
The RTopper package: perform run Gene Set Enrichment across

genomic platforms

Luigi Marchionni
Department of Oncology
Johns Hopkins University
email: marchion@jhu.edu

April 16, 2015

Contents

1 Overview 1

2 RTopper data structure 2
2.1 Creation of Functional Gene Sets . 4

3 Data analysis with RTopper 9
3.1 Integrated Gene-to-Phenotype score computation . 10
3.2 Separate Gene-to-Phenotype score computation . 10
3.3 Gene Set Enrichment using integrated and separate score 11
3.4 INTEGRATION + GSE . 12

3.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics 12
3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics 12
3.4.3 Performing a simulation-based GSE test . 12
3.4.4 Passsing alternative enrichment functions to runBatchGSE 13

3.5 GSE + INTEGRATION . 15
3.6 Multiple testing correction . 16

4 System Information 17

5 References 19

1 Overview

Gene Set Enrichment (GSE) analysis has been widely use to assist the interpretation of gene
expression data. We propose here to apply GSE for the integration of genomic data obtained from
distinct analytical platform.

In the present implementation of the RTopper GSE analysis is performed using the geneSetTest

function from the limma package [6, 5, 7]. This function enables testing the hypothesis that a
specific set of genes (a Functional Gene Set, FGS) is more highly ranked on a given statistics. In

1

particular this functions computes a p-value for each FGS by one or two-sided Wilcoxon rank-sum
test. Alternative user-defined functions can also be used.

Furthermore multiple hypothesis testing correction is achieved by applying the Benjamini and
Hochberg method [2] as implemented in the multtest R/Bioconductor package. Overall, this
approach is conceptually analogous to Gene Set Enrichment Analysis (GSEA), as proposed by
Mootha and colleagues [4, 8].

The integration can be achieved through two distinct approaches:

1. GSE + INTEGRATION: Separate GSE analysisn on the individual genomic platforms
followed by GSE results integration;

2. INTEGRATION + GSE: Integration of genomic data measurement using a logistic model
followed by GSE analysis;

2 RTopper data structure

In this tutorial we demonstrate the functionality of RTopper package. To this end we will make use
of simplified data generated within The Cancer Genome Atlas (TCGA) project, using Glioblastoma
Multiforme (GBM) genomics data obtained from the same patients’ cohort using distinct platforms,
including Differential Gene Expression (DGE), Copy Number Variation (CNV), and Differential
Methylation (DM). This data is included with the RTopper package as the dataset exampleData,
which consists of genomic measurements (the list dat) for 500 genes (in rows) and 95 patients (in
columns) from 4 distinct platforms:

1. DGE obtained using Affymetrix;

2. DGE obtained using Agilent;

3. CNV data generated ad Harvard;

4. CNV data generated ad the MSKCC;

The phenotypic class for each patient is defined in the a data.frame pheno consisting of 95 rows
(patients, pheno$Sample) and 2 columns, the first being patients identifiers, and the second variable
giving the group indicator (pheno$Class).

To load the data set type data(exampleData), and to view a description of this data type ?exam-

pleData. The structure of the data is shown below:

> library(RTopper)

> data(exampleData)

> ls()

[1] "dat" "pheno"

> class(dat)

[1] "list"

> names(dat)

[1] "dat.affy" "dat.agilent"

[3] "dat.cnvHarvard" "dat.cnvMskcc"

2

> sapply(dat,class)

dat.affy dat.agilent dat.cnvHarvard

"data.frame" "data.frame" "data.frame"

dat.cnvMskcc

"data.frame"

> sapply(dat,dim)

dat.affy dat.agilent dat.cnvHarvard

[1,] 500 500 500

[2,] 95 95 95

dat.cnvMskcc

[1,] 500

[2,] 95

> dim(pheno)

[1] 95 2

> str(pheno)

'data.frame': 95 obs. of 2 variables:

$ Sample: chr "TCGA.02.0003" "TCGA.02.0007" "TCGA.02.0011" "TCGA.02.0021" ...

$ Class : int 0 0 1 1 0 0 0 0 0 0 ...

In summary to perform the analysis with functions from RTopper the genomic data used as input
must be in the following format:

1. Genomic measurements: a list of data.frames, in which each list item corresponds to a
genomic platform, and comprises a data.frame with rows being genes and columns patients;

2. Phenotype data: a data.frame with 2 columns: patients and their phenotypes;

3. The number of columns of the Genomic measurements data.frames must match the number
of rows of the Phenotype data;

4. The same set of genes must be measured in each platform and gene labels must be stored as
rownames;

Below are shown the first 6 rows and 4 columns of each data.frame contained in dat, which share
the same genes (shown for some of the possible combinations). Similarly column names in the dat

data.frames correspond to rownames of pheno.

> ###data structure

> lapply(dat,function(x) head(x)[,1:3])

$dat.affy

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS 7.747995 7.685409 7.535661

AARS 9.381544 9.930156 10.197194

ABI1 8.173255 8.962803 9.895811

ACHE 5.127197 4.547297 5.146552

ACTC1 6.612645 5.825879 8.067945

ACTN2 6.257383 5.330557 5.842319

3

$dat.agilent

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -1.0070000 -1.1164000 -0.913000

AARS -1.2665000 -0.8981250 0.263500

ABI1 -0.2765000 0.3356250 1.027250

ACHE 0.4403750 -0.0222500 0.115000

ACTC1 0.3641538 0.1234615 1.046692

ACTN2 4.3348000 2.2278000 3.330600

$dat.cnvHarvard

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -0.08273213 -0.08917331 -0.02075644

AARS -0.10233281 -0.20620608 -0.05157664

ABI1 -0.86886659 -0.01214599 0.59307754

ACHE 0.31560002 -1.00166150 -0.14519639

ACTC1 -1.17495078 -0.26698279 -0.95662761

ACTN2 -0.11319016 -0.09657971 0.02582138

$dat.cnvMskcc

TCGA.02.0003 TCGA.02.0007 TCGA.02.0011

AACS -0.0383875 -0.09140000 0.008233333

AARS 0.0075600 0.02801667 0.104850000

ABI1 -0.7006900 0.21270000 0.499472727

ACHE 0.8676000 -0.23970000 0.075000000

ACTC1 -0.9779500 -0.11625000 -0.692950000

ACTN2 -0.1258571 -0.05394444 0.010200000

> sum(rownames(dat[[1]])%in%rownames(dat[[2]]))

[1] 500

> sum(rownames(dat[[2]])%in%rownames(dat[[3]]))

[1] 500

2.1 Creation of Functional Gene Sets

Functional Gene Sets (FGS) are list of genes that share a specific biological function. Examples
of FGS are genes that operate in the same signaling pathway (i.e. Notch signaling genes), or that
share the same biological function (i.e. Cell adhesion genes). FGS can be retrieved from various
database, or can be construncted ad hoc. A convenient source of FGS are the R-Bioconductor
metaData packages, and S4 classes and methods for handling FGS are provided by the GSEABase

package. Below is shown a simple way to extract FGS from the human genome metaData package
org.Hs.eg.db. As a general rule the name of the metaData package, without the .db extension,
can be used a function to see the content of the package, as shown below:

> library(org.Hs.eg.db)

> org.Hs.eg()

4

Quality control information for org.Hs.eg:

This package has the following mappings:

org.Hs.egACCNUM has 41961 mapped keys (of 56340 keys)

org.Hs.egACCNUM2EG has 750930 mapped keys (of 750930 keys)

org.Hs.egALIAS2EG has 113648 mapped keys (of 113648 keys)

org.Hs.egCHR has 55858 mapped keys (of 56340 keys)

org.Hs.egCHRLENGTHS has 93 mapped keys (of 93 keys)

org.Hs.egCHRLOC has 23584 mapped keys (of 56340 keys)

org.Hs.egCHRLOCEND has 23584 mapped keys (of 56340 keys)

org.Hs.egENSEMBL has 26404 mapped keys (of 56340 keys)

org.Hs.egENSEMBL2EG has 28423 mapped keys (of 28423 keys)

org.Hs.egENSEMBLPROT has 19616 mapped keys (of 56340 keys)

org.Hs.egENSEMBLPROT2EG has 98264 mapped keys (of 98264 keys)

org.Hs.egENSEMBLTRANS has 20464 mapped keys (of 56340 keys)

org.Hs.egENSEMBLTRANS2EG has 154732 mapped keys (of 154732 keys)

org.Hs.egENZYME has 2230 mapped keys (of 56340 keys)

org.Hs.egENZYME2EG has 975 mapped keys (of 975 keys)

org.Hs.egGENENAME has 56340 mapped keys (of 56340 keys)

org.Hs.egGO has 18585 mapped keys (of 56340 keys)

org.Hs.egGO2ALLEGS has 19541 mapped keys (of 19541 keys)

org.Hs.egGO2EG has 15283 mapped keys (of 15283 keys)

org.Hs.egMAP has 36078 mapped keys (of 56340 keys)

org.Hs.egMAP2EG has 2367 mapped keys (of 2367 keys)

org.Hs.egOMIM has 16072 mapped keys (of 56340 keys)

org.Hs.egOMIM2EG has 20279 mapped keys (of 20279 keys)

org.Hs.egPATH has 5869 mapped keys (of 56340 keys)

org.Hs.egPATH2EG has 229 mapped keys (of 229 keys)

org.Hs.egPMID has 33435 mapped keys (of 56340 keys)

org.Hs.egPMID2EG has 452385 mapped keys (of 452385 keys)

org.Hs.egREFSEQ has 40744 mapped keys (of 56340 keys)

org.Hs.egREFSEQ2EG has 268751 mapped keys (of 268751 keys)

org.Hs.egSYMBOL has 56340 mapped keys (of 56340 keys)

org.Hs.egSYMBOL2EG has 56332 mapped keys (of 56332 keys)

org.Hs.egUCSCKG has 22864 mapped keys (of 56340 keys)

org.Hs.egUNIGENE has 25400 mapped keys (of 56340 keys)

org.Hs.egUNIGENE2EG has 27472 mapped keys (of 27472 keys)

org.Hs.egUNIPROT has 19170 mapped keys (of 56340 keys)

Additional Information about this package:

DB schema: HUMAN_DB

DB schema version: 2.1

Organism: Homo sapiens

Date for NCBI data: 2015-Mar17

5

Date for GO data: 20150314

Date for KEGG data: 2011-Mar15

Date for Golden Path data: 2010-Mar22

Date for Ensembl data: 2015-Mar13

For instance the org.Hs.egGO2ALLEGS environment contains the mapping of all ENTREZ Gene
identifiers to the Gene Ontology Terms [1], while org.Hs.egPATH2EG maps the identifiers to
KEGG pathways [3]. The corresponding lists of FGS can be retrieve from the corresponding
environments using the the R command as.list(), as shown below for KEGG and GO:

> kegg <- as.list(org.Hs.egPATH2EG)

> go <- as.list(org.Hs.egGO2ALLEGS)

> length(kegg)

[1] 229

> length(go)

[1] 19541

> str(kegg[1:5])

List of 5

$ 04610: chr [1:69] "2" "462" "623" "624" ...

$ 00232: chr [1:7] "9" "10" "1544" "1548" ...

$ 00983: chr [1:52] "9" "10" "978" "1066" ...

$ 01100: chr [1:1130] "9" "10" "15" "18" ...

$ 00380: chr [1:42] "15" "26" "38" "39" ...

> names(kegg)[1:5]

[1] "04610" "00232" "00983" "01100" "00380"

> str(go[1:5])

List of 5

$ GO:0000002: Named chr [1:32] "291" "1763" "1890" "3980" ...

..- attr(*, "names")= chr [1:32] "TAS" "IDA" "TAS" "IEA" ...

$ GO:0000003: Named chr [1:1029] "18" "49" "49" "49" ...

..- attr(*, "names")= chr [1:1029] "IEA" "IEA" "IMP" "ISS" ...

$ GO:0000011: Named chr "64145"

..- attr(*, "names")= chr "IBA"

$ GO:0000012: Named chr [1:9] "3981" "7141" "7515" "23411" ...

..- attr(*, "names")= chr [1:9] "IDA" "IDA" "IEA" "IMP" ...

$ GO:0000018: Named chr [1:59] "604" "641" "641" "940" ...

..- attr(*, "names")= chr [1:59] "IEA" "IEA" "IMP" "IEA" ...

> names(go)[1:5]

[1] "GO:0000002" "GO:0000003" "GO:0000011"

[4] "GO:0000012" "GO:0000018"

In the kegg list genes are identified by their ENTREZ Gene identifiers, while in the dat genes are
identified by their Gene Symbol. Below is an example of the code that can be used to perform the
identifiers conversion, using only a subset of KEGG and GO FGS:

6

> kegg <- lapply(kegg[sample(1:length(kegg),5)],function(x) unique(unlist(mget(x,org.Hs.egSYMBOL))))

> go <- lapply(go[sample(1:length(go),5)],function(x) unique(unlist(mget(x,org.Hs.egSYMBOL))))

> str(kegg)

List of 5

$ 05144: chr [1:51] "CD36" "CD40" "CD40LG" "CD81" ...

$ 00561: chr [1:50] "ALDH2" "ALDH1B1" "ALDH9A1" "ALDH3A2" ...

$ 03060: chr [1:23] "HSPA5" "OXA1L" "SRP9" "SRP14" ...

$ 00983: chr [1:52] "NAT1" "NAT2" "CDA" "CES1" ...

$ 04740: chr [1:388] "ADCY3" "ADRBK2" "ARRB2" "CALM1" ...

> str(go)

List of 5

$ GO:0060028: chr [1:6] "SFRP1" "SFRP2" "SFRP5" "TRIM28" ...

$ GO:0002839: chr [1:8] "HRG" "HSPD1" "IL12A" "IL12B" ...

$ GO:0004564: chr "SI"

$ GO:0008280: chr [1:2] "SMC1A" "SMC3"

$ GO:0010043: chr [1:40] "AANAT" "APOBEC1" "ARG1" "ASS1" ...

Finally, it is also possible to annotate FGS, mapping pathways identifiers to pathway names, as
shown below for KEGG, using the KEGG.db.

> library(KEGG.db)

> KEGG()

Quality control information for KEGG:

This package has the following mappings:

KEGGENZYMEID2GO has 4172 mapped keys (of 4172 keys)

KEGGEXTID2PATHID has 75100 mapped keys (of 75100 keys)

KEGGGO2ENZYMEID has 5224 mapped keys (of 5224 keys)

KEGGPATHID2EXTID has 3152 mapped keys (of 3152 keys)

KEGGPATHID2NAME has 390 mapped keys (of 390 keys)

KEGGPATHNAME2ID has 390 mapped keys (of 390 keys)

Additional Information about this package:

DB schema: KEGG_DB

DB schema version: 2.1

Date for KEGG data: 2011-Mar15

> names(kegg) <- paste(names(kegg),unlist(mget(names(kegg),KEGGPATHID2NAME)),sep=".")

> names(kegg)

[1] "05144.Malaria"

[2] "00561.Glycerolipid metabolism"

[3] "03060.Protein export"

[4] "00983.Drug metabolism - other enzymes"

7

[5] "04740.Olfactory transduction"

Similarly GO Terms can be retrieved from the GO.db (please refer to the vignettes of the corre-
sponding packages for details).

> library(GO.db)

> GO()

Quality control information for GO:

This package has the following mappings:

GOBPANCESTOR has 27199 mapped keys (of 27199 keys)

GOBPCHILDREN has 16020 mapped keys (of 27199 keys)

GOBPOFFSPRING has 16020 mapped keys (of 27199 keys)

GOBPPARENTS has 27199 mapped keys (of 27199 keys)

GOCCANCESTOR has 3722 mapped keys (of 3722 keys)

GOCCCHILDREN has 1237 mapped keys (of 3722 keys)

GOCCOFFSPRING has 1237 mapped keys (of 3722 keys)

GOCCPARENTS has 3722 mapped keys (of 3722 keys)

GOMFANCESTOR has 9889 mapped keys (of 9889 keys)

GOMFCHILDREN has 2012 mapped keys (of 9889 keys)

GOMFOFFSPRING has 2012 mapped keys (of 9889 keys)

GOMFPARENTS has 9889 mapped keys (of 9889 keys)

GOOBSOLETE has 1950 mapped keys (of 1950 keys)

GOTERM has 40811 mapped keys (of 40811 keys)

Additional Information about this package:

DB schema: GO_DB

DB schema version: 2.1

Date for GO data: 20150314

> names(go) <- paste(names(go),Term(names(go)),sep=".")

> names(go)

[1] "GO:0060028.convergent extension involved in axis elongation"

[2] "GO:0002839.positive regulation of immune response to tumor cell"

[3] "GO:0004564.beta-fructofuranosidase activity"

[4] "GO:0008280.cohesin core heterodimer"

[5] "GO:0010043.response to zinc ion"

Finally we can be combine the two FGS collections into a named list for further used in GSE
analysis (see below).

> fgsList <- list(go=go,kegg=kegg)

8

3 Data analysis with RTopper

To compute gene-to-phenotype association scores the first step required is the convertion of the
data into a list, where each list item corresponds to a gene, and comprises a data.frame with the
rows being patients, and columns being measurements for each data type, along with the class
phenotype (the response). Importantly each element of the list with the data should have the same
genes and patients.

The convertToDr function is used to make such conversion. Below is a short description of the
arguments to this function:

� dataIntersection: a list of data.frames containing the same set of patients(columns) and
genes (rows)

� response: a data.frame indicating patients’ phenotypic class;

� nPlatforms: the number of platforms;

This can be achieved as follows using our examples data:

> dataDr <- convertToDr(dat, pheno, 4)

> class(dataDr)

[1] "list"

> length(dataDr)

[1] 500

> names(dataDr)[1:5]

[1] "AACS" "AARS" "ABI1" "ACHE" "ACTC1"

> str(dataDr[1:2])

List of 2

$ AACS:'data.frame': 95 obs. of 5 variables:

..$ dat.affy : num [1:95] 7.75 7.69 7.54 7.3 7.01 ...

..$ dat.agilent : num [1:95] -1.007 -1.116 -0.913 -1.061 -1.775 ...

..$ dat.cnvHarvard: num [1:95] -0.0827 -0.0892 -0.0208 -0.1811 -0.0625 ...

..$ dat.cnvMskcc : num [1:95] -0.03839 -0.0914 0.00823 0.03456 0.0573 ...

..$ response : int [1:95] 0 0 1 1 0 0 0 0 0 0 ...

$ AARS:'data.frame': 95 obs. of 5 variables:

..$ dat.affy : num [1:95] 9.38 9.93 10.2 9.54 9.37 ...

..$ dat.agilent : num [1:95] -1.266 -0.898 0.264 -0.599 -1.437 ...

..$ dat.cnvHarvard: num [1:95] -0.1023 -0.2062 -0.0516 -0.0923 -0.1199 ...

..$ dat.cnvMskcc : num [1:95] 0.00756 0.02802 0.10485 0.0841 0.12262 ...

..$ response : int [1:95] 0 0 1 1 0 0 0 0 0 0 ...

It is now possible to compute gene-to-phenotype association scores, using as input the gene-centered
list produced by convertToDr. Therefore the computeDrStat function assumes that each gene-
centered data.frame contains a column (the last one) called ’response’, as created by the con-

vertToDr. Below is a short description of the arguments to this function:

9

� data: a list of data.frames, one for each gene analyzed, contining the the genomic measure-
ments from all platforms (by column) for all the patients (by row), along with the phenotypic
response;

� columns: a numeric vector indicating column indexes corresponding the genomic measure-
ments to be used for computing the gene-to-phenotype association scores; the default is
columns = c(1:(ncol(data) - 1)), assuming the phenotypic response to be the last col-
umn;

� method: the method used to compute the association score;

� integrate: logical, whether an integrated gene-to-phenotype score should be computed, or
separate scores for each platform/data sets specified by columns;

In the current implementation of the RTopper there are three methods for computing gene-to-
phenotype association scores:

1. dev: this approach computes the score as the difference of deviances (as described in
Tyekucheva et al, manuscript under review [9]);

2. aic: this approach computes the score as the Akaike information criterion for model selection;

3. bic: this approach computes the score as the penalized likelihood ratio;

3.1 Integrated Gene-to-Phenotype score computation

This approach first integrates genomic data across platform, and subsequently perform GSE to iden-
tify the FGS most strongly associated with the integrated score. Below is an example of application
to compute the gene-to-phenotype association scores for 4 data type simultaneously:

> bicStatInt <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = TRUE)

> names(bicStatInt)

[1] "integrated"

> str(bicStatInt)

List of 1

$ integrated: Named num [1:500] -11.43 -15.93 -8.85 -13.52 -7.26 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

3.2 Separate Gene-to-Phenotype score computation

This approach first computes computes gene-to-phenotype score separately for each platform, uses
the scores to perform separate GSE analysis in each platform for identifying the FGS most strongly
associated with the score, and finally integrates the results from GSE analysis, Below is an example
of this approach:

> bicStatSep <- computeDrStat(dataDr, columns = c(1:4), method="bic", integrate = FALSE)

> names(bicStatSep)

[1] "dat.affy" "dat.agilent"

[3] "dat.cnvHarvard" "dat.cnvMskcc"

10

> str(bicStatSep)

List of 4

$ dat.affy : Named num [1:500] 0.545 -4.269 -2.334 -4.471 -3.625 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

$ dat.agilent : Named num [1:500] -3.57 -4.5 -3.66 -4.52 -1.05 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

$ dat.cnvHarvard: Named num [1:500] -4.49 -3.64 3.13 -3.26 -2.57 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

$ dat.cnvMskcc : Named num [1:500] -4.53 -4.48 2.1 -2.55 -4.25 ...

..- attr(*, "names")= chr [1:500] "AACS" "AARS" "ABI1" "ACHE" ...

3.3 Gene Set Enrichment using integrated and separate score

After the gene-to-phenotype scores have been obtained it is possible to perform a GSE analysis. To
this end we will use the runBatchGSE function, as shown below. This function enables to perform
GSE analysis over multiple collections of FGS, and over multiple ranking statistics. In the current
implementation of the runBatchGSE the default is performing the enrichment analysis using the
geneSetTest function from the limma package, and most of the arguments passed to runBatchGSE

are indeed passed to geneSetTest (see the relative help for the details).

As an alternative the user can also define his own function to test for FGS enrichment, passing the
selection of genes within the FGS and the ranking ranking statistics in the same way as done for
geneSetTest. In this tutorial we apply geneSetTest in order to perform a Wilcoxon rank-sum
test, using the absolute value of the gene-to-phenotype scores as the ranking statistics.

> args(runBatchGSE)

function (dataList, fgsList, ...)

NULL

Below a short description of the arguments that can be passed to this function:

� dataList: a list containing gene-to-phenotype scores to be used as ranking statistics in the
GSE analysis;

� fgsList: a list of FGS collection, in which each element is a list of character vectors, one for
each gene set;

� ...: any other argument to be passed to lower level functions, including the lower level
enrichment function to be used (like the geneSetTest function from the limma package,
which is used as the default);

� absolute: logical specifying whether the absolute values of the ranking statistics should be
used in the test (the default being TRUE);

� gseFunc: a function to perform GSE analysis, when not specified (the default) the gene-

SetTest from the limma package is used. When a function is specified, the membership of
the analyzed genes to a FGS, and the ranking statistics must be defined in the same way this
is done for geneSetTest, and the new function must return an integer (usually a p-value)
(see the help for geneSetTest in the limma package)

11

Below are few examples to perform Wilcoxon rank-sum test over multiple FGS collections, and
over multiple ranking statistics, usin the runBatchGSE. To this end we will use the KEGG and
GO collections created above, and the separate and integrated gene-to-phenotype scores computed
using the computeDrStat. The output of this function is a named list of lists, containing an element
for each ranking statistics considered in the input. Each one of these elements, in turn, is another
list, containing the GSE results for each collection sets. In the examples below we will therefore
obtain a list of length one in the case ot the integrated gene-to-phenotype score, and a list of length
four (on element for each genomic platform) in the case of the separate scores. For all the rankings
we will obtain GSE result for both the collections of FGS.

3.4 INTEGRATION + GSE

The integrated gene-to-phenotype scores we have computed can be used to perform a GSE analysis.
Below are reported few examples, using the default options, as well as passing several specific
arguments to geneSetTest (see the relative help for details).

3.4.1 One-sided Wilcoxon rank-sum test using absolute ranking statistics

This can be accomplished by calling the runBatchGSE with default values, or by specifying each
argument, as shown below:

> gseABS.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList)

> gseABS.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=TRUE, type="f", alternative="mixed")

3.4.2 One-sided Wilcoxon rank-sum test using signed ranking statistics

When the signed ranking statistics has a sign, it is possible to perform a one-sided test assensing both
tails separately, as well as a two-sided test. This can be accomplished by passing the corresponding
arguments to runBatchGSE, as shown below:

> gseUP.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="up")

> gseDW.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="down")

> gseBOTH.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="either")

3.4.3 Performing a simulation-based GSE test

It is also possible to perform an enrichment analysis comparing each FGS to randomly selected
gene lists of the same size of the FGS. In this case the p-value is computed by simulation as the
proportion of times the mean of the statistics in the FGS is smaller (or larger) than in the nsim

random simulated sets of genes.

> gseABSsim.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=TRUE, type="f", alternative="mixed",

12

+ ranks.only=FALSE, nsim=1000)

> gseUPsim.int <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, type="t", alternative="up",

+ ranks.only=FALSE, nsim=1000)

Results from this analysis are named lists of lists, as shown below:

> str(gseUP.int)

List of 1

$ integrated:List of 2

..$ go : Named num [1:5] NA 0.762 NA NA 0.396

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 0.47 0.979 0.37 0.509 0.59

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

> gseABSsim.int

$integrated

$integrated$go

GO:0060028.convergent extension involved in axis elongation

NA

GO:0002839.positive regulation of immune response to tumor cell

0.2427572

GO:0004564.beta-fructofuranosidase activity

NA

GO:0008280.cohesin core heterodimer

NA

GO:0010043.response to zinc ion

0.5674326

$integrated$kegg

05144.Malaria

0.49250749

00561.Glycerolipid metabolism

0.02597403

03060.Protein export

0.60539461

00983.Drug metabolism - other enzymes

0.59640360

04740.Olfactory transduction

0.43656344

3.4.4 Passsing alternative enrichment functions to runBatchGSE

Below is show how to define and pass alternative enrichment functions to runBatchGSE. We will
first show how to use the limma wilcoxGST function, which is a synonym for geneSetTest using
ranks.only=TRUE and type="t".

13

> library(limma)

> gseUP.int.2 <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, gseFunc=wilcoxGST, alternative="up")

As shown below this approach will return the same results obtained with geneSetTest passing
appropriate arguments.

> str(gseUP.int.2)

List of 1

$ integrated:List of 2

..$ go : Named num [1:5] NA 0.762 NA NA 0.396

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 0.47 0.979 0.37 0.509 0.59

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

> all(gseUP.int.2$go==gseUP.int$go)

[1] TRUE

We can finally also pass any new user-defined enrichment function, provided that the arguments
are passed in the same way as with geneSetTest, as shown below using the Fisher’s exact test,
and a threshold for defining the list of differentially expressed genes.

> gseFunc <- function (selected, statistics, threshold) {

+ diffExpGenes <- statistics > threshold

+ tab <- table(diffExpGenes, selected)

+ pVal <- fisher.test(tab)[["p.value"]]

+ }

> gseUP.int.3 <- runBatchGSE(dataList=bicStatInt, fgsList=fgsList,

+ absolute=FALSE, gseFunc=gseFunc, threshold=7.5)

As shown below this approach will test for over-represtation of the a specific gene set within the
genes defined as differentially expressed (in our example the genes showing an integrated association
score larger than 7.5). Results are somewhat comparable to what obtained using the Wilcoxon
rank-sum test.

> str(gseUP.int.3)

List of 1

$ integrated:List of 2

..$ go : Named num [1:5] NA 1 NA NA 1

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 1 1 1 1 1

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

> data.frame(fisher=gseUP.int.3$integrated$kegg,wilcoxon=gseUP.int$integrated$kegg)

fisher

05144.Malaria 1

00561.Glycerolipid metabolism 1

03060.Protein export 1

00983.Drug metabolism - other enzymes 1

04740.Olfactory transduction 1

14

wilcoxon

05144.Malaria 0.4697054

00561.Glycerolipid metabolism 0.9792168

03060.Protein export 0.3697353

00983.Drug metabolism - other enzymes 0.5088030

04740.Olfactory transduction 0.5904222

3.5 GSE + INTEGRATION

The individual gene-to-phenotype scores computed for each platform can be similarly used to
perform separate GSE analyses for each considered genomic platform, applying the same code and
functions used to perform GSE analysis in the INTEGRATION + GSE approach above.

> gseABS.sep <- runBatchGSE(dataList=bicStatSep, fgsList=fgsList)

This step of GSE analysis on separate platform is then followed by GSE results integration, which
is achieved using the combineGSE function, which summarizes the individual p-values from the
tests. To this end different methods are available, including the computation of the geometric or
arithmetic means, the use of the median, the selection of the minimun or the maximum p-value,
and the random selection (respectively geometricMean, mean, median, min, max, and random). Few
examples are shown below:

> gseABS.geoMean.sep <- combineGSE(gseABS.sep, method="geometricMean")

> gseABS.max.sep <- combineGSE(gseABS.sep, method="max")

Also in this case the results from the combination are named lists of lists, as shown below:

> names(gseABS.sep)

[1] "dat.affy" "dat.agilent"

[3] "dat.cnvHarvard" "dat.cnvMskcc"

> str(gseABS.sep)

List of 4

$ dat.affy :List of 2

..$ go : Named num [1:5] NA 0.6151 NA NA 0.0917

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 0.9426 0.1071 0.9024 0.6444 0.0895

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

$ dat.agilent :List of 2

..$ go : Named num [1:5] NA 0.894 NA NA 0.42

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 0.7309 0.1683 0.9437 0.4328 0.0482

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

$ dat.cnvHarvard:List of 2

..$ go : Named num [1:5] NA 0.623 NA NA 0.883

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 0.613 0.377 0.574 0.26 0.106

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

$ dat.cnvMskcc :List of 2

15

..$ go : Named num [1:5] NA 0.0878 NA NA 0.8976

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 0.2789 0.0548 0.2619 0.0703 0.9539

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

> str(gseABS.geoMean.sep)

List of 1

$ combinedScore:List of 2

..$ go : Named num [1:5] NA 0.416 NA NA 0.418

.. ..- attr(*, "names")= chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$ kegg: Named num [1:5] 0.586 0.139 0.598 0.267 0.145

.. ..- attr(*, "names")= chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

> gseABS.geoMean.sep

$combinedScore

$combinedScore$go

GO:0060028.convergent extension involved in axis elongation

NA

GO:0002839.positive regulation of immune response to tumor cell

0.4163995

GO:0004564.beta-fructofuranosidase activity

NA

GO:0008280.cohesin core heterodimer

NA

GO:0010043.response to zinc ion

0.4181440

$combinedScore$kegg

05144.Malaria

0.5858119

00561.Glycerolipid metabolism

0.1388801

03060.Protein export

0.5982390

00983.Drug metabolism - other enzymes

0.2670733

04740.Olfactory transduction

0.1445477

3.6 Multiple testing correction

Finally the adjustPvalGSE enables to adjust the p-values computed by the runBatchGSE. This
functions is an interface to the mt.rawp2adjp function from the multtest package.

> gseABS.int.BH <- adjustPvalGSE(gseABS.int)

> gseABS.int.holm <- adjustPvalGSE(gseABS.int, proc = "Holm")

Also in this case the results after the adjustment are named lists of lists, as shown below:

16

> names(gseABS.int.BH)

[1] "integrated"

> names(gseABS.int.holm)

[1] "integrated"

> str(gseABS.int.BH)

List of 1

$ integrated:List of 2

..$ go : num [1:5, 1:2] NA 0.24 NA NA 0.609 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$: chr [1:2] "rawp" "BH"

..$ kegg: num [1:5, 1:2] 0.534 0.021 0.635 0.499 0.415 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

..$: chr [1:2] "rawp" "BH"

> str(gseABS.int.holm)

List of 1

$ integrated:List of 2

..$ go : num [1:5, 1:2] NA 0.24 NA NA 0.609 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "GO:0060028.convergent extension involved in axis elongation" "GO:0002839.positive regulation of immune response to tumor cell" "GO:0004564.beta-fructofuranosidase activity" "GO:0008280.cohesin core heterodimer" ...

..$: chr [1:2] "rawp" "Holm"

..$ kegg: num [1:5, 1:2] 0.534 0.021 0.635 0.499 0.415 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:5] "05144.Malaria" "00561.Glycerolipid metabolism" "03060.Protein export" "00983.Drug metabolism - other enzymes" ...

..$: chr [1:2] "rawp" "Holm"

4 System Information

Session information:

> sessionInfo()

R version 3.2.0 (2015-04-16)

Platform: x86_64-unknown-linux-gnu (64-bit)

Running under: Ubuntu 14.04.2 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8

[2] LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8

[6] LC_MESSAGES=en_US.UTF-8

17

[7] LC_PAPER=en_US.UTF-8

[8] LC_NAME=C

[9] LC_ADDRESS=C

[10] LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8

[12] LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics

[5] grDevices utils datasets methods

[9] base

other attached packages:

[1] limma_3.24.0 GO.db_3.1.2

[3] KEGG.db_3.1.2 org.Hs.eg.db_3.1.2

[5] RSQLite_1.0.0 DBI_0.3.1

[7] AnnotationDbi_1.30.0 GenomeInfoDb_1.4.0

[9] IRanges_2.2.0 S4Vectors_0.6.0

[11] RTopper_1.14.0 Biobase_2.28.0

[13] BiocGenerics_0.14.0

loaded via a namespace (and not attached):

[1] MASS_7.3-40 splines_3.2.0

[3] tools_3.2.0 survival_2.38-1

[5] multtest_2.24.0

18

5 References

References

[1] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet,
25(1):25–9, 2000. 1061-4036 (Print) Journal Article.

[2] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society Series B, 57:289–300,
1995.

[3] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource for
deciphering the genome. Nucleic Acids Res, 32(Database issue):D277–80, 2004. 1362-4962
(Electronic) Journal Article.

[4] V. K. Mootha, C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar,
P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patter-
son, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn,
D. Altshuler, and L. C. Groop. PGC-1alpha-responsive genes involved in oxidative phospho-
rylation are coordinately downregulated in human diabetes. Nat Genet, 34(3):267–273, 2003.
1061-4036 (Print) Journal Article.

[5] G. K. Smyth. Linear models and empirical Bayes methods for assessing differential expression in
microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(Article
3), 2004.

[6] G. K. Smyth. Limma: linear models for microarray data. In R. Gentleman, R. V. Carey, S. Du-
doit, R. Irizarry, and W. Huber, editors, Bioinformatics and Computational Biology Solutions
using R and Bioconductor, pages 397–420. Springer, New York, 2005.

[7] G. K. Smyth, J. Michaud, and H. S. Scott. Use of within-array replicate spots for assessing
differential expression in microarray experiments. Bioinformatics, 21(9):2067–75, 2005. 1367-
4803 (Print) Evaluation Studies Journal Article Validation Studies.

[8] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, and
Jill P Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43):15545–15550, Oct 2005.

[9] Svitlana Tyekucheva, Luigi Marchionni, Rachel Karchin, and Giovanni Parmigiani. Integrating
diverse genomic data using gene sets. Genome Biology (in press), 2011.

19

	Overview
	RTopper data structure
	Creation of Functional Gene Sets

	Data analysis with RTopper
	Integrated Gene-to-Phenotype score computation
	Separate Gene-to-Phenotype score computation
	Gene Set Enrichment using integrated and separate score
	INTEGRATION + GSE
	One-sided Wilcoxon rank-sum test using absolute ranking statistics
	One-sided Wilcoxon rank-sum test using signed ranking statistics
	Performing a simulation-based GSE test
	Passsing alternative enrichment functions to runBatchGSE

	GSE + INTEGRATION
	Multiple testing correction

	System Information
	References

