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1 Introduction

compcodeR is an R package that provides an interface to several popular methods for differential expression analysis of
RNAseq data and contains functionality for comparing the outcomes and performances of several differential expression
methods applied to the same data set. The package also contains a function for generating synthetic RNAseq counts,
using the simulation framework described in more detail in

C Soneson and M Delorenzi: A comparison of methods for differential expression analysis of RNA-seq data.
BMC Bioinformatics 2013, 14:91.

This vignette provides a tutorial on how to use the different functionalities of the compcodeR package.

Currently, the differential expression interfaces provided in the package are restricted to comparisons between two con-
ditions. However, many of the comparison functions are more general and can also be applied to test results from other
contrast types, as well as to test results from other data types than RNAseq.

Important! Since compcodeR provides interfaces to differential expression analysis methods im-
plemented in other R packages, take care to cite the appropriate references if you use any of the
interface functions (see the reference manual for more information). Also be sure to check the
code that was used to run the differential expression analysis, using e.g. the generateCodeHTMLs
function (see Section 3.3 for more information) to make sure that parameters etc. agree with
your intentions and that there were no errors or serious warnings.

2 The compData class

Within the compcodeR package (version ≥ 0.2.0), data sets and results are represented as objects of the compData class.
The functions in the package are still compatible with the list-based representation used in version 0.1.0, but we strongly
encourage users to use the compData class, and all results generated by the package will be given in this format. If you
have a data or result object generated with compcodeR version 0.1.0, you can convert it to a compData object using the
convertListTocompData function.

A compData object has at least three slots, containing the count matrix, sample annotations and a list containing at
least an identifying name and a unique ID for the data set. It can also contain variable annotations, such as information
regarding genes that are known to be differentially expressed. After performing a differential expression analysis, the
compData object contains additional information, such as which method was used to perform the analysis, which settings
were used and the gene-wise results from the analysis. More detailed information about the compData class are available
in Sections 6.1 and 6.2.

3 A sample workflow

This section contains a sample workflow showing the main functionalities of the compcodeR package. We start by
generating a synthetic count data set (Section 3.1), to which we then apply three different differential expression methods
(Section 3.2). Finally, we compare the outcome of the three methods and generate a report summarizing the results
(Section 3.3).

3.1 Simulating data

The simulations are performed following the description by (Soneson and Delorenzi, 2013). As an example, we use the
generateSyntheticData function to generate a synthetic count data set containing 12,500 genes and two groups of
5 samples each, where 10% of the genes are simulated to be differentially expressed between the two groups (equally
distributed between up- and downregulated in group 2 compared to group 1). Furthermore, the counts for all genes
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Figure 1: Example figures from the summarization report generated for a simulated data set. The left panel shows an
MA plot, with the genes colored by the true differential expression status. The right panel shows the relationship between
the true log-fold changes between the two sample groups underlying the simulation, and the estimated log-fold changes
based on the simulated counts. Also here, the genes are colored by the true differential expression status.

are simulated from a Negative Binomial distribution with the same dispersion in the two sample groups, and no outlier
counts are introduced. We filter the data set by excluding only the genes with zero counts in all samples (i.e., those for
which the total count is 0). This simulation setting corresponds to the one denoted B625

625 in (Soneson and Delorenzi,
2013). The following code creates a compData object containing the simulated data set and saves it to a file named
"B 625 625 5spc repl1.rds".

library(compcodeR)

B_625_625 <- generateSyntheticData(dataset = "B_625_625", n.vars = 12500,

samples.per.cond = 5, n.diffexp = 1250,

repl.id = 1, seqdepth = 1e7,

fraction.upregulated = 0.5,

between.group.diffdisp = FALSE,

filter.threshold.total = 1,

filter.threshold.mediancpm = 0,

fraction.non.overdispersed = 0,

output.file = "B_625_625_5spc_repl1.rds")

The summarizeSyntheticDataSet function provides functionality to check some aspects of the simulated data by
generating a report summarizing the parameters that were used for the simulation, as well as including some diagnostic
plots. The report contains two MA-plots, showing the estimated average expression level and the log-fold change for all
genes, indicating either the truly differentially expressed genes or the total number of outliers introduced for each gene.
It also shows the log-fold changes estimated from the simulated data versus those underlying the simulation. The input
to the summarizeSyntheticDataSet function can be either a compData object or the path to a file containing such an
object.

summarizeSyntheticDataSet(data.set = "B_625_625_5spc_repl1.rds",

output.filename = "B_625_625_5spc_repl1_datacheck.html")

Figure 1 shows two of the figures generated by this function. The left panel shows an MA plot with the genes colored by
the true differential expression status. The right panel shows the relationship between the true log-fold changes between
the two sample groups underlying the simulation, and the estimated log-fold changes based on the simulated counts.
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3.2 Performing differential expression analysis

We will now apply some of the interfaced differential expression methods to find genes that are differentially expressed
between the two conditions in the simulated data set. This is done through the runDiffExp function, which is the
main interface for performing differential expression analyses in compcodeR. The code below applies three differential
expression methods to the data set generated above: the voom transformation from the limma package (combined with
limma for differential expression), the exact test from the edgeR package, and a regular t-test applied directly on the
count level data.

runDiffExp(data.file = "B_625_625_5spc_repl1.rds",

result.extent = "voom.limma", Rmdfunction = "voom.limma.createRmd",

output.directory = ".", norm.method = "TMM")

runDiffExp(data.file = "B_625_625_5spc_repl1.rds",

result.extent = "edgeR.exact", Rmdfunction = "edgeR.exact.createRmd",

output.directory = ".", norm.method = "TMM",

trend.method = "movingave", disp.type = "tagwise")

runDiffExp(data.file = "B_625_625_5spc_repl1.rds", result.extent = "ttest",

Rmdfunction = "ttest.createRmd",

output.directory = ".", norm.method = "TMM")

The code needed to perform each of the analyses is provided in the *.createRmd functions. To obtain a list of all available
*.createRmd functions (and hence of the available differential expression methods), we can use the listcreateRmd()

function. Example calls are also provided in the reference manual (see the help pages for the runDiffExp function).

listcreateRmd()

## [1] "DESeq.GLM.createRmd"

## [2] "DESeq.nbinom.createRmd"

## [3] "DESeq2.createRmd"

## [4] "DSS.createRmd"

## [5] "EBSeq.createRmd"

## [6] "HTSDiff.createRmd"

## [7] "NBPSeq.createRmd"

## [8] "NOISeq.prenorm.createRmd"

## [9] "SAMseq.createRmd"

## [10] "TCC.createRmd"

## [11] "baySeq.createRmd"

## [12] "edgeR.GLM.createRmd"

## [13] "edgeR.exact.createRmd"

## [14] "logcpm.limma.createRmd"

## [15] "sqrtcpm.limma.createRmd"

## [16] "ttest.createRmd"

## [17] "voom.limma.createRmd"

## [18] "voom.ttest.createRmd"

## [19] "vst.limma.createRmd"

## [20] "vst.ttest.createRmd"

You can also apply your own differential expression method to the simulated data (see Section 5).

3.3 Comparing results from several differential expression methods

Once we have obtained the results of the differential expression analyses (either by the methods interfaced by compcodeR
or in other ways, see Section 5), we can compare the results and generate an HTML report summarizing the results
from the different methods from many different aspects (see Section 7 for an overview of the comparison metrics). In
compcodeR, there are two ways of invoking the comparison functionality; either directly from the command line or via a

http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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Figure 2: Screenshot of the graphical user interface used to select data set (left) and set parameters (right) for the
comparison of differential expression methods. The available choices for the “Data set”, “DE methods”, “Number of
samples” and “Replicates” are automatically generated from the compData objects available in the designated input
directories. Only one data set can be used for the comparison. In the lower part of the window we can set (adjusted)
p-value thresholds for each comparison method separately. For example, we can evaluate the true FDR at one adjusted
p-value threshold, and estimate the TPR for another adjusted p-value threshold. We can also set the maximal number
of top-ranked variables that will be considered for the false discovery curves.

graphical user interface (GUI). The GUI is mainly included to avoid long function calls and provide a clear overview of the
available methods and parameter choices. To use the GUI the R package rpanel must be installed (which assumes that
BWidget is available). Moreover, the GUI may have rendering problems on certain platforms, particularly on small screens
and if many methods are to be compared. Below, we will show how to perform the comparison using both approaches.

3.3.1 The graphical user interface

First, we consider the runComparisonGUI function, to which we provide a list of directories containing our result files,
and the directory where the final report will be generated. Since the three result files above were saved in the current
working directory, we can run the following code to perform the comparison:

runComparisonGUI(input.directories = ".",

output.directory = ".", recursive = FALSE)

This opens a graphical user interface (Figure 2) where we can select which of the data files available in the input
directories that should be included as a basis for the comparison, and which comparisons to perform (see Section 7 for an
overview). Through this interface, we can also set p-value cutoffs for significance and other parameters that will govern
the behaviour of the comparison.

Important! When you have modified a value in one of the textboxes (p-value cutoffs etc.), press
Return on your keyboard to confirm the assignment of the new value to the parameter. Always
check in the resulting comparison report that the correct values were recognized and used for the
comparisons.

After the selections have been made, the function will perform the comparisons and generate an HTML report, which
is saved in the designated output directory and automatically named compcodeR report <timestamp>.html. Please
note that depending on the number of compared methods and the number of included data sets, this step may take
several minutes. compcodeR will notify you when the report is ready (with a message Done! in the console).
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Note! Depending on the platform you use to run R, you may see a prompt (” > ”) in the console
before the analysis is done. However, compcodeR will always notify you when it is finished, by
typing Done! in the console.

The comparison function will also generate a subdirectory called compcodeR code, where the R code used to perform
each of the comparisons is detailed in HTML reports, and another subdirectory called compcodeR figure, where the
plots generated in the comparison are saved. The code HTML reports can also be generated manually for a given
result file (given that the code component is present in the compData object (see Section 6.2), using the function
generateCodeHTMLs. For example, to generate a report containing the code that was run to perform the t-test above,
as well as the output from the R console, we can write:

generateCodeHTMLs("B_625_625_5spc_repl1_ttest.rds", ".")

These reports are useful to check that there were no errors or warnings when running the differential expression analyses.

3.3.2 Direct command-line call

Next, we show how to run the comparison by calling the function runComparison directly. In this case, we need to
supply the function with a list of result files to use as a basis for the comparison. We can also provide a list of parameters
(p-value thresholds, the differential expression methods to include in the comparison, etc.). The default values of these
parameters are outlined in the reference manual. The following code provides an example, given the data generated
above.

file.table <- data.frame(input.files = c("B_625_625_5spc_repl1_voom.limma.rds",

"B_625_625_5spc_repl1_ttest.rds",

"B_625_625_5spc_repl1_edgeR.exact.rds"),

stringsAsFactors = FALSE)

parameters <- list(incl.nbr.samples = NULL, incl.replicates = NULL,

incl.dataset = "B_625_625", incl.de.methods = NULL,

fdr.threshold = 0.05, tpr.threshold = 0.05,

typeI.threshold = 0.05, ma.threshold = 0.05,

fdc.maxvar = 1500, overlap.threshold = 0.05,

fracsign.threshold = 0.05,

comparisons = c("auc", "fdr", "tpr", "ma", "correlation"))

runComparison(file.table = file.table, parameters = parameters, output.directory = ".")

By setting incl.nbr.samples, incl.replicates and incl.de.methods to NULL, we ask compcodeR to include all
results provided in the file.table. By providing a vector of values for each of these variables, it is possible to limit the
selection to a subset of the provided files. Please note that the values given to incl.replicates and incl.nbr.samples

are matched with values of the info.parameters$repl.id and info.parameters$samples.per.cond slots in the
data/result objects, and that the values given to incl.de.methods are matched with values stored in the method.names$full.name
slot of the result objects. If the values do not match, the corresponding result object will not be considered in the com-
parison. Consult the package manual for the full list of comparison methods available for use with the runComparison

function. Setting parameters = NULL implies that all results provided in the file.table are used, and that all param-
eter values are set to their defaults (see the reference manual). Note that only one dataset identifier can be provided to
the comparison (that is, parameters$incl.dataset must be a single string).

4 Using your own data

The compcodeR package provides a straightforward function for simulating count data (generateSyntheticData).
However, it is easy to apply the interfaced differential expression methods to your own data, given that it is provided in a
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compData object (see Section 6.1 below for a description of the data format). You can use the function check compData

to check that your object satisfies the necessary criteria to be fed into the differential expression methods.

To create a compData object from a count matrix and a data frame with sample annotations, you can use the function
compData. The following code provides a minimal example. Note that you need to provide a dataset name (a
’description’ of the simulation settings) as well as a unique data set identifier uID, which has to be unique for each
compData object (e.g., for each simulation instance, even if the same simulation parameters are used).

count.matrix <- matrix(round(1000*runif(4000)), 1000, 4)

sample.annot <- data.frame(condition = c(1, 1, 2, 2))

info.parameters <- list(dataset = "mytestdata", uID = "123456")

cpd <- compData(count.matrix = count.matrix,

sample.annotations = sample.annot,

info.parameters = info.parameters)

check_compData(cpd)

## [1] TRUE

5 Providing your own differential expression code

The compcodeR package provides an interface for calling some of the most commonly used differential expression methods
developed for RNAseq data. However, it is easy to incorporate your own favorite method. In principle, this can be done
in one of two ways:

1. Write a XXX.createRmd function (where XXX corresponds to your method), similar to the ones provided in the
package, which creates a .Rmd file containing the code that is run to perform the differential expression analysis.
Then call this function through the runDiffExp function. When implementing your function, make sure that the
output is a compData object, structured as described in Section 6.2. The *.createRmd functions provided in the
package take the following input arguments:
• data.path – the path to the .rds file containing the compData object to which the differential expression

will be applied.
• result.path – the path to the .rds file where the resulting compData object will be stored.
• codefile – the name of the code (with extension .Rmd) where the code will be stored.
• any arguments for setting parameters of the differential expression analysis.

2. Run the differential expression analysis completely outside the compcodeR package, and save the result in a
compData object with the slots described in Section 6.2.

You can use the check compData results function to check if your object satisfies the necessary conditions for be-
ing used as the output of a differential expression analysis and compared to results obtained by other methods with
compcodeR.

6 The format of the data and result objects

This section details the format of the data and result objects generated and used by the compcodeR package. Both
objects are of the compData class. The format guidelines below must be be followed if you apply the functions in the
package to a data set of your own, or to differential expression results generated outside the package. Note that for most
of the functionality of the package, the objects should be saved separately to files with a .rds extension, and the path
of this object is provided to the functions.

6.1 The data object

The compData data object used by compcodeR is an S4 object with the following slots:
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• count.matrix [class matrix] (mandatory) – the count matrix, with rows representing genes and columns rep-
resenting samples.

• sample.annotations [class data.frame] (mandatory) – sample annotations. Each row corresponds to one
sample, and each column to one annotation. The data objects generated by the generateSyntheticData function
have two annotations:

– condition [class character or numeric] (mandatory) – the class for each sample. Currently the differen-
tial expression implementations in the package supports only two-group comparisons, hence the condition

should have exactly two unique values.
– depth.factor [class numeric] – the depth factor for each sample. This factor, multiplied by the sequencing
depth, corresponds to the target library size of the sample when simulating the counts.

• info.parameters [class list] – a list detailing the parameter values that have been used for the simulation.
– dataset [class character] (mandatory) – the name of the data set.
– samples.per.cond [class numeric] – the number of samples in each of the two conditions.
– n.diffexp [class numeric] – the number of genes that are simulated to be differentially expressed between

the two conditions.
– repl.id [class numeric] – a replicate number, which can be set to differentiate between different instances

generated with the exact same simulation settings.
– seqdepth [class numeric] – the ”base” sequencing depth that was used for the simulations. For each

sample, it is modified by multiplication with a value sampled uniformly between minfact and maxfact to
generate the actual sequencing depth for the sample.

– minfact [class numeric] – the lower bound on the values used to multiply the seqdepth to generate the
actual sequencing depth for the individual samples.

– maxfact [class numeric] – the upper bound on the values used to multiply the seqdepth to generate the
actual sequencing depth for the individual samples.

– fraction.upregulated [class numeric] – the fraction of the differentially expressed genes that were
simulated to be upregulated in condition 2 compared to condition 1. Must be in the interval [0, 1]. The
remaining differentially expressed genes are simulated to be downregulated in condition 2.

– between.group.diffdisp [class logical] – whether the counts from the two conditions were simulated
with different dispersion parameters.

– filter.threshold.total [class numeric] – the filter threshold that is applied to the total count across
all samples. All genes for which the total count is below this number have been excluded from the data set
in the simulation process.

– filter.threshold.mediancpm [class numeric] – the filter threshold that is applied to the median count
per million (cpm) across all samples. All genes for which the median cpm is below this number have been
excluded from the data set in the simulation process.

– fraction.non.overdispersed [class numeric] – the fraction of the genes in the data set that are simu-
lated according to a model without overdispersion (i.e., a Poisson model).

– random.outlier.high.prob [class numeric] – the fraction of extremely high random outlier counts in-
troduced in the simulated data sets. Please consult (Soneson & Delorenzi 2013) for a detailed description of
the different types of outliers.

– random.outlier.low.prob [class numeric] – the fraction of extremely low random outlier counts intro-
duced in the simulated data sets. Please consult (Soneson & Delorenzi 2013) for a detailed description of the
different types of outliers.

– single.outlier.high.prob [class numeric] – the fraction of extremely high single outlier counts intro-
duced in the simulated data sets. Please consult (Soneson & Delorenzi 2013) for a detailed description of the
different types of outliers.

– single.outlier.low.prob [class numeric] – the fraction of extremely low single outlier counts introduced
in the simulated data sets. Please consult (Soneson & Delorenzi 2013) for a detailed description of the different
types of outliers.

– effect.size [class numeric] – the degree of differential expression, i.e., a measure of the minimal effect
size. Alternatively, a vector of provided effect sizes for each of the variables.

– uID [class character] (mandatory) – a unique identification number given to each data set. For the data
sets simulated with compcodeR, it consists of a sequence of 10 randomly generated alpha-numeric characters.

• filtering [class character] – a summary of the filtering that has been applied to the data.
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• variable.annotations [class data.frame] – annotations for each of the variables in the data set. Each row
corresponds to one variable, and each column to one annotation. No annotation is mandatory, however some of
them are necessary if the differential expression results for the data are going to be used for certain comparison
tasks. The data sets simulated within compcodeR have the following named variable annotations:

– truedispersions.S1 [class numeric] – the true dispersions used in the simulations of the counts for the
samples in condition 1.

– truedispersions.S2 [class numeric] – the true dispersions used in the simulations of the counts for the
samples in condition 2.

– truemeans.S1 [class numeric] – the true mean values used in the simulations of the counts for the samples
in condition 1.

– truemeans.S2 [class numeric] – the true mean values used in the simulations of the counts for the samples
in condition 2.

– n.random.outliers.up.S1 [class numeric] – the number of extremely high random outliers introduced
for each gene in condition 1.

– n.random.outliers.up.S2 [class numeric] – the number of extremely high random outliers introduced
for each gene in condition 2.

– n.random.outliers.down.S1 [class numeric] – the number of extremely low random outliers introduced
for each gene in condition 1.

– n.random.outliers.down.S2 [class numeric] – the number of extremely low random outliers introduced
for each gene in condition 2.

– n.single.outliers.up.S1 [class numeric] – the number of extremely high single outliers introduced for
each gene in condition 1.

– n.single.outliers.up.S2 [class numeric] – the number of extremely high single outliers introduced for
each gene in condition 2.

– n.single.outliers.down.S1 [class numeric] – the number of extremely low single outliers introduced
for each gene in condition 1.

– n.single.outliers.down.S2 [class numeric] – the number of extremely low single outliers introduced
for each gene in condition 2.

– M.value [class numeric] – the estimated log2-fold change between conditions 1 and 2 for each gene. These
values were estimated using the edgeR package.

– A.value [class numeric] – the estimated average expression in conditions 1 and 2 for each gene. These
values were estimated using the edgeR package.

– truelog2foldchanges [class numeric] – the “true” log2-fold changes between conditions 1 and 2 for each
gene, based on the parameters used for simulation.

– upregulation [class numeric] – a binary annotation (0/1) indicating which genes are simulated to be
upregulated in condition 2 compared to condition 1. (Upregulated genes are indicated with a 1.)

– downregulation [class numeric] – a binary annotation (0/1) indicating which genes are simulated to be
downregulated in condition 2 compared to condition 1. (Downregulated genes are indicated with a 1.)

– differential.expression [class numeric] (mandatory for many comparisons, such as the computation
of false discovery rates, true positive rates, ROC curves, false discovery curves etc.)– a binary annotation
(0/1) indicating which genes are simulated to be differentially expressed in condition 2 compared to condition
1. In other words, the sum of upregulation and downregulation.

To apply the functions of the package to a compData object of the type detailed above, it needs to be saved to a file
with extension .rds. To save the object cpd to the file saveddata.rds, simply type

saveRDS(cpd, "saveddata.rds")

6.2 The result object

When applying one of the differential expression methods interfaced through compcodeR, the compData object is extended
with some additional slots. These are described below.

• analysis.date [class character] – the date and time when the differential expression analysis was performed.
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• package.version [class character] – the version of the packages used in the differential expression analysis.
• method.names [class list] (mandatory) – a list containing the names of the differential expression method,

which should be used to identify the results in the comparison. Contains two components:
– short.name [class character] – a short name, used for convenience.
– full.name [class character] – a fully identifying name of the differential expression method, including

e.g. version numbers and parameter values. In the method comparisons, the results will be grouped based on
the full.name.

• code [class character] – the code that was used to run the differential expression analysis, in R markdown
(.Rmd) format.

• result.table [class data.frame] (mandatory) – a data frame containing the results of the differential expres-
sion analysis. Each row corresponds to one gene, and each column to a value generated by the analysis. The
precise columns will depend on the method applied. The following columns are used by at least one of the methods
interfaced by compcodeR:

– pvalue [class numeric] – the nominal p-values.
– adjpvalue [class numeric] – p-values adjusted for multiple comparisons.
– logFC [class numeric] – estimated log-fold changes between the two conditions.
– score [class numeric] (mandatory) – the score that will be used to rank the genes in order of significance.

Note that high scores always signify differential expression, that is, a strong association with the predictor.
For example, for methods returning a nominal p-value the score is generally obtained as 1 - pvalue.

– FDR [class numeric] – the false discovery rate estimate.
– posterior.DE [class numeric] – the posterior probability of differential expression.
– prob.DE [class numeric] – The conditional probability of differential expression.
– lfdr [class numeric] – the local false discovery rate.
– statistic [class numeric] – a test statistic from the differential expression analysis.
– dispersion.S1 [class numeric] – dispersion estimate in condition 1.
– dispersion.S2 [class numeric] – dispersion estimate in condition 2.

For many of the comparison methods, the naming of the result columns is important. For example, the p-value
column must be named pvalue in order to be recognized by the comparison method computing type I error.
Similarly, either an adjpvalue or an FDR column must be present in order to apply the comparison methods
requiring adjusted p-value/FDR cutoffs. If both are present, the adjpvalue column takes precedence over the FDR

column.

To be used in the comparison function, the result compData object must be saved to a .rds file.

7 The evaluation/comparison methods

This section provides an overview of the methods that are implemented in compcodeR for comparing differential expression
results obtained by different methods. The selection of which methods to apply is made through a graphical user interface
that is opened when the runComparisonGUI function is called (see Figure 2). Alternatively, the selection of methods
can be supplied to the runComparison function directly, to circumvent the GUI.

7.1 ROC (one replicate/all replicates)

This method computes a ROC curve for either a single representative among the replicates of a given data set, or for
all replicates (in separate plots). The ROC curves are generated by plotting the true positive rate (TPR, on the y-axis)
versus the false positive rate (FPR, on the x-axis) when varying the cutoff on the score (see the description of the result
object above). A good ranking method gives a ROC curve which passes close to the upper left corner of the plot, while
a bad method gives a ROC curve closer to the diagonal. Calculation of the ROC curves requires that the differential
expression status of each gene is provided (see the description of the data object in Section 6.1). Figure 3 shows an
example of ROC curves for a single replicate.
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Figure 3

7.2 AUC

This comparison method computes the area under the ROC curve (see section 7.1) and represents the result in boxplots,
where each box summarizes the results for one method across all replicates of a data set. A good ranking method gives to
a large value of the AUC. This requires that the differential expression status of each gene is provided (see the description
of the data object in Section 6.1). Figure 4 shows an example.

Figure 4

7.3 Type I error

This approach computes the type I error (the fraction of the genes that are truly non-differentially expressed that are
called significant at a given nominal p-value threshold) for each method and sample size separately, and represent it in
boxplots, where each box summarizes the results for one method across all replicates of a data set. This requires that
the differential expression status of each gene is provided (see the description of the data object above) and that the
pvalue column is present in the result.table of the included result objects (see the description of the result object
above). An example is given in Figure 5. The dashed vertical line represents the imposed nominal p-value threshold, and
we wish that the observed type I error is lower than this threshold.
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Figure 5

7.4 FDR

Here, we compute the observed false discovery rate (the fraction of the genes called significant that are truly non-
differentially expressed at a given adjusted p-value/FDR threshold) for each method and sample size separately, and
represent the estimates in boxplots, where each box summarizes the results for one method across all replicates of a data
set. This requires that the differential expression status of each gene is provided (see the description of the data object
above) and that the adjpvalue or FDR column is present in the result.table of the included result objects (see the
description of the result object above). An example is given in Figure 6. The dashed vertical line represents the imposed
adjusted p-value threshold (that is, the level at which we wish to control the false discovery rate).

Figure 6

7.5 FDR as a function of expression level

Instead of looking at the overall false discovery rate, this method allows us to study the FDR as a function of the average
expression level of the genes. For each data set, the average expression levels are binned into 10 bins of equal size (i.e.,
each containing 10% of the genes), and the FDR is computed for each of them. The results are shown by means of
boxplots, summarizing the results across all replicates of a data set. Figure 7 shows an example.

Figure 7
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7.6 TPR

With this approach, we compute the observed true positive rate (the fraction of the truly differentially expressed genes
that are called significant at a given adjusted p-value/FDR threshold) for each method and sample size separately, and
represent the estimates in boxplots, where each box summarizes the results for one method across all replicates of a data
set. This requires that the differential expression status of each gene is provided (see the description of the data object
above) and that the adjpvalue or FDR column is present in the result.table of the included result objects (see the
description of the result object above). Figure 8 shows an example. There is often a trade-off between achieving a high
TPR (which is desirable) and controlling the number of false positives, and hence the TPR plots should typically be
interpreted together with the type I error and/or FDR plots.

Figure 8

7.7 False discovery curves (one replicate/all replicates)

This choice plots the false discovery curves, depicting the number of false discoveries (i.e., truly non-differentially expressed
genes) that are encountered when traversing the ranked list of genes ordered in decreasing order by the score column
of the result.table (see the description of the result object above). As for the ROC curves, the plots can be made
for a single replicate or for all replicates (each in a separate figure). Figure 9 shows an example for a single replicate. A
well-performing method is represented by a slowly rising false discovery curve (in other words, few false positives among
the top-ranked genes).

Figure 9
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7.8 Fraction significant

We can also compute the fraction of the genes that are called significant at a given adjusted p-value/FDR threshold for
each method and sample size separately, and represent the estimates in boxplots, where each box summarizes the results
for one method across all replicates of a data set. This requires that the adjpvalue or FDR column is present in the
result.table of the included result objects (see the description of the result object above). An example is given in
Figure 10. Since this plot does not incorporate information about the number of the identity of the truly differentially
expressed genes, we can not conclude whether a large or small fraction of significant genes is preferable. Thus, the plot
is merely an indication of which methods are more liberal (giving more significantly differentially expressed genes) and
which are more conservative.

Figure 10

7.9 Overlap, one replicate

For each pair of methods, this approach computes the overlap between the sets of genes called differentially expressed by
each of them at a given adjusted p-value/FDR threshold. Only one representative of the replicates of a data set is used.
This requires that the adjpvalue or FDR column is present in the result.table of the included result objects (see the
description of the result object above). Since the overlap depends on the number of genes called differentially expressed
by the different methods, a normalized overlap measure (the Sorensen index) is also provided (see Section 7.10 below).
The results are represented as a table of the sizes of the overlaps between each pair of methods.

7.10 Sorensen index, one replicate

For each pair of methods, this approach computes a normalized pairwise overlap value between the sets of genes called
differentially expressed by each of them at a given adjusted p-value/FDR threshold. Only one representative of the
replicates of a data set is used. This requires that the adjpvalue or FDR column is present in the result.table of
the included result objects (see the description of the result object above). The Sorensen index (also called the Dice
coefficient) for two sets A and B is given by

S(A,B) =
2|A ∩B|
|A|+ |B|

,

where | · | denotes the cardinality of a set (the number of elements in the set). The results are represented in the form of
a table, and also as a colored heatmap, where the color represents the degree of overlap between the sets of differentially
expressed genes found by different methods. An example is shown in Figure 11.
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Figure 11

7.11 MA plot

With this approach we can construct MA-plots (one for each differential expression method) for one replicate of a data
set, depicting the estimated log-fold change (on the y-axis) versus the estimated average expression (on the x-axis). The
genes that are called differentially expressed are marked with color. Figure 12 shows an example.

Figure 12

7.12 Spearman correlation

This approach computes the pairwise Spearman correlation between the gene scores obtained by different differential
expression methods (the score component of the result.table, see the description of the result object above). The
correlations are visualized by means of a color-coded table and used to construct a dissimilarity measure for hierarchical
clustering of the differential expression methods. Examples are given in Figures 13 and 14.
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Figure 13

Figure 14

7.13 Score distribution vs number of outliers

This method plots the distribution of the gene scores obtained by different differential expression methods (the score

component of the result.table, see the description of the result object above) as a function of the number of outliers
imposed for the genes. The distributions are visualized by means of violin plots. Figure 15 shows an example, where there
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are no outliers introduced. Recall that a high score corresponds to more significant genes. In the presence of outliers,
the score distribution plots can be used to examine whether the presence of an outlier count for a gene shifts the score
distribution towards higher or lower values.

Figure 15

7.14 Score distribution vs average expression level

This method plots the gene scores (the score component of the result.table, see the description of the result object
above) as a function of the average expression level of the gene. An example is shown in Figure 16. Recall that high
scores correspond to more significant genes. The colored line shows the trend in the relationship between the two variables
by means of a loess fit. These plots can be used to examine whether highly expressed genes tend to have (e.g.) higher
scores than lowly expressed genes, and more generally to provide a useful characteristic of the methods. However, it is
not clear what would be the ”optimal” behavior.

Figure 16

7.15 Score vs ’signal’ for genes expressed in only one condition

This method plots the gene scores (the score component of the result.table, see the description of the result object
above) as a function of the ’signal strength’ for genes that are detected in only one of the two conditions. The signal
strength can be defined either as the average (log-transformed) normalized pseudo-count in the condition where the
gene is expressed, or as the signal-to-noise ratio in this condition, that is, as the average log-transformed normalized
pseudo-count divided by the standard deviation of the log-transformed normalized pseudo-count. Typically, we would
expect that the score increases with the signal strength. Figure 17 shows an example.
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Figure 17

7.16 Matthew’s correlation coefficient

Matthew’s correlation coefficient summarizes the result of a classification task in a single number, incorporating the
number of false positives, true positives, false negatives and true negatives. A correlation coefficient of +1 indicates
perfect classification, while a correlation coefficient of -1 indicates perfect ”anti-classification”, i.e., that all objects are
misclassified.
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