Protein Microarray Data Analysis using the PAA Package

Michael Turewicz

July 24, 2015

Contents

1 Introduction 2
1.1 General information 2
1.2 Installation 2
2 Loading PAA and importing data 3
3 Pre-processing 4
4 Differential analysis 7
5 Feature pre-selection 11
6 Feature selection 12
7 Results inspection 14

1 Introduction

1.1 General information

Protein Array Analyzer (PAA) is a package for protein microarray data analysis (esp., ProtoArray data). It imports single color (protein) microarray data that has been saved in 'gpr' file format. After pre- processing (background correction, batch filtering, normalization) univariate feature pre-selection is performed (e.g., using the "minimum M statistic" approach - hereinafter referred to as "mMs", [1]). Subsequently, a multivariate feature selection is conducted to discover biomarker candidates. Therefore, either a frequency-based backwards elimination approach or ensemble feature selection can be used. PAA provides a complete toolbox of analysis tools including several different plots for results examination and evaluation.
In this vignette the general workflow of PAA will be outlined by analyzing an exemplary data set that accompanies this package.

1.2 Installation

The recommended way to install PAA is to type the commands described below in the R console comment: (note: an active internet connection is needed):

```
> # only if you install a Bioconductor package for the first time
> source("http://www.bioconductor.org/biocLite.R")
> # else
> library("BiocInstaller")
> biocLite("PAA", dependencies=TRUE)
```

This will install PAA including all dependencies.
Furthermore, PAA has an external dependency that is needed to provide full functionality. This external dependency is the free $C++$ software package "Random Jungle" that can be downloaded from http://www.randomjungle.de/. comment: Note: PAA will be usable without Random Jungle. However, it needs this package for random jungle recursive feature elimination (RJ-RFE) provided by the function selectFeatures(). Please follow the instructions for your OS in the README file to install Random Jungle properly on your machine.

2 Loading PAA and importing data

After launching R, the first step of the exemplary analysis is to load PAA.

```
> library(PAA)
```

New microarray data should be imported using the function loadGPR() which is mainly a wrapper to limma's function read.maimages() featuring optional duplicate aggregation for ProtoArray data. PAA supports the import of files in 'gpr' file format. The imported data is stored in an expression list object (EList, respectively, EListRaw, see Bioconductor package limma). Paths to a targets file and to a folder containing 'gpr' files (all 'gpr' files in this folder that are listed in the targets file will be read) are mandatory arguments. The folder that can be obtained by the command system.file("extdata", package = "PAA") contains an exemplary targets file that can be used as a template. Below, the first 3 rows of this targets file are shown.

```
> targets <- read.table(file=list.files(system.file("extdata", package="PAA"),
+ pattern = "^targets", full.names = TRUE), header=TRUE)
> print(targets[1:3,])
\begin{tabular}{lrrrrrrr} 
& ArrayID & \multicolumn{2}{c}{ FileName } & Group & Batch & Date Array SerumID \\
1 & AD1 & GSM734833_PA41992_-_AD1.gpr & AD & Batch1 & 10.11 .2010 & 41992 & AD1 \\
2 & AD2 & GSM734834_PA41994_-_AD2.gpr & AD Batch2 & 10.11 .2010 & 41994 & AD2 \\
3 & AD3 & GSM734835_PA42006_-AD3.gpr & AD Batch1 & 12.11 .2010 & 42006 & AD3
\end{tabular}
```

The columns "ArrayID", "FileName", and "Group" are mandatory. "Batch" is mandatory for microarray data that has been processed in batches. The remaining three columns as well as custom columns containing further information (e.g., clinical data) are optional.

If array.type is set to "ProtoArray" (default) duplicate spots will be aggregated. After importing, the object can be saved in a '.RData' file for further sessions. In the following code chunk, loadGPR() is demonstrated using a exemplary dummy data set that comes with PAA and has been created from the real data described below.

```
> gpr <- system.file("extdata", package="PAA")
> targets <- list.files(system.file("extdata", package="PAA"),
+ pattern = "dummy_targets", full.names=TRUE)
> dummy.elist <- loadGPR(gpr.path=gpr, targets.path=targets)
> save(dummy.elist, file=paste(gpr, "/DummyData.RData",
+ sep=""), compress="xz")
```

PAA comes with an exemplary protein microarray data set. This 20 Alzheimer's disease serum samples vs. 20 controls data is a subset of a publicly available ProtoArray data set. It can be downloaded from the repository "Gene Expression Omnibus"(GEO, http://www.ncbi.nlm.nih.gov/geo/, record "GSE29676"). It has been contributed by Nagele E et al. [2] (note: Because a data set stored in 'gpr' files would be too large to accompany this package the exemplary data is stored as an '.RData' file).

In the following code chunk, the PAA installation path (where exemplary data is located) is localized, the new folder 'demo_output' (where all output of the following analysis will be saved) is created, and the exemplary data set is loaded (note: exceptionally not via loadGPR()).

```
> cwd <- system.file(package="PAA")
> dir.create(paste(cwd, "/demo/demo_output", sep=""))
> output.path <- paste(cwd, "/demo/demo_output", sep="")
> load(paste(cwd, "/extdata/Alzheimer.RData", sep=""))
```


3 Pre-processing

If the microarrays were manufactured or processed in lots/batches, data analysis will suffer from batch effects resulting in wrong results. Hence, the elimination of batch effects is a crucial step of data pre-processing. A simple method to remove the most obvious batch effects is to find features that are extremely differential in different batches. In PAA this can be done for two batches using the function batchFilter (). This function takes an EList or EListRaw object and the batch-specific column name vectors lot1 and lot2 to find differential features regarding batches/lots. For this purpose, thresholds for p-values (Student's t-test) and fold changes can be defined. To visualize the differential features a volcano plot is drawn. Finally, the differential features are removed and the remaining data is returned.
> lot1 <- elist\$targets[elist\$targets\$Batch=='Batch1','ArrayID']
> lot2 <- elist\$targets[elist\$targets\$Batch=='Batch2','ArrayID']
> elist <- batchFilter (elist=elist, lot1=lot1, lot2=lot2, p.thresh=0.001,

+ fold.thresh=3)

batch filter volcano

For background correction limma's function backgroundCorrect() can be used:

```
> library(limma)
> elist <- backgroundCorrect(elist, method="normexp",
+ normexp.method="saddle")
```

Another important step in pre-processing is normalization. To assist in choosing an appropriate normalization method for a given data set, PAA provides two functions: plotNormMethods() and plotMAPlots(). plotNormMethods() draws boxplots (one boxplot per sample) of raw data and data after all kinds of normalization provided by PAA. For each normalization approach sample-wise boxplots are created. All boxplots will be saved as a high-quality 'tiff' file, if an output path is specified.
> plotNormMethods(elist=elist)
plotMAPlots() draws MA plots of raw data and data after applying all kinds of normalization methods provided by PAA. If idx="all" and an output path is defined (default), for each microarray one 'tiff' file containing MA plots will be created. If idx is an integer indicating the column index of a particular sample, MA plots only for this sample will be created.
> plotMAPlots(elist=elist, idx=10)

After choosing a normalization method, the function normalizeArrays () can be used in order to normalize the data. normalizeArrays() takes an EListRaw object, normalizes the data, and returns an EList object containing normalized data in log2 scale. As normalization methods "cyclicloess", "quantile" or "vsn" can be chosen. Furthermore, for ProtoArrays robust linear normalization ("rlm", see Sboner A. et al. [3]) is provided.

```
> elist <- normalizeArrays(elist=elist, method="cyclicloess",
+ cyclicloess.method="fast")
```

In addition to batchFilter(), the function batchAdjust() can be used after normalization via normalizeArrays() to adjust the data for batch effects. This is a wrapper to sva's function ComBat () for batch adjustment using the empirical Bayes approach [4]. To use batchAdjust () the targets file information of the EList object must contain the columns "Batch" and "Group".

```
> elist <- batchAdjust(elist=elist, log=TRUE)
```

Found 2 batches
Adjusting for 1 covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data
Since for further analysis also data in original scale will be needed, a copy of the EList object containing unlogged data should be created.

```
> elist.unlog <- elist
> elist.unlog$E <- 2^(elist$E)
```


4 Differential analysis

The goal of univariate differential analysis is to detect relevant differential features. Therefore, statistical measures such as t -test p -values or mMs as well as fold changes are considered. PAA provides plotting functions in order to depict the number and the quality of the differential features in the data set. Accordingly, the function volcanoPlot () draws a volcano plot to visualize differential features. Therefore, thresholds for p-values and fold changes can be defined. Furthermore, the p-value computation method ("mMs" or "tTest") can be set. When an output path is defined (via output.path) the plot will be saved as a 'tiff' file. In the next code chunk, an example with method="tTest" is given.

```
> c1 <- paste(rep("AD",20), 1:20, sep="")
> c2 <- paste(rep("NDC",20), 1:20, sep="")
> volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest",
+ p.thresh=0.01, fold.thresh=2)
```


volcano plot

Here, an example with method="mMs" is given:
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, $y=20$)
> volcanoPlot(elist=elist.unlog, group1=c1, group2=c2, method="mMs",

+ p.thresh=0.01, fold.thresh=2, mMs.matrix1=mMs.matrix1,
+ mMs.matrix2=mMs.matrix2, above=1500, between=400)

Another plotting function is pvaluePlot() which draws a plot of p-values for all features in the data set (sorted in increasing order and in log2 scale). The p-value computation method ("tTest" or "mMs") can be set via the argument method. Furthermore, when adjust=TRUE adjusted p-values (method: Benjamini \& Hochberg, 1995, computed via p.adjust()) will be used. For a better orientation, horizontal dashed lines indicate which p-values are smaller than 0.05 and 0.01 . If adjust=FALSE, additionally, the respective Bonferroni significance threshold (to show p-values that would be smaller than 0.05 after a possible Bonferroni correction) for the given data is indicated by a third dashed line. comment: Note: Bonferroni is not used for the adjustment. The dashed line is for better orientation only. When an output path is defined (via output.path) the plot will be saved as a 'tiff' file. In the next code chunk, an example with method="tTest" is given.
> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest")

p-values

($1280<0.05,590<0.01,97<0.05$ after Bonferroni)

Here, an example with method="mMs" is given:
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix $(x=20, y=20)$
> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="mMs",

+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,
+ between=400)
Here, an example with method="tTest" and adjust=TRUE is given:

[^0]FDRs
(359 < 0.05, $218<0.01$)

Here, an example with method="mMs" and adjust=TRUE is given:

```
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)
> pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="mMs",
+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,
+ between=400, adjust=TRUE)
```

Finally, diffAnalysis () performs a detailed univariate differential analysis. This function takes an EList\$E- or ELis-tRaw\$E- matrix (e.g., temp <- elist\$E) extended by row names comprising " $B R C$ "-IDs of the corresponding features. The BRC-IDs can be created via:
brc <- paste(elist\$genes[,1], elist\$genes [,3], elist\$genes [,2]).
Next, the row names can be assigned as follows: rownames (temp) <- brc. Furthermore, the corresponding column name vectors, group labels and mMs - parameters are needed to perform the univariate differential analysis. This analysis covers inter alia p-value computation, p-value adjustment (method: Benjamini \& Hochberg, 1995), and fold change computation. Since the results table is usually large, a path for saving the results should be defined via output. path. Optionally, a vector of row indices (features) and additionally (not mandatory for subset analysis) a vector of corresponding feature names (feature.names) can be forwarded to perform the analysis for a feature subset.

```
> E <- elist.unlog$E
> rownames(E) <- paste(elist.unlog$genes[,1], elist.unlog$genes[,3],
+ elist.unlog$genes[,2])
> write.table(x=cbind(rownames(E),E), file=paste(cwd,"/demo/demo_output/data.txt",
```

```
+ sep=""), sep="\t", eol="\n", row.names=FALSE, quote=FALSE)
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)
> diff.analysis.results <- diffAnalysis(input=E, label1=c1, label2=c2,
+ class1="AD", class2="NDC", output.path=output.path,
+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2, above=1500,
+ between=400)
> print(diff.analysis.results[1:10,])
```


$1 \quad 1652.18383300672 \quad 564.61322833277$
$2 \quad 2944.5394669067418321 .9607074207$
3165.51480995471481 .5402394496133
$4 \quad 1059.83503973736 \quad 3132.92109709241$
$5 \quad 2423.2487981485511762 .9616782293$
$6 \quad 1287.133985917561559 .47972714554$
$7 \quad 154.770438502943122 .65819388996$
$8 \quad 342.73957404901693 .0408286530952$
$9 \quad 719.952644954053322 .419391545683$
10438.0812299701161419 .40167042176

Subsequently, the most relevant differential features (i.e., features having low p-values and high absolute fold changes) can be extracted as a univariate feature selection. Nevertheless, it is recommended to perform also multivariate feature selection and to consider feature panels obtained from both approaches.

5 Feature pre-selection

Before multivariate feature selection will be performed, it is recommended to discard features that are obviously not differential. Discarding them will accelerate runtimes without any negative impact on results. In PAA, this task is called "feature pre-selection" and it is performed by the function preselect(). This function iterates all features of the data set to score them via $m M s$, Student's t-test, or $m R M R$. If discard.features is TRUE (default), all features that are considered as obviously not differential will be collected and returned for discarding. Which features are considered as not differential depends on the parameters method, discard.threshold, and fold.thresh.

- If method $=$ "mMs", features having an $m M s$ value larger than discard.threshold (here: numeric between 0.0 and 1.0) or do not satisfy the minimal absolute fold change fold.thresh will be considered as not differential.
- If method = "tTest", features having a p-value larger than discard.threshold (here: numeric between 0.0 and 1.0) or do not satisfy the minimal absolute fold change fold.thresh will be considered as not differential.
- If method = "mrmr", $m R M R$ scores for all features will be computed as scoring method (using the function mRMR.classic () of the R package mRMRe). Subsequently, features that are not the discard.threshold (here: integer indicating a number of features) features having the best $m R M R$ scores are considered as not differential.

```
> mMs.matrix1 <- mMs.matrix2 <- mMsMatrix(x=20, y=20)
> pre.sel.results <- preselect(elist=elist.unlog, columns1=c1, columns2=c2,
+ label1="AD", label2="NDC", discard.threshold=0.5, fold.thresh=1.5,
+ discard.features=TRUE, mMs.above=1500, mMs.between=400,
+ mMs.matrix1=mMs.matrix1, mMs.matrix2=mMs.matrix2,
+ method="mMs")
> elist <- elist[-pre.sel.results$discard,]
```


6 Feature selection

For multivariate feature selection PAA provides the function selectFeatures(). It performs a multivariate feature selection using "frequency-based" feature selection (based on RF-RFE, RJ-RFE or SVM-RFE) or "ensemble" feature selection (based on SVM-RFE).

Frequency-based feature selection (method="frequency"): The whole data is splitted in k cross validation training and test set pairs. For each training set a multivariate feature selection procedure is performed. The resulting k feature subsets are tested using the corresponding test sets (via classification). As a result, selectFeatures() returns the average k-fold cross validation classification accuracy as well as the selected feature panel (i.e., the union set of the k particular feature subsets). As multivariate feature selection methods random forest recursive feature elimination ($R F$ $R F E)$, random jungle recursive feature elimination ($R J-R F E$) and support vector machine recursive feature elimination (SVM-RFE) are supported. To reduce running times, optionally, an additional univariate feature pre-selection can be performed (usage via preselection.method). As univariate pre-selection methods mMs ("mMs"), Student's t-test ("tTest") and mRMR ("mrmr") are supported. Alternatively, no pre-selection can be chosen ("none"). This approach is similar to the method proposed in Baek et al. [5].

Ensemble feature selection (method="ensemble"): From the whole data a previously defined number of subsamples is drawn defining pairs of training and test sets. Moreover, for each training set a previously defined number of bootstrap samples is drawn. Then, for each bootstrap sample SVM-RFE is performed and a feature ranking is obtained. To obtain a final ranking for a particular training set, all associated bootstrap rankings are aggregated to a single ranking. To score the cutoff best features, for each subsample a classification of the test set is performed (using a svm trained with the cutoff best features from the training set) and the classification accuracy is determined. Finally, the stability of the subsample-specific panels is assessed (via Kuncheva index, Kuncheva LI, 2007 [6]), all subsample-specific rankings are aggregated, the top n features (defined by cutoff) are selected, the average classiification accuracy is computed, and all these results are returned in a list. This approach has been proposed and is described in Abeel et al. [7].
selectFeatures () takes an EListRaw or EList object, group-specific sample numbers, group labels and parameters choosing and setting up a univariate feature pre-selection method as well as a multivariate feature selection method (frequency-based or ensemble feature selection) to select a panel of differential features. When an output path is defined (via output.path) results will be saved on the hard disk and when verbose is TRUE additional information will be printed to the console. Depending on the selection method, one of two different results lists will be returned:

1. If method is "frequency", the results list contains the following elements:

- accuracy: average k-fold cross validation accuracy.
- sensitivity: average k-fold cross validation sensitivity.
- specificity: average k-fold cross validation specificity.
- features: selected feature panel.
- all.results: complete cross validation results.

2. If method is "ensemble", the results list contains the following elements:

- accuracy: average accuracy regarding all subsamples.
- sensitivity: average sensitivity regarding all subsamples.
- specificity: average specificity regarding all subsamples.
- features: selected feature panel.
- all.results: all feature ranking results.
- stability: stability of the feature panel (i.e., Kuncheva index for the subrun-specific panels).

In the following two code chunks first "frequency-based"feature selection and then "ensemble"feature selection is demonstrated.

```
> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",
+ label2="NDC",selection.method="rf.rfe",subruns=2, candidate.number=1000,
+ method="frequency")
> selectFeatures.results <- selectFeatures(elist,n1=20,n2=20,label1="AD",
+ label2="NDC",selection.method="rf.rfe",subsamples=10,bootstraps=10,
+ method="ensemble")
```

Because runtimes would take too long for this vignette $P A A$ comes with pre-computated selectFeatures.results objects stored in '.RData' files. These objects can be loaded as follows:

```
> # results of frequency-based feature selection:
> load(paste(cwd, "/extdata/selectFeaturesResultsFreq.RData", sep=""))
> # or results of ensemble feature selection:
> load(paste(cwd, "/extdata/selectFeaturesResultsEns.RData", sep=""))
```


7 Results inspection

After the selection of a feature panel, these features should be validated by manual inspection and evaluation for further research. To aid results inspection, PAA provides several functions. The function plotFeatures () plots the intensities of all features (represented by BRC-IDs) that have been selected by selectFeatures () (one sub-plot per feature) in group-specific colors. All sub-plots are aggregated in one figure. If output. path is not NULL, this figure will be saved in a 'tiff' file in output.path.

```
> plotFeatures(features=selectFeatures.results$features, elist=elist, n1=20,
+ n2=20, group1="AD", group2="NDC")
```


- AD
- NDC

Alternatively, the function plotFeaturesHeatmap() plots intensities of all features given in the vector features (represented by BRC-IDs) as a heatmap. If description is TRUE (default: FALSE), features will be described via protein names instead of uniprot accessions. Again, if output.path is not NULL, the heatmap will be saved as a 'tiff' file in output.path.

```
> plotFeaturesHeatmap(features=selectFeatures.results$features, elist=elist,
+ n1=20, n2=20, description=TRUE)
```


Finally, the function printFeatures() creates a table containing the selected biomarker candidate panel as well as additional information for results inspection. If output.path is defined, this table will be saved in a 'txt' file ('candidates.txt').

```
> printFeatures(features=selectFeatures.results$features, elist=elist.unlog)[,-2]
\begin{tabular}{rrrrrrr} 
BRC & AD1 & AD2 & AD3 & AD4 \\
11 & 3 & 15 & 1703.31837653865 & 1491.17023063965 & 1516.13683196889 & 1586.55323368053 \\
14 & 4 & 3 & 3638.24183490315 & 2507.73791136244 & 1819.30785847308 & 1682.58958141381 \\
15 & 12 & 9 & 821.091703810558 & 1050.40509812001 & 1516.12540728299 & 1351.48975396829 \\
17 & 9 & 11 & 5787.75253046833 & 5671.34450215111 & 6126.47135063687 & 6486.17248013198 \\
24 & 17 & 3 & 614.584148494639 & 429.887812284176 & 807.83272996343 & 637.320267615249 \\
25 & 3 & 7 & 3635.53112882019 & 7990.41506031096 & 4796.06511893852 & 2997.11069054398 \\
25 & 11 & 21 & 2531.72344068389 & 2338.0008855226 & 3374.42979464504 & 3335.5406174437 \\
29 & 4 & 13 & 5818.84609184953 & 4835.6334896692 & 6260.78284330114 & 6362.76748930227 \\
32 & 8 & 9 & 1508.37205423432 & 2087.86339225907 & 2978.2370633432 & 2213.84066817173 \\
48 & 19 & 11 & 473.791048911754 & 934.424698346471 & 284.642146467594 & 717.019151760854
\end{tabular}
    1844.18473811195 1950.90757685586 1475.17205681948 1807.60560643942 2190.69780358162
    1538.08167843364 1379.61110468665 2344.11280366483 4750.94013203374 1444.04641638651
    1045.43023291406 957.86822096897 783.982260159629 1215.92596638622 1161.4676248529
```

4184.320573465994211 .6836777512516548 .94540026799496 .003401448314610 .01164207187 628.713502128172546 .2626233604541026 .460691236421062 .495262845071137 .40108048132 3496.12369255393364 .912082497033073 .074922383913568 .688292030562920 .57842939983 $2298.493663248122257 .18667755705 \quad 2442.20150228783255 .800244349392844 .78353204362$ $6413.354669678387148 .356999131567029 .678523337936483 .53515610306 \quad 9010.0506599242$ $1721.920841050711645 .25275970219 \quad 1703.23229862492069 .882352782951721 .89110376598$ 624.855884458338733 .902457373689677 .491158879676522 .971461690363720 .366619428177 AD10 AD11 AD12 AD13 AD14 2379.647974281591482 .547524203431872 .378848956982226 .505613796192091 .2366721081 1569.339725498552185 .864878329471644 .486956480812639 .225841849811624 .59842869765 $1814.250143820631629 .776637438341843 .73723277642 \quad 1977.310213331224 .86003133795$ 5160.593838434247224 .057205310515171 .418667280935581 .336898545944573 .5851692897 $945.3408673195051045 .67374345179 \quad 790.706763588781120 .7608235132766 .132711380178$ $4072.949142437433732 .71254564852 \quad 3067.54977816664362 .430512012744870 .43126139058$ $3060.199568371133503 .817286653572804 .67540953223 \quad 5596.43197782143024 .03963342849$ 8371.630511376356136 .399445452287313 .657385396598060 .255648842658512 .37512655364 $2640.525760932062422 .077154252842567 .74886372466 \quad 3480.71808952072241 .34765462907$ $665.1132323672351639 .29551732958 \quad 823.252249772121163 .02333193623698 .671936926017$

$$
\begin{array}{lllll}
\text { AD15 } & \text { AD16 } & \text { AD17 } & \text { AD18 } & \text { AD19 }
\end{array}
$$

1796.818163686561579 .973858301641917 .19655977339960 .9365315800111039 .50167046324 $2652.548510317532084 .638699617291386 .052227546992153 .90581797748 \quad 3094.7198503717$ 1256.710555013531606 .421292431921361 .883693422441448 .363858823651474 .49508102757 4279.52130097715660 .756322740335726 .460138604627230 .5313039349110423 .2392011002 1452.811518016771012 .32365352872796 .2669135591281639 .736977799251600 .34919564201 3280.124114912243378 .878369776466281 .240579296622843 .951879194155541 .49227947122 $3448.728514594652991 .508182475911934 .22744248055 \quad 2827.28687043182260 .66124065267$ 9106.255659561436656 .228349048084308 .1929676031210253 .08802432422682 .87441843274 2344.269647214392680 .987123530031974 .627376690592745 .071485519822850 .07005266812 674.536469180021760 .3232829233531037 .54546373286625 .698066763681797 .391558657625 AD20 NDC1 NDC2 NDC3 NDC4 2946.26557640838909 .207097987648958 .62489482896674 .880833606734915 .346904155453 1385.58751022691460 .873964353471195 .229296355651592 .23215304582714 .553733299817 1083.85602771078812 .81231159216901 .354447111923545 .056729374537956 .891073918901 $3750.641806698882970 .86490703243 \quad 2674.16650629042555 .090796561323723 .07778886927$ 741.843912201544335 .694433490563482 .671841077609300 .460219033344490 .210340661021 17556.80253259612279 .87363806578324 .447571719276490 .017698030637772 .89649792269 3062.927046967031263 .72352052251575 .692098734021172 .095426956461012 .84874165721 6764.622853895942427 .914549135871516 .154546759983229 .845828774134158 .60768298915 $1610.798522909941541 .07059077719 \quad 1530.4816003523980 .8114684487171459 .84668675692$ $623.744582070775 \quad 181.90928988698394 .474836721317227 .60831283238191 .4725523131246$ NDC5 NDC6 NDC7 NDC8 NDC9 1115.69523268786915 .946869512328827 .020837844049956 .3484553943681318 .33978172361 970.3782502089121670 .49509640502792 .997427452209793 .7283703272231603 .19863222592 553.8099550715405 .497211445671736 .191738711635682 .645922791657472 .86221060931 3771.713163424412692 .553198334152142 .848297203049619 .815420818992091 .04326120572 300.863384370604534 .774026818072325 .060797592138394 .839570159419335 .230235179288 8072.34334004837183 .437509274986588 .189601635499160 .4558154403415577 .6974445481 1157.503430922611224 .944333907681569 .991775292671103 .751395569531323 .75548640432 $3022.788409427731539 .42071964507 \quad 3783.01639008692673 .987419874843603 .94257955327$ 1583.30791348508927 .1870302531671434 .185300189862160 .88424764584851 .000280450301 355.28762077986341 .832481585919432 .711078260991225 .641397709878252 .526635120438

NDC10 NDC11 NDC12 NDC13 NDC14

$1 \quad 959.257675508429 \quad 957.341279192094787 .402181166038 \quad 1150.793646484041016 .42641477274$ 21187.96590541037706 .6922055294931370 .402321498461243 .073450102141170 .32554780569

```
776.192477434884 588.784979655287 953.743512519066 960.221157414345 1382.23548520413
2295.75138775831 2122.76795082979 3259.6214996038 3169.24027711727 4314.41839772679
451.435669447389 228.634624800981 403.812439673337 59.5569520858149 351.956469660082
7308.47205936611 19207.4234983569 15458.5167054437 15203.3848298102 10024.4428206163
1191.75424388911 1682.11100112997 1236.5393170224 1161.09914105544 1990.3685201984
2432.19009327438 2437.12343325146 1688.64401310563 2644.49259951045 2123.53333017901
1334.67761578034 1272.75960322345 1934.36783119773 2100.07227236988 2730.55406576973
416.616616174824 324.540000314341 373.809158031368 308.673263943977 380.498275944133
    NDC15 NDC16 NDC17 NDC18 NDC19
1056.06522218764 1237.54153082996 1337.59901762048 1100.1155515314 930.419133911022
    2258.8858930509 860.187885373514 762.68537728479 1058.6093541547 1141.24350308935
437.018638219734 749.466727339497 913.993986001539 498.887355504144 616.722582782357
2438.05365611174 2261.13989048684 2741.75082743599 2317.18062320152 2982.57212044727
327.815145969139 84.979246315028 371.67083793187 298.828079582219 338.311320052558
10444.2095879426 10270.8473128382 21686.5427957231 6132.15385113105 7411.0924962609
1224.14926990847 1392.46674319833 1309.60812159325 3027.30879402439 1267.72844131155
3148.43464428128 2956.70939475419 3449.42656455086 4854.73440141576 2536.12652668801
761.872603948816 1308.30420331565 1582.03420922646 773.020960808346 1157.06189145691
464.593326883323 431.436983803771 408.176977133056 392.918747989245 419.221011898196
    NDC20
991.269096390678
1329.21537957385
1010.03153620702
3606.42662869172
264.312700186009
7768.29355917886
1068.26009930721
1525.83910786186
2501.30845021578
    339.56870752654
```


References

[1] Love B: The Analysis of Protein Arrays. In: Functional Protein Microarrays in Drug Discovery. CRC Press; 2007: 381-402.
[2] Nagele E, Han M, Demarshall C, Belinka B, Nagele R (2011): Diagnosis of Alzheimer's disease based on diseasespecific autoantibody profiles in human sera. PLoS One 6: e23112.
[3] Sboner A. et al., Robust-linear-model normalization to reduce technical variability in functional protein microarrays. J Proteome Res 2009, 8(12):5451-5464.
[4] Johnson WE, Li C, and Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118-27.
[5] Baek S, Tsai CA, Chen JJ.: Development of biomarker classifiers from high- dimensional data. Brief Bioinform. 2009 Sep;10(5):537-46.
[6] Kuncheva, LI: A stability index for feature selection. Proceedings of the IASTED International Conference on Artificial Intelligence and Applications. February 12-14, 2007. Pages: 390-395.
[7] Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2010 Feb 1;26(3):392-8.

[^0]: > pvaluePlot(elist=elist.unlog, group1=c1, group2=c2, method="tTest", adjust=TRUE)

