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1 Licensing

Under the Artistic License, you are free to use and redistribute this software.
However, we ask you to cite the following paper if you use this software for
publication.

1. Lo, K., Brinkman, R. R., and Gottardo, R. (2008). Automated gating of
flow cytometry data via robust model-based clustering. Cytometry Part
A, 73A(4):321–332.

2. Lo, K., Hahne, F., Brinkman, R. R., and Gottardo, R. (2009). flowClust: a
Bioconductor package for automated gating of flow cytometry data. BMC
Bioinformatics, 10:145.

2 Overview

We apply a robust model-based clustering approach proposed by Lo et al. (2008)
to identify cell populations in flow cytometry data. The proposed approach is
based on multivariate t mixture models with the Box-Cox transformation. This
approach generalizes Gaussian mixture models by modeling outliers using t dis-
tributions and allowing for clusters taking non-ellipsoidal shapes upon proper
data transformation. Parameter estimation is carried out using an Expectation-
Maximization (EM) algorithm which simultaneously handles outlier identifica-
tion and transformation selection. Please refer to Lo et al. (2008) for more
details.

This flowClust package consists of a core function to implement the afore-
mentioned clustering methodology. Its source code is built in C for optimal
utilization of system resources. Graphical functionalities are available to users
for visualizing a wealth of features of the clustering results, including the cluster
assignment, outliers, and the size and shape of the clusters. The fitted mixture
model may be projected onto any one/two dimensions and displayed by means
of a contour or image plot. Currently, flowClust provides two options for
estimating the number of clusters when it is unknown, namely, the Bayesian
Information Criterion (BIC) and the Integrated Completed Likelihood (ICL).

flowClust is built in a way such that it is highly integrated with flowCore,
the core package for flow cytometry that provides data structures and basic
manipulation of flow cytometry data. Please read Section 4.3 for details about
actual implementation.

3 Installation

3.1 Unix/Linux/Mac Users

To build the flowClust package from source, make sure that the following is
present on your system:
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� a C compiler

� GNU Scientific Library (GSL)

� Basic Linear Algebra Subprograms (BLAS)

A C compiler is needed to build the package as the core function is coded in C.
GSL can be downloaded at http://www.gnu.org/software/gsl/. In addition,
the package uses BLAS to perform basic vector and matrix operations. Please
go to http://www.netlib.org/blas/faq.html#5 for a list of optimized BLAS
libraries for a variety of computer architectures. For instance, Mac users may
use the built-in vecLib framework, while users of Intel machines may use the
Math Kernel Library (MKL).

For the package to be installed properly you may have to type the following
command before installation:

export LD_LIBRARY_PATH='/path/to/GSL/:/path/to/BLAS/':$LD_LIBRARY_PATH

which will tell R where your GSL and BLAS libraries are. Note that this may
have already been configured on your system, so you may not have to do so.
In case you need to do it, you may consider including this line in your .bashrc
such that you do not have to type it every time.

If GSL is installed to some non-standard location such that it cannot be
found when installing flowClust, you may set the environment variable GSL_CONFIG
to point to the correct copy of gsl-config, for example,

export GSL_CONFIG='/global/home/username/gsl-1.12/bin/gsl-config'

For convenience sake, this line may also be added to .bashrc.
Now you are ready to install the package:

R CMD INSTALL flowClust_x.y.z.tar.gz

The package will look for a BLAS library on your system, and by default it will
choose gslcblas, which is not optimized for your system. To use an optimized
BLAS library, you can use the --with-blas argument which will be passed to
the configure.ac file. For example, on a Mac with vecLib pre-installed the
package may be installed via:

R CMD INSTALL flowClust_x.y.z.tar.gz --configure-args=

"--with-blas='-framework vecLib'"

On a 64-bit Intel machine which has MKL as the optimized BLAS library, the
command may look like:

R CMD INSTALL flowClust_x.y.z.tar.gz --configure-args="--with-

blas='-L/usr/local/mkl/lib/em64t/ -lmkl -lguide -lpthread'"

where /usr/local/mkl/lib/em64t/ is the path to MKL.
If you prefer to install a prebuilt binary, you need GSL for successful instal-

lation.
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3.2 Windows Users

You need the GNU Scientific Library (GSL) for the flowClust package. GSL
is freely available at http://gnuwin32.sourceforge.net/packages/gsl.htm

for Windows distributions.
To install a prebuilt binary of flowClust and to load the package suc-

cessfully you need to tell R where to link GSL. You can do that by adding
/path/to/libgsl.dll to the Path environment variable. To add this you may
right click on “My Computer”, choose “Properties”, select the “Advanced” tab,
and click the button“Environment Variables”. In the dialog box that opens, click
“Path” in the variable list, and then click “Edit”. Add /path/to/libgsl.dll to
the “Variable value” field. It is important that the file path does not contain any
space characters; to avoid this you may simply use the short forms (8.3 DOS file
names) found by typing dir /x at the Windows command line. For example,
the following may be added to the Path environment variable:

C:/PROGRA~1/GNUWIN32/bin

and the symbol ; is used to separate it from existing paths.
To build flowClust from source (using Rtools), in addition to adding

/path/to/libgsl.dll to Path, you need to tell flowClust where your GSL
library and header files are. You can do that by setting up two environment
variables GSL_LIB and GSL_INC with the correct path to the library files and
header files respectively. You can do this by going to the “Environment Vari-
ables” dialog box as instructed above and then clicking the “New” button. Enter
GSL_LIB in the “Variable name” field, and /path/to/your/gsl/lib/directory

in the “Variable value” field. Likewise, do this for GSL_INC and
/path/to/your/gsl/include/directory. Remember to use “/” instead of “\”
as the directory delimiter.

You can download Rtools at http://www.murdoch-sutherland.com/Rtools/
which provides the resources for building R and R packages. You should add
to the Path variable the paths to the various components of Rtools. Please
read the “Windows Toolset” appendix at http://cran.r-project.org/doc/

manuals/R-admin.html#The-Windows-toolset for more details.

4 Example: Clustering of the Rituximab Dataset

4.1 The Core Function

To demonstrate the functionality we use a flow cytometry dataset from a drug-
screening project to identify agents that would enhance the anti-lymphoma ac-
tivity of Rituximab, a therapeutic monoclonal antibody. The dataset is an
object of class flowFrame; it consists of eight parameters, among them only
the two scattering parameters (FSC.H, SSC.H) and two fluorescence parameters
(FL1.H, FL3.H) are of interest in this experiment. Note that, apart from a typ-
ical matrix or data.frame object, flowClust may directly take a flowFrame,
the standard R implementation of an FCS file, which may be returned from the
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read.FCS function in the flowCore package, as data input. The following code
performs an analysis with one cluster using the two scattering parameters:

> library(parallel)

> library(flowClust)

> data(rituximab)

> summary(rituximab)

FSC.H SSC.H FL1.H FL2.H FL3.H FL1.A FL1.W Time

Min. 59.0 11.0 0.0 0.0 1.0 0.00 0.0 2

1st Qu. 178.0 130.0 197.0 55.0 150.0 0.00 0.0 140

Median 249.0 199.0 244.0 116.0 203.0 0.00 0.0 285

Mean 287.1 251.8 349.2 126.4 258.3 73.46 17.6 294

3rd Qu. 331.0 307.0 445.0 185.0 315.0 8.00 0.0 451

Max. 1023.0 1023.0 974.0 705.0 1023.0 1023.00 444.0 598

> res1 <- flowClust(rituximab, varNames=c("FSC.H", "SSC.H"), K=1, B=100)

B is the maximum number of EM iterations; for demonstration purpose here
we set a small value for B. The main purpose of performing an analysis with
one cluster here is to identify outliers, which will be removed from subsequent
analysis.

Next, we would like to proceed with an analysis using the two fluorescence
parameters on cells selected from the first stage. The following code performs
the analysis with the number of clusters being fixed from one to six in turn:

> rituximab2 <- rituximab[rituximab %in% res1,]

> res2 <- flowClust(rituximab2, varNames=c("FL1.H", "FL3.H"), K=1:6, B=100)

We select the best model based on the BIC. Values of the BIC can be retrieved
through the criterion method. By inspection, the BIC values stay relatively
constant beyond three clusters. We therefore choose the model with three clus-
ters and print a summary of the corresponding clustering result:

> criterion(res2, "BIC")

[1] -34167.12 -33103.77 -33065.41 -32998.05 -32993.74 -32942.64

> summary(res2[[3]])

** Experiment Information **

Experiment name: Flow Experiment

Variables used: FL1.H FL3.H

** Clustering Summary **

Number of clusters: 3

Proportions: 0.5975411 0.1784141 0.2240448

** Transformation Parameter **
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lambda: 0.472139

** Information Criteria **

Log likelihood: -16467.68

BIC: -33065.41

ICL: -33795.22

** Data Quality **

Number of points filtered from above: 0 (0%)

Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 90% quantile

Number of outliers: 102 (7.42%)

Uncertainty summary:

The summary states that the rule used to identify outliers is 90% quantile,
which means that a point outside the 90% quantile region of the cluster to which
it is assigned will be called an outlier. To specify a different rule, we make use of
the ruleOutliers replacement method. The example below applies the more
conservative 95% quantile rule to identify outliers:

> ruleOutliers(res2[[3]]) <- list(level=0.95)

Rule of identifying outliers: 95% quantile

> summary(res2[[3]])

** Experiment Information **

Experiment name: Flow Experiment

Variables used: FL1.H FL3.H

** Clustering Summary **

Number of clusters: 3

Proportions: 0.5975411 0.1784141 0.2240448

** Transformation Parameter **

lambda: 0.472139

** Information Criteria **

Log likelihood: -16467.68

BIC: -33065.41

ICL: -33795.22

** Data Quality **

Number of points filtered from above: 0 (0%)

Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 95% quantile

Number of outliers: 38 (2.77%)

Uncertainty summary:

We can also combine the rule set by the z.cutoff argument to identify outliers.
Suppose we would like to assign an observation to a cluster only if the associated
posterior probability is greater than 0.6. We can add this rule with the following
command:
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> ruleOutliers(res2[[3]]) <- list(z.cutoff=0.6)

Rule of identifying outliers: 95% quantile,

probability of assignment < 0.6

> summary(res2[[3]])

** Experiment Information **

Experiment name: Flow Experiment

Variables used: FL1.H FL3.H

** Clustering Summary **

Number of clusters: 3

Proportions: 0.5975411 0.1784141 0.2240448

** Transformation Parameter **

lambda: 0.472139

** Information Criteria **

Log likelihood: -16467.68

BIC: -33065.41

ICL: -33795.22

** Data Quality **

Number of points filtered from above: 0 (0%)

Number of points filtered from below: 0 (0%)

Rule of identifying outliers: 95% quantile,

probability of assignment < 0.6

Number of outliers: 94 (6.84%)

Uncertainty summary:

This time more points are called outliers. Note that such a change of the rule
will not incur a change of the model-fitting process. The information about
which points are called outliers is conveyed through the flagOutliers slot, a
logical vector in which the positions of TRUE correspond to points being called
outliers.

By default, when 10 or more points accumulate on the upper or lower
boundary of any parameter, the flowClust function will filter those points.
To change the threshold count from the default, users may specify max.count

and min.count when running flowClust. To suppress filtering at the upper
and/or the lower boundaries, set max.count and/or min.count as −1. We can
also use the max and min arguments to control filtering of points, but from a
different perspective. For instance, if we are only interested in cells which have
a FL1.H measurement within (0, 400) and FL3.H within (0, 800), we may use the
following code to perform the cluster analysis:

> flowClust(rituximab2, varNames=c("FL1.H", "FL3.H"), K=2, B=100, min=c(0,0), max=c(400,800))

4.2 Visualization of Clustering Results

Information such as the cluster assignment, cluster shape and outliers may be
visualized by calling the plot method to make a scatterplot:
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> plot(res2[[3]], data=rituximab2, level=0.8, z.cutoff=0)

Rule of identifying outliers: 80% quantile
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The level and/or z.cutoff arguments are needed when we want to apply a
rule different from that stored in the ruleOutliers slot of the flowClust object
to identify outliers.

To look for densely populated regions, a contour/image plot can be made:

> res2.den <- density(res2[[3]], data=rituximab2)

> plot(res2.den)
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> plot(res2.den, type="image")
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When we want to examine how the fitted model and/or the data are dis-
tributed along one chosen dimension, we can use the hist method:
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> hist(res2[[3]], data=rituximab2, subset="FL1.H")
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The subset argument may also take a numeric value:

> hist(res2[[3]], data=rituximab2, subset=1)

Since FL1.H is the first element of res2[[3]]@varNames, this line produces ex-
actly the same histogram as the one generated by the line taking subset="FL1.H".
Likewise, the subset argument of both plot methods accepts either a numeric
or a character vector to specify which two variables are to be shown on the plot.

4.3 Integration with flowCore

As mentioned in Overview, effort has been made to integrate flowClust with
the flowCore package. Users will find that most methods defined in flowCore
also work in the context of flowClust.
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The very first step of integration is to replace the core function flowClust

with a call to the constructor tmixFilter followed by the filter method.
The aim is to wrap clustering in a filtering operation like those found in flow-
Core. The tmixFilter function creates a filter object to store all settings
required for the filtering operation. The object created is then passed to the
actual filtering operation implemented by the filter method. The use of a
dedicated tmixFilter-class object separates the task of specifying the settings
(tmixFilter) from the actual filtering operation (filter), facilitating the com-
mon scenario in FCM gating analysis that filtering with the same settings is
performed upon a set of data files.

As an example, the filtering operation that resembles the second-stage clus-
tering using FL1.H and FL3.H with three clusters (see Section 4.1) is imple-
mented by the following code:

> s2filter <- tmixFilter("s2filter", c("FL1.H", "FL3.H"), K=3, B=100)

> res2f <- filter(rituximab2, s2filter)

The object res2f is of class tmixFilterResult, which extends the
multipleFilterResult class defined in flowCore. Users may apply various
subsetting operations defined for the multipleFilterResult class in a similar
fashion on a tmixFilterResult object:

> Subset(rituximab2, res2f)

flowFrame object 'A02'

with 1278 cells and 8 observables:

name desc range maxRange minRange

$P1 FSC.H FSC-Height 1024 1023 0

$P2 SSC.H Side Scatter 1024 1023 0

$P3 FL1.H Anti-BrdU FITC 1024 1023 0

$P4 FL2.H <NA> 1024 1023 0

$P5 FL3.H 7 AAD 1024 1023 0

$P6 FL1.A <NA> 1024 1023 0

$P7 FL1.W <NA> 1024 1023 0

$P8 Time Time (204.80 sec.) 1024 1023 0

135 keywords are stored in the 'description' slot

> split(rituximab2, res2f, population=list(sc1=1:2, sc2=3))

$sc1

flowFrame object 'A02 (1,2)'

with 990 cells and 8 observables:

name desc range maxRange minRange

$P1 FSC.H FSC-Height 1024 1023 0

$P2 SSC.H Side Scatter 1024 1023 0

$P3 FL1.H Anti-BrdU FITC 1024 1023 0

$P4 FL2.H <NA> 1024 1023 0

$P5 FL3.H 7 AAD 1024 1023 0
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$P6 FL1.A <NA> 1024 1023 0

$P7 FL1.W <NA> 1024 1023 0

$P8 Time Time (204.80 sec.) 1024 1023 0

3 keywords are stored in the 'description' slot

$sc2

flowFrame object 'A02 (3)'

with 288 cells and 8 observables:

name desc range maxRange minRange

$P1 FSC.H FSC-Height 1024 1023 0

$P2 SSC.H Side Scatter 1024 1023 0

$P3 FL1.H Anti-BrdU FITC 1024 1023 0

$P4 FL2.H <NA> 1024 1023 0

$P5 FL3.H 7 AAD 1024 1023 0

$P6 FL1.A <NA> 1024 1023 0

$P7 FL1.W <NA> 1024 1023 0

$P8 Time Time (204.80 sec.) 1024 1023 0

136 keywords are stored in the 'description' slot

The Subset method above outputs a flowFrame consisting of observations
within the data-driven filter constructed. The split method separates the
data into two populations upon the removal of outliers: the first population is
formed by observations assigned to clusters 1 and 2 constructed by the filter,
and the other population consists of observations assigned to cluster 3. The two
populations are returned as two separate flowFrame’s, which are stored inside
a list and labelled with sc1 and sc2 respectively.

The %in% operator from flowCore is also defined for a tmixFilterResult

object. A logical vector will be returned in which a TRUE value means that the
corresponding observation is accepted by the filter. In fact, the implementation
of the Subset method needs to call %in%.

The object returned by tmixFilter is of class tmixFilter, which extends
the filter class in flowCore. Various operators, namely, &, |, ! and %subset%,
which have been constructed for filter objects in flowCore, also produce
similar outcomes when applied to a tmixFilter object. For example, to perform
clustering on a subset of data enclosed by a rectangle gate, we may apply the
following code:

> rectGate <- rectangleGate(filterId="rectRegion", "FL1.H"=c(0, 400), "FL3.H"=c(0, 800))

> MBCfilter <- tmixFilter("MBCfilter", c("FL1.H", "FL3.H"), K=2, B=100)

> filter(rituximab2, MBCfilter %subset% rectGate)

A filterResult produced by the filter named 'MBCfilter in rectRegion'

resulting in multiple populations:

2

1
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4.4 Using Bayesian Priors

The latest version of flowClust now supports priors through a Multivariate
Normal-Inverse Wishart model.

One way to construct a prior is to use an existing flowClust model fit. For
example, we can construct a prior from the rituximab fit. Then we can adjust
the prior so that the FL1-/FL3- population is centered at 200,200 a priori, and
both populations have an a priori smaller variance.

The parameter kappa acts as a weighting factor for the prior, while Nt con-
trols the number of equivalent observations for the prior.

> prior<-flowClust2Prior(res2[[2]],kappa=1,Nt=5000)

> prior2<-prior

> prior2$Mu0[1,]<-rep(box(200,prior2$lambda),2)

> prior2$Lambda0<-prior2$Lambda0/2

> pfit2<-flowClust(rituximab2,varNames=c("FL1.H","FL3.H"),K=2,prior=prior2,usePrior="yes")

> par(mfrow=c(1,2))

> plot(res2[[2]],data=rituximab2)

Rule of identifying outliers: 90% quantile

> plot(pfit2,data=rituximab2)

Rule of identifying outliers: 90% quantile
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