
Counting reads with summarizeOverlaps

Valerie Obenchain

Edited: May 2014; Compiled: October 1, 2015

Contents

1 Introduction 1

2 A First Example 1

3 Counting Modes 2

4 Counting Features 3

5 pasilla Data 6
5.1 source files . 6
5.2 counting . 6

6 References 7

1 Introduction

This vignette illustrates how reads mapped to a genome can be counted with summarizeOverlaps. Different ”modes”
of counting are provided to resolve reads that overlap multiple features. The built-in count modes are fashioned after the
”Union”, ”IntersectionStrict”, and ”IntersectionNotEmpty” methods found in the HTSeq package by Simon Anders (see
references).

2 A First Example

In this example reads are counted from a list of BAM files and returned in a matrix for use in further analysis such as
those offered in DESeq and edgeR.

> library(GenomicAlignments)

> library(DESeq)

> library(edgeR)

> fls <- list.files(system.file("extdata", package="GenomicAlignments"),

+ recursive=TRUE, pattern="*bam$", full=TRUE)

> features <- GRanges(

+ seqnames = c(rep("chr2L", 4), rep("chr2R", 5), rep("chr3L", 2)),

+ ranges = IRanges(c(1000, 3000, 4000, 7000, 2000, 3000, 3600, 4000,

+ 7500, 5000, 5400), width=c(rep(500, 3), 600, 900, 500, 300, 900,

+ 300, 500, 500)), "-",

+ group_id=c(rep("A", 4), rep("B", 5), rep("C", 2)))

> olap <- summarizeOverlaps(features, fls)

1

http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html

Counting reads with summarizeOverlaps 2

> deseq <- newCountDataSet(assay(olap), rownames(colData(olap)))

> edger <- DGEList(assay(olap), group=rownames(colData(olap)))

By default, the summarizeOverlaps function iterates through files in ‘chunks’ and with files processed in parallel. For
finer-grain control over memory consumption, use the BamFileList function and specify the yieldSize argument (e.g.,
yieldSize=1000000) to determine the size of each ‘chunk’ (smaller chunks consume less memory, but are a little less
efficient to process). For controlling the number of processors in use, use BiocParallel::register to use an appropriate
back-end, e.g., in linux or Mac to process on 6 cores of a single machine use register(MulticoreParam(workers=6));
see the BiocParallel vignette for further details.

3 Counting Modes

The modes of ”Union”, ”IntersectionStrict” and ”IntersectionNotEmpty” provide different approaches to resolving reads
that overlap multiple features. Figure 1 illustrates how both simple and gapped reads are handled by the modes. Note
that a read is counted a maximum of once; there is no double counting. For additional detail on the counting modes see
the summarizeOverlaps man page.

http://bioconductor.org/packages/release/bioc/html/BiocParallel.html

Counting reads with summarizeOverlaps 3

Union IntersectionStrict IntersectionNotEmpty

Feature I Feature I Feature I

Feature I No hit Feature I

Feature I No hit Feature I

Feature I Feature I Feature I

Feature I Feature I Feature I

No hit Feature 1 Feature I

No hit No hit No hit

* Picture reproduced from HTSeq web site :
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Feature 1

read

Feature 1

read

Feature 1

read

Feature 1

Feature 2

read

Feature 1Feature 1

read

Feature 1 Feature 1

read

read

Feature 1

Feature 2

read

Feature 1

Feature 2

Figure 1: Counting Modes

4 Counting Features

Features can be exons, transcripts, genes or any region of interest. The number of ranges that define a single feature is
specified in the features argument.

When annotation regions of interest are defined by a single range a GRanges should be used as the features argument.
With a GRanges it is assumed that each row (i.e., each range) represents a distinct feature. If features was a GRanges

Counting reads with summarizeOverlaps 4

of exons, the result would be counts per exon.

When the region of interest is defined by one or more ranges the features argument should be a GRangesList. In
practice this could be a list of exons by gene or transcripts by gene or other similar relationships. The count result will
be the same length as the GRangesList. For a list of exons by genes, the result would be counts per gene.

The combination of defining the features as eitherGRanges or GRangesList and choosing a counting mode controls how
summarizeOverlaps assigns hits. Regardless of the mode chosen, each read is assigned to at most a single feature.
These options are intended to provide flexibility in defining different biological problems.

This next example demonstrates how the same read can be counted differently depending on how the features argument
is specified. We use a single read that overlaps two ranges, gr1 and gr2.

> rd <- GAlignments("a", seqnames = Rle("chr1"), pos = as.integer(100),

+ cigar = "300M", strand = strand("+"))

> gr1 <- GRanges("chr1", IRanges(start=50, width=150), strand="+")

> gr2 <- GRanges("chr1", IRanges(start=350, width=150), strand="+")

When provided as a GRanges both gr1 and gr2 are considered distinct features. In this case none of the modes count the
read as a hit. Mode Union discards the read becasue more than 1 feature is overlapped. IntersectionStrict requires
the read to fall completely within a feature which is not the case for either gr1 or gr2. IntersetctionNotEmpty requires
the read to overlap a single unique disjoint region of the features. In this case gr1 and gr2 do not overlap so each
range is considered a unique disjoint region. However, the read overlaps both gr1 and gr2 so a decision cannot be made
and the read is discarded.

> gr <- c(gr1, gr2)

> data.frame(union = assay(summarizeOverlaps(gr, rd)),

+ intStrict = assay(summarizeOverlaps(gr, rd,

+ mode="IntersectionStrict")),

+ intNotEmpty = assay(summarizeOverlaps(gr, rd,

+ mode="IntersectionNotEmpty")))

reads reads.1 reads.2

1 0 0 0

2 0 0 0

Next we count with features as a GRangesList; this is list of length 1 with 2 elements. Modes Union and Intersec-

tionNotEmpty both count the read for the single feature.

> grl <- GRangesList(c(gr1, gr2))

> data.frame(union = assay(summarizeOverlaps(grl, rd)),

+ intStrict = assay(summarizeOverlaps(grl, rd,

+ mode="IntersectionStrict")),

+ intNotEmpty = assay(summarizeOverlaps(grl, rd,

+ mode="IntersectionNotEmpty")))

reads reads.1 reads.2

1 1 0 1

In this more complicated example we have 7 reads, 5 are simple and 2 have gaps in the CIGAR. There are 12 ranges that
will serve as the features.

> group_id <- c("A", "B", "C", "C", "D", "D", "E", "F", "G", "G", "H", "H")

> features <- GRanges(

+ seqnames = Rle(c("chr1", "chr2", "chr1", "chr1", "chr2", "chr2",

+ "chr1", "chr1", "chr2", "chr2", "chr1", "chr1")),

+ strand = strand(rep("+", length(group_id))),

+ ranges = IRanges(

+ start=c(1000, 2000, 3000, 3600, 7000, 7500, 4000, 4000, 3000, 3350, 5000, 5400),

+ width=c(500, 900, 500, 300, 600, 300, 500, 900, 150, 200, 500, 500)),

Counting reads with summarizeOverlaps 5

+ DataFrame(group_id)

+)

> reads <- GAlignments(

+ names = c("a","b","c","d","e","f","g"),

+ seqnames = Rle(c(rep(c("chr1", "chr2"), 3), "chr1")),

+ pos = as.integer(c(1400, 2700, 3400, 7100, 4000, 3100, 5200)),

+ cigar = c("500M", "100M", "300M", "500M", "300M", "50M200N50M", "50M150N50M"),

+ strand = strand(rep.int("+", 7L)))

>

Using a GRanges as the features all 12 ranges are considered to be different features and counts are produced for each
row,

> data.frame(union = assay(summarizeOverlaps(features, reads)),

+ intStrict = assay(summarizeOverlaps(features, reads,

+ mode="IntersectionStrict")),

+ intNotEmpty = assay(summarizeOverlaps(features, reads,

+ mode="IntersectionNotEmpty")))

reads reads.1 reads.2

1 1 0 1

2 1 1 1

3 0 0 0

4 0 0 0

5 0 1 1

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 1 1

12 0 0 0

When the data are split by group to create a GRangesList the highest list-levels are treated as different features and the
multiple list elements are considered part of the same features. Counts are returned for each group.

> lst <- split(features, mcols(features)[["group_id"]])

> length(lst)

[1] 8

> data.frame(union = assay(summarizeOverlaps(lst, reads)),

+ intStrict = assay(summarizeOverlaps(lst, reads,

+ mode="IntersectionStrict")),

+ intNotEmpty = assay(summarizeOverlaps(lst, reads,

+ mode="IntersectionNotEmpty")))

reads reads.1 reads.2

A 1 0 1

B 1 1 1

C 1 0 1

D 1 1 1

E 0 0 0

F 0 0 0

G 1 1 1

H 1 1 1

If desired, users can supply their own counting function as the mode argument and take advantage of the infrastructure
for counting over multiple BAM files and parsing the results into a SummarizedExperiment. See ?’BamViews-class’

Counting reads with summarizeOverlaps 6

or ?’BamFile-class’ in Rsamtools.

5 pasilla Data

In this excercise we count the pasilla data by gene and by transcript then create a CountDataSet. This object can be
used in differential expression methods offered in the DESeq package.

5.1 source files

Files are available through NCBI Gene Expression Omnibus (GEO), accession number GSE18508. http://www.ncbi.

nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508. SAM files can be converted to BAM with the asBam

function in the Rsamtools package. Of the seven files available, 3 are single-reads and 4 are paired-end. Smaller versions
of untreated1 (single-end) and untreated2 (paired-end) have been made available in the pasillaBamSubset package. This
subset includes chromosome 4 only.

summarizeOverlaps is capable of counting paired-end reads in both a BamFile-method (set argument singleEnd=TRUE)
or a GAlignmentPairs-method. For this example, we use the 3 single-end read files,

� treated1.bam
� untreated1.bam
� untreated2.bam

Annotations are retrieved as a GTF file from the ENSEMBL web site. We download the file our local disk, then use
Rtracklayer ’s import function to parse the file to a GRanges instance.

> library(rtracklayer)

> fl <- paste0("ftp://ftp.ensembl.org/pub/release-62/",

+ "gtf/drosophila_melanogaster/",

+ "Drosophila_melanogaster.BDGP5.25.62.gtf.gz")

> gffFile <- file.path(tempdir(), basename(fl))

> download.file(fl, gffFile)

> gff0 <- import(gffFile, asRangedData=FALSE)

Subset on the protein-coding, exon regions of chromosome 4 and split by gene id.

> idx <- mcols(gff0)$source == "protein_coding" &

+ mcols(gff0)$type == "exon" &

+ seqnames(gff0) == "4"

> gff <- gff0[idx]

> ## adjust seqnames to match Bam files

> seqlevels(gff) <- paste("chr", seqlevels(gff), sep="")

> chr4genes <- split(gff, mcols(gff)$gene_id)

5.2 counting

The params argument can be used to subset the reads in the bam file on characteristics such as position, unmapped
or paired-end reads. Quality scores or the ”NH” tag, which identifies reads with multiple mappings, can be included as
metadata columns for further subsetting. See ?ScanBamParam for details about specifying the param argument.

> param <- ScanBamParam(

+ what='qual',

+ which=GRanges("chr4", IRanges(1, 1e6)),

+ flag=scanBamFlag(isUnmappedQuery=FALSE, isPaired=NA),

+ tag="NH")

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/pasilla.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/pasillaBamSubset.html
http://bioconductor.org/packages/release/bioc/html/Rtracklayer.html

Counting reads with summarizeOverlaps 7

We use summarizeOverlaps to count with the default mode of ”Union”. If a param argument is not included all reads
from the BAM file are counted.

> fls <- c("treated1.bam", "untreated1.bam", "untreated2.bam")

> path <- "pathToBAMFiles"

> bamlst <- BamFileList(fls)

> genehits <- summarizeOverlaps(chr4genes, bamlst, mode="Union")

A CountDataSet is constructed from the counts and experiment data in pasilla.

> expdata = MIAME(

+ name="pasilla knockdown",

+ lab="Genetics and Developmental Biology, University of

+ Connecticut Health Center",

+ contact="Dr. Brenton Graveley",

+ title="modENCODE Drosophila pasilla RNA Binding Protein RNAi

+ knockdown RNA-Seq Studies",

+ pubMedIds="20921232",

+ url="http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508",

+ abstract="RNA-seq of 3 biological replicates of from the Drosophila

+ melanogaster S2-DRSC cells that have been RNAi depleted of mRNAs

+ encoding pasilla, a mRNA binding protein and 4 biological replicates

+ of the the untreated cell line.")

> design <- data.frame(

+ condition=c("treated", "untreated", "untreated"),

+ replicate=c(1,1,2),

+ type=rep("single-read", 3),

+ countfiles=path(colData(genehits)[,1]), stringsAsFactors=TRUE)

> geneCDS <- newCountDataSet(

+ countData=assay(genehits),

+ conditions=design)

> experimentData(geneCDS) <- expdata

> sampleNames(geneCDS) = colnames(genehits)

If the primary interest is to count by transcript instead of by gene, the annotation file can be split on transcript id.

> chr4tx <- split(gff, mcols(gff)$transcript_id)

> txhits <- summarizeOverlaps(chr4tx, bamlst)

> txCDS <- newCountDataSet(assay(txhits), design)

> experimentData(txCDS) <- expdata

6 References

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html http://www-huber.embl.de/users/anders/

HTSeq/doc/count.html

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

	1 Introduction
	2 A First Example
	3 Counting Modes
	4 Counting Features
	5 pasilla Data
	5.1 source files
	5.2 counting

	6 References

