
Programmatic retrieval of information from DAS

servers using the DASiR package

Oscar Flores Guri and Anna Mantsoki
Institute for Research in Biomedicine & Barcelona Supercomputing Center

Joint Program on Computational Biology

April 16, 2015

1 Introduction

Distributed Annotation System (DAS) is a protocol for information exchange between a server
and a client. Is widely used in bioinformatics and the most important repositories include a DAS
server parallel to their main front-end. Few examples are ”UCSC”, ”Ensembl” or ”UniProt”.

The DASiR package provides a convenient R-DAS interface to programmatically access DAS
servers available from your network. It supports the main features of DAS 1.6 protocol providing
a convenient interface to R users to a huge amount of biological information. DAS uses XML
and HTTP protocols, so the server deployment and client requirements are significantly less
than MySQL or BioMart based alternatives. You can find an browsable list with more than
1500 on-line DAS servers in the url http://www.dasregistry.org.

Despite the DAS protocol supports querying different kinds of data, DASiR has been de-
signed with ranges-features in mind. Querying genomic sequences and protein structures is also
supported, but you probably will find better ways to access such data in R if you requiere an
intensive use of them (Biostrings genomes or Bio3dD package for PDB structure, for example).

Here you have a brief summary of the main functions of DASiR:

� Set/get the DAS server: setDasServer, getDasServer

� Retrieve the data sources: getDasSource, getDasDsn

� Retrieve the entry points and types: getDasEntries, getDatTypes

� Retrieve information about the features: getDasFeature

� Nucleotide/amino acid sequence retrieval: getDasSequence

� Protein 3D structure retrieval: getDasStructure

For detailed information about these functions and how to use them refer to the DASiR
manual or give a look to the following sections for an overview.

1

http://genome.ucsc.edu/cgi-bin/das/dsn
http://www.ensembl.org/das/dsn
http://www.ebi.ac.uk/das-srv/uniprot/das
http://www.dasregistry.org

2 DAS metadata information handling

As an important part of the dialog between the client and the server consists on knowing which
information has every server, DASiR provides the following functions to query metadata from a
DAS server.

The first step before start quering and retrieving information is, of course, set the DAS
server we will use during this session. Notice that DASiR only supports one active DAS session
per R instance.

To set the server we will use the function setDasServer:

> setDasServer(server="http://genome.ucsc.edu/cgi-bin/das")

> getDasServer()

[1] "http://genome.ucsc.edu/cgi-bin/das"

The function getDasSource() will return the id’s, the titles and the capabilities of the data
sources available in the server in the form of a data frame. This function is important since it
is necessary to use the exact name (”id” or ”title” depending on the server) as reference name
in the other functions of the package.

> #sources = getDasSource() #This will fail for UCSC (but no for ENSEMBL)

> sources = getDasDsn() #This will fail for ENSEMBL (but no for UCSC)

> head(sources)

[1] "hg38" "hg19" "hg18" "hg17" "hg16" "mm10"

We should also take into account that the values in capabilities of each data source returned
by this function. If we query an unknown name or we query for a capability that is not
implemented in the server (for example we ask for a atomic structure to a sequence server)
DASiR will return a NULL value, but due to the nature of HTTP based queries, we cannot
detect the origin of this error without overloading the server with cross-calls.

Despite ”sources” is the common way to recover server features, some servers (as UCSC) are
still using the deprecated ”dsn” option to get the ids of the different datasets. The rule of a
thumb is that if the first don’t work, try the second.

Once we have the name of the database we want to query, we need to know where we
can look. This is called ”entry point” and could be from a protein ID to a chromosome number
(depending on the type of server, of course). Notice that output will be a GRanges by default (if
the server supplies start, stop and id values). If this is not possible or textttas.GRanges=FALSE,
the output will be a data.frame.

> source = "sacCer3"

> entries = getDasEntries(source, as.GRanges=TRUE)

> head(entries)

2

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | orientation subparts

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] IV [1, 1531933] * | + no

[2] XV [1, 1091291] * | + no

[3] VII [1, 1090940] * | + no

[4] XII [1, 1078177] * | + no

[5] XVI [1, 948066] * | + no

[6] XIII [1, 924431] * | + no

seqinfo: 17 sequences from an unspecified genome; no seqlengths

Finally, the different attributes we can ask for, called ”types” could be obtained with the
function getDasTypes.

> types = getDasTypes(source)

> head(types)

[1] "blastHg18KG" "est" "intronEst" "mrna"

[5] "ensGene" "esRegGeneToMotif"

Think about Sources as the name of the database, Entries are the tables of this database
and finally Types are the columns on this table.

In general a character vector is returned for most of the functions, except for getDasSource
and getDasEntries which return a data.frame with the name of the entry the ranges of the
elements and possibly other attributes depending on the server.

3 Querying features

The getDasFeature function queries the DAS server and returns the available information for
the type(s) at the given range(s).

> ranges=entries[c(1,2)]

> types=c("sgdGene","mrna")

> features = getDasFeature(source, ranges, types)

> head(features)

segment.range id label type method start end score

1 1 AY169693.chrIV.84188.0 AY169693 mrna BLAT 84189 85450 990

2 1 AY169693.chrIV.84188.1 AY169693 mrna BLAT 520477 520627 990

3 1 AY169693.chrIV.84188.2 AY169693 mrna BLAT 520628 520633 990

4 1 AY169693.chrIV.84188.3 AY169693 mrna BLAT 520634 520643 990

5 1 AY169693.chrIV.84188.4 AY169693 mrna BLAT 540324 540328 990

6 1 AY169693.chrIV.84188.5 AY169693 mrna BLAT 593167 593177 990

orientation phase group

3

1 + - Link to UCSC BrowserAY169693

2 + - Link to UCSC BrowserAY169693

3 + - Link to UCSC BrowserAY169693

4 + - Link to UCSC BrowserAY169693

5 + - Link to UCSC BrowserAY169693

6 + - Link to UCSC BrowserAY169693

A data.frame is returned with the contents of the specific annotation for the given ranges
and types in the server (again, note that servers could provide different/additional information
for types with the same name).

4 Querying nucleotide or amino acid sequence

The getDasSequence function queries the DAS server and retrieves the nucleotide or amino
acid sequence for the given ranges.

> #Now we will retrieve sequences from VEGA server

> setDasServer("http://vega.sanger.ac.uk/das")

> source = "Homo_sapiens.VEGA51.reference"

> ranges = GRanges(c("1","2"), IRanges(start=10e6, width=1000))

> #Returning character vector, we only ask 50 first bases in the range

> sequences = getDasSequence(source, resize(ranges, fix="start", 50))

> print(sequences)

[1] "caggtggatcatgaggtcaggagttcaagaccagcctggccaacatggtg"

[2] "tttagagatggtttcactctatcgcccaggctggagtacagtggtgcaat"

An character vector is returned (the default class) containing the nucleotide or amino acid
sequences that match the content of the annotation for the given ranges in the server. Automatic
conversion to Biostring classes is supported with the class attribute:

> #Now we specify we want a AAStringSet (Biostring class for AminoAcids strings)

> #and query for the whole sequence length

> sequences = getDasSequence(source, ranges, class="AAStringSet")

> print(sequences)

A AAStringSet instance of length 2

width seq

[1] 1000 caggtggatcatgaggtcaggagttcaagaccag...ctcgtgatccacccgccttggcctcccaaagtg

[2] 1000 tttagagatggtttcactctatcgcccaggctgg...aaactttattccaagagttaacagagtctctgg

5 Query a protein 3D structure

The getDasStructure function queries the DAS server and retrieves the 3D structure, including
metadata and coordinates for the given query (ID of the reference structure) using the data
source id (or title).

4

> #On 2013-03-05 there are 2 structure servers in dasregistry.org...

> setDasServer(server="http://das.sanger.ac.uk/das")

> #Get the sources with "structure" capability...

> sources = getDasSource()

> sources[grep("structure", sources$capabilities),]

id title capabilities

300 structure structure das1:structure

> source="structure" #...which name is also "structure"

> query="1HCK" #PDB code

> structure=getDasStructure(source,query)

> head(structure)

atomID atomName x y z type groupID name

1 1 N 102.329 111.862 92.452 amino 1 MET

2 2 CA 103.332 112.165 93.516 amino 1 MET

3 3 C 103.877 113.584 93.255 amino 1 MET

4 4 O 103.802 114.075 92.129 amino 1 MET

5 5 CB 104.437 111.099 93.495 amino 1 MET

6 6 CG 105.176 110.881 94.812 amino 1 MET

An data.frame is returned with the information of every atom of the reference structure
of the given query. Notice that a single residue (identified by groupID and name) has few
atoms inside. Depending on your purposes, you can find this way to represent the structural
information unconvenient (for example, if you are used to work with PDB format). Structure
query in DAS seems a secondary feature of the protocol (as only 2 servers out of >1500 are
supporting it) but anyway we wanted to support the maximum amount of features that DAS
protocol implement. We realize that are better options to work with PDB files, but maybe this
one can help you for quick structural analysis.

6 Plotting of obtained features

The plotFeatures function creates a basic plot with the features retrieved by getDasFeature

or adds them to an existing plot.

> #Let's retrieve some genes from UCSC Genome Browser DAS Server now

> setDasServer(server="http://genome.ucsc.edu/cgi-bin/das")

> #Official yeast genes and other annotated features in the range I:22k-30k

> source = "sacCer3" #Saccharomices Cerevisiae

> range = GRanges(c("I"), IRanges(start=22000, end=30000))

> type = c("sgdGene", "sgdOther") #This is also the name of the UCSC tracks

> features = getDasFeature(source, range, type)

> #Only the main columns

> head(features[,c("id", "label", "type", "start", "end")])

5

id label type start end

1 YAL063C-A.chrI.22394.0 YAL063C-A sgdGene 22395 22685

2 YAL063C.chrI.23999.0 YAL063C sgdGene 24000 27968

3 YALWdelta1.chrI.22230 YALWdelta1 sgdOther 22231 22552

4 FLO9.chrI.24000 FLO9 sgdOther 24001 27968

> plotFeatures(features, box.height=10, box.sep=15, pos.label="top", xlim=c(22000,30000))

22000 24000 26000 28000 30000

coordinates

YAL063C−A

YAL063CYALWdelta1

FLO9

sgdGene
sgdOther

Figure 1: Basic feature plot generated with getDasFeature and plotFeatures

The plotFeatures function is a simple way of drawing text boxes in a new or an existing
plot with the features retrieved. Notice that when overplotting to a already open graphical
device, the x-coordinates must match.

And this is all. You can find more detailed information and examples of each function in
the R manpages for DASiR. We hope this package helps you in your data mining.

6

	Introduction
	DAS metadata information handling
	Querying features
	Querying nucleotide or amino acid sequence
	Query a protein 3D structure
	Plotting of obtained features

