plReads.

> contamSample <- RangedData(IRanges(rep(1,200),rep(36,200)),space=rep('chr2L',200),strand='+')

> contamSample <- rbind(htSample[['ctrlBatch1']],contamSample)

> nrepeats <- tabDuplReads(contamSample)

> nrepeats

ans

1 2 3 4 5 6 7 8 9 10 11

11812 10112 6744 4083 2325 1343 727 447 212 113 87

12 13 14 15 16 17 18 19 20 22 200

57 35 19 9 9 4 5 1 2 1 1

There are 11812 sequences appearing only once, 10112 appearing twice
etc. The function fdrEnrichedCounts (called by filterDuplReads) deter-
mines the over-amplification threshold in a data-adaptive manner. Basically,
it assumes that only large number of repeats are artifacts and models the
reads with few repeats with a truncated negative binomial mixture (fit via
Maximum Likelihood), which we observed to fit experimental data reasonably
well. The number of components to be used is chosen in parameter compo-

nents. If this parameter has value 0 the optimal number of components is
selected using the Bayesian information criterion (BIC). Here we used one
component for computational speed. An empirical Bayes approach similar to
that in Efron et al. [2001] is then used to estimate the FDR associated with
a given cutoff (see help(fdrEnrichedCounts) for details).

> q <- which(cumsum(nrepeats/sum(nrepeats))>.999)[1]

> q

14

14

> fdrest <- fdrEnrichedCounts(nrepeats, use=1:q, components=1)

> numRepeArtif <- rownames(fdrest[fdrest$fdrEnriched<0.01,])[1]

> numRepeArtif

[1] "25"
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Figure 3: Black line: estimated FDR for each number of repeats cutoff.
Red line: distribution of the number of repeats as estimated by a truncated
negative binomial with 2 components (representing not over-amplified reads).
Blue line: distribution of the number of repeats in the observed data.

Here we assumed that less than 1/1000 reads are artifacts and fit a nega-
tive binomial truncated at [1, 14]. Notice that, although here we used fdrEn-

richedCounts to detect over-amplification, it can also be used in any other
setup when one whishes to detect large counts. In Figure 3 we produce
a plot showing the estimated FDR for a series of cutoffs. The argument
fdrOverAmp to filterDuplReads indicates the FDR cutoff to determine
over-amplification. We also show the distribution of the observed number of
repeats (blue) and its truncated negative binomial approximation in [1, 14]
(red). Notice that any sequence repeating over 25 times (including our arti-
ficial sequence repeating 200 times) is regarded as an artifact.

> plot(fdrest$fdrEnriched,type='l',ylab='',xlab='Number of repeats (r)')

> lines(fdrest$pdfOverall,col=4)

> lines(fdrest$pdfH0,col=2,lty=2)

> legend('topright',c('FDR','P(r | no artifact)','P(r)'),lty=c(1,2,1),col=c(1,2,4))

3 Data pre-processing

We discuss several tools which can be useful for ChIP-seq data preprocess-
ing. In these studies there typically is a strand-specific bias: reads coming



from the + strand pile up to the left of reads from the - strand. Removing
this bias is important, as it provides a highly increased accuraccy for peak
detection. alignPeaks implements a procedure to correct this bias, which is
fairly similar to the MACS procedure [Zhang et al., 2008]. A nice alterna-
tive is provided in function estimate.mean.fraglen from package chipseq.
To illustrate the need for the adjustment we plot the coverage in a certain
genomic region before the adjustment (displayed in Figure 4, left panel).

> covbefore <- coverage(htSample[['ipBatch2']])

> covbefore <- window(covbefore[['chr2L']],295108,297413)

> plot(as.integer(covbefore),type='l',ylab='Coverage')

Now we perform the adjustment with alignPeaks and plot the resulting
coverage as the solid black line in Figure 4 (right panel). In blue and red
color we display the coverage computed separately from reads on the + and
- strands, respectively. The blue and red lines present a similar profile, but
they are shifted. Exploring other peaks reveals similar patterns. Removing
this strand specific bias results in sharper peaks and prevents detecting two
separate peaks when there should actually be one, as illustrated by the left-
most peak in Figure 4.

> ip2Aligned <- alignPeaks(htSample[['ipBatch2']],strand='strand', npeaks=100)

Estimated shift size is 61.49423

> covafter <- coverage(ip2Aligned)

> covafter <- window(covafter[['chr2L']],295108,297413)

> covplus <- coverage(htSample[['ipBatch2']][htSample[['ipBatch2']][['strand']]=='+',])

> covplus <- window(covplus[['chr2L']],295108,297413)

> covminus <- coverage(htSample[['ipBatch2']][htSample[['ipBatch2']][['strand']]=='-',])

> covminus <- window(covminus[['chr2L']],295108,297413)

> plot(as.integer(covafter),type='l',ylab='Coverage')

> lines(as.integer(covplus),col='blue',lty=2)

> lines(as.integer(covminus),col='red',lty=2)

In ChIP-seq experiments, it is sometimes convenient to extend the reads
to take into account that we only sequenced the first few bases (typically 40-
100 bp) from a larger DNA fragment (typically around 300bp). In practice,
this achieves some smoothing of the read coverage. extendRanges extends
the reads up to a user-specified length.

4 Basic data analysis

Finding genomic regions with large accumulation of reads is an important
task in many sequencing experiments, including ChIP-Seq and RNA-Seq.
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Figure 4: Coverage for gene p38b. Left: Before adjustment; Right: After
adjustment. Blue line: + strand; Red line: - strand; Black line: global
estimate after peak alignment by alignPeaks.

islandCounts performs a simple analysis using tools provided in the IRanges
package. We search for genomic regions with an overall coverage ≥ 10 (i.e.
across all samples), and obtain the number of reads in each sample overlap-
ping with these regions.

> ip <- rbind(htSample[[2]],htSample[[4]])

> ctrl <- rbind(htSample[[1]],htSample[[3]])

> pool <- RangedDataList(ip=ip, ctrl=ctrl)

> counts <- islandCounts(pool,minReads=10)

> head(counts)

RangedData with 2993 rows and 2 value columns across 1 space

space ranges | ip ctrl

<factor> <IRanges> | <integer> <integer>

1 chr2L [5191, 5211] | 7 5

2 chr2L [5214, 5227] | 9 4

3 chr2L [5411, 5476] | 15 14

4 chr2L [5484, 5484] | 5 5

5 chr2L [5602, 5645] | 13 13

6 chr2L [5650, 5652] | 7 3

7 chr2L [5802, 5841] | 13 6

8 chr2L [5901, 5901] | 2 9

9 chr2L [6257, 6263] | 3 8

... ... ... ... ... ...

2985 chr2L [499445, 499447] | 7 3



2986 chr2L [499461, 499461] | 8 2

2987 chr2L [499465, 499468] | 9 1

2988 chr2L [499470, 499521] | 17 10

2989 chr2L [499533, 499533] | 5 5

2990 chr2L [499538, 499538] | 4 6

2991 chr2L [499561, 499561] | 3 7

2992 chr2L [499788, 499789] | 1 10

2993 chr2L [499792, 499995] | 15 180

There are a number of analysis strategies to compare these counts be-
tween groups. For instance for short RNA sequencing data we could com-
pare expression levels across groups using the tools in package DEseq. Here
we show a simple analysis based on likelihood-ratio tests with the function
enrichedRegions.

> mappedreads <- c(ip=nrow(ip),ctrl=nrow(ctrl))

> mappedreads

ip ctrl

294624 162675

> regions <- enrichedRegions(sample1=ip,sample2=ctrl,minReads=10,mappedreads=mappedreads,p.adjust.method='BY',pvalFilter=.05,twoTailed=FALSE)

> head(regions)

RangedData with 50 rows and 5 value columns across 1 space

space ranges | sample1 sample2 pvalue

<factor> <IRanges> | <integer> <integer> <numeric>

1 chr2L [ 66674, 67923] | 651 249 8.072143e-05

2 chr2L [ 72428, 73199] | 2044 200 0.000000e+00

3 chr2L [ 73357, 74080] | 991 144 0.000000e+00

4 chr2L [ 74484, 74484] | 10 0 4.315945e-02

5 chr2L [ 86284, 86285] | 10 0 4.315945e-02

6 chr2L [ 86294, 87202] | 898 260 0.000000e+00

7 chr2L [ 94761, 95804] | 639 138 0.000000e+00

8 chr2L [102246, 103756] | 16711 1690 0.000000e+00

9 chr2L [105518, 106937] | 11175 522 0.000000e+00

... ... ... ... ... ... ...

42 chr2L [419857, 420830] | 15111 1332 0.000000e+00

43 chr2L [420838, 421573] | 8894 833 0.000000e+00

44 chr2L [431005, 432315] | 3632 821 0.000000e+00

45 chr2L [432329, 432406] | 34 3 2.103087e-03

46 chr2L [452450, 454178] | 9351 1280 0.000000e+00

47 chr2L [472986, 474752] | 4894 1865 0.000000e+00

48 chr2L [477772, 478378] | 203 182 2.250967e-05

49 chr2L [478619, 480611] | 5634 3512 2.917605e-10

50 chr2L [490766, 491695] | 1239 396 0.000000e+00

rpkm1 rpkm2

<numeric> <numeric>

1 1767.677 1224.5274

2 8986.601 1592.5456



3 4645.869 1222.6527

4 33941.566 0.0000

5 16970.783 0.0000

6 3353.083 1758.2825

7 2077.458 812.5644

8 37537.890 6875.4547

9 26711.056 2259.7549

... ... ...

42 52658.214 8406.6788

43 41015.800 6957.3904

44 9403.186 3849.6358

45 1479.504 236.4318

46 18356.714 4550.8672

47 9400.681 6488.1588

48 1135.113 1843.1551

49 9594.921 10832.4425

50 4521.893 2617.5285

> nrow(regions)

[1] 50

The argument twoTailed=FALSE indicates that only regions with a sig-
nificantly higher number of reads in sample1 than in sample2 are reported.
Regions with overall coverage ≥10 are selected, and a likelihood-ratio test is
used to compare the proportion of reads in sample1 falling in a given region
with the proportion in sample2. When setting exact to TRUE, a permutation-
based Chi-square test is used whenever the expected counts in any group is
below 5. Here we reported only regions with Benjamini-Yekutielli adjusted
p-values below 0.05.

enrichedRegions can also be used with no control sample, in which case
it looks for islands with a significant accumulation of reads with an exact
Binomial test. The null hypothesis assumes that a read is equally likely to
come from any of the selected regions.

A related function is enrichedPeaks, which can be used to find peaks
within the enriched regions. Peaks are defined as enriched regions where the
difference in coverage between sample1 and sample2 is above a user-specified
threshold. In this example we use minHeight=100.

> peaks <- enrichedPeaks(regions, sample1=ip, sample2=ctrl, minHeight=100)

> peaks

RangedData with 162 rows and 2 value columns across 1 space

space ranges | height region.pvalue

<factor> <IRanges> | <integer> <numeric>

1 chr2L [72615, 72665] | 141 0

2 chr2L [72668, 72940] | 233 0



3 chr2L [72988, 72994] | 114 0

4 chr2L [72996, 72997] | 100 0

5 chr2L [73475, 73475] | 100 0

6 chr2L [73477, 73489] | 110 0

7 chr2L [73491, 73493] | 102 0

8 chr2L [73496, 73496] | 100 0

9 chr2L [73702, 73712] | 112 0

... ... ... ... ... ...

154 chr2L [491172, 491173] | 104 0

155 chr2L [491311, 491318] | 105 0

156 chr2L [491335, 491335] | 100 0

157 chr2L [491337, 491337] | 100 0

158 chr2L [491339, 491341] | 102 0

159 chr2L [491345, 491347] | 104 0

160 chr2L [491349, 491349] | 102 0

161 chr2L [491354, 491379] | 113 0

162 chr2L [491382, 491384] | 103 0

It is possible to merge nearby regions, e.g. say no more than 300bp apart,
into a single region with the function mergeRegions. mergeRegions allows
to combine a numerical score across regions with any user-defined function,
e.g. the mean or median. In the following example we merge regions less
than 300bp apart and compute their median ’height’.

> mergeRegions(peaks, maxDist=300, score='height', aggregateFUN='median')

RangedData with 35 rows and 1 value column across 1 space

space ranges | height

<factor> <IRanges> | <numeric>

1 chr2L [ 72615, 72997] | 127.5

2 chr2L [ 73475, 73712] | 102.0

3 chr2L [102368, 103198] | 935.5

4 chr2L [106082, 106784] | 1272.0

5 chr2L [108119, 109322] | 108.0

6 chr2L [128535, 129098] | 470.0

7 chr2L [143361, 144128] | 106.0

8 chr2L [154763, 155980] | 112.0

9 chr2L [156684, 156965] | 148.0

... ... ... ... ...

27 chr2L [404453, 404972] | 447.0

28 chr2L [413977, 415796] | 182.0

29 chr2L [418856, 419571] | 145.0

30 chr2L [419899, 421445] | 1106.0

31 chr2L [431278, 432063] | 116.5

32 chr2L [453202, 453882] | 531.0

33 chr2L [473207, 473721] | 508.0

34 chr2L [478840, 479586] | 342.5

35 chr2L [491110, 491384] | 103.5



A common task is to identify genomic features close to the identified
regions/peaks, e.g. finding the closest gene. This can be performed with the
function annotatePeakInBatch from package ChIPpeakAnno, for instance.
Sometimes it is of interest to compare the list of genes which had a nearby
peak with the genes found in another experiment. The function listOverlap

quantifies the overlap and tests for its statistical significance.
Another analysis which may be of interest is locating hot chromosomal

regions, i.e., regions in the chromosome with a large number of peaks. The
function enrichedChrRegions can be used for this purpose. First we need
to define a named vector indicating the chromosome lengths. Since our ex-
ample data only contains reads aligning to the first 500,000 bases of chr2L,
we manually its length. More generally, one can determine the chromosome
lengths from Bioconductor packages (e.g. for drosophila melanogaster load
BSgenome.Dmelanogaster.UCSC.dm3 and evaluate seqlengths(Dmelanogaster),
and similarly for other organisms). We run the function setting a window size
of 9999 base pairs and a 0.05 false discovery rate level. For computational
speed here we only use nSims=1 simulations to estimate the FDR.

> chrLength <- 500000

> names(chrLength) <- c('chr2L')

> chrregions <- enrichedChrRegions(peaks, chrLength=chrLength, windowSize=10^4-1, fdr=0.05, nSims=1)

> chrregions

RangedData with 11 rows and 0 value columns across 1 space

space ranges |

<factor> <IRanges> |

1 chr2L [104291, 111432] |

2 chr2L [151685, 160730] |

3 chr2L [203133, 209502] |

4 chr2L [244883, 255436] |

5 chr2L [272742, 276338] |

6 chr2L [277689, 279174] |

7 chr2L [280443, 282318] |

8 chr2L [292864, 300986] |

9 chr2L [301169, 302855] |

10 chr2L [414264, 419138] |

11 chr2L [486384, 500000] |

enrichedChrRegions returns a RangedData which for our sample data is
empty, suggesting that there is no region with an unusually high density of
enriched regions. Two related functions are countHitsWindow which com-
putes the moving average of the number of hits, and plotChrRegions to
visualize the results. For illustrative purposes we make up two regions with
high density of enriched peaks and plot them.

> chrregions <- RangedData(ranges=IRanges(start=c(100000,200000),end=c(100100,210000)),space=c('chr2L','chr2R'))

> plotChrRegions(regions=chrregions, chrLength=c(chr2L=500000,chr2R=500000))



chr2L

chr2R

Figure 5: Chromosomal regions with a large number of hits. Red marks
indicate regions with high concentration of peaks.

5 Plots

stdPeakLocation and PeakLocation produce a plot useful for exploring
overall patterns in ChIP-chip or ChIP-seq experiments. Basically, it creates
a density plot indicating where the peaks were located with respect to the
closest gene/genomic feature. stdPeakLocation indicates the location in
standardized coordinates, i.e. relative to each gene/features’s length, which
in some situations can help making genes/features comparable. PeakLo-

cation produces the same plot in base pairs (i.e. non-standardized coor-
dinates), which is useful as distances have a direct physical interpretation,
e.g. to relate the peak location with nucleosome positioning. As mentioned
earlier, function annotatePeakInBatch from package ChIPpeakAnno can be
used to find the gene closest to each region. For illustrative purposes here
we assign a fake gene to each region. The fake genes start, end, strand and
distance from the start to the region by default are assumed to be stored in
’start_position’, ’end_position’, ’strand’ and ’distance’, respec-
tively (although different names can be given as arguments to PeakLocation

and stdPeakLocation).

> set.seed(1)

> peaksanno <- peaks

> peaksanno[['start_position']] <- start(peaksanno) + runif(nrow(peaksanno),-500,1000)

> peaksanno[['end_position']] <- peaksanno[['start_position']] + 500

> peaksanno[['distance']] <- peaksanno[['start_position']] - start(peaksanno)
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Figure 6: Distribution of peaks around the closest gene

> peaksanno[['strand']] <- sample(c('+','-'),nrow(peaksanno),replace=TRUE)

> PeakLocation(peaksanno,peakDistance=1000)

Figure 6 shows the resulting plot. We see that most of the peaks occur
right around the transcription start site.

Two related functions are regionsCoverage and gridCoverage, which
evaluate the coverage on user-specified genomic regions. We illustrate their
use by obtaining the coverage for the regions which we found to be enriched
(as previously described). regionsCoverage computes the coverage in the
specified regions. As each region has a different length it may be hard to
compare coverages across regions, e.g. to cluster regions with similar coverage
profiles. gridCoverage simplifies this task by evaluating the coverage on a
regular grid of 500 equally spaced points between the region start and end.
The result is stored in an object of class gridCover. The object contains the
coverage, which can be accesed with the method getViewsInfo.

> cover <- coverage(ip)

> rcov <- regionsCoverage(space(regions),start(regions),end(regions),cover=cover)

> names(rcov)

[1] "views" "viewsInfo"

> rcov[['views']]

RleViewsList of length 1

names(1): chr2L



> gridcov <- gridCoverage(rcov)

> dim(getCover(gridcov))

[1] 50 500

> getViewsInfo(gridcov)

DataFrame with 50 rows and 3 columns

strand meanCov maxCov

<factor> <numeric> <integer>

1 + 20.64080 51

2 + 105.58161 244

3 + 54.57182 129

4 + 10.00000 10

5 + 10.00000 10

... ... ... ...

46 + 216.27010 1033

47 + 110.71647 575

48 + 13.15815 41

49 + 112.99047 585

50 + 53.23333 187

We plot the coverage for the selected regions and see that they present
different profiles Figure 7, which suggests the use of some clustering technique
to find subgroups of regions behaving similarly.

> ylim <- c(0,max(getViewsInfo(gridcov)[['maxCov']]))

> plot(gridcov, ylim=ylim,lwd=2)

> for (i in 1:nrow(regions)) lines(getCover(gridcov)[i,], col='gray', lty=2)
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