Package 'gprege'

October 9, 2015

Version 1.12.0

Date 2013-10-08

Title Gaussian Process Ranking and Estimation of Gene Expression time-series

Author Alfredo Kalaitzis <alkalait@gmail.com>

Maintainer Alfredo Kalaitzis <alkalait@gmail.com>

Depends R (>= 2.8.0), gptk

Suggests spam

Description The gprege package implements the methodology described in Kalaitzis & Lawrence (2011) ``A simple approach to ranking differentially expressed gene expression time-courses through Gaussian process regression". The software fits two GPs with the an RBF (+ noise diagonal) kernel on each profile. One GP kernel is initialised wih a short lengthscale hyperparameter, signal variance as the observed variance and a zero noise variance. It is optimised via scaled conjugate gradients (netlab). A second GP has fixed hyperparameters: zero inverse-width, zero signal variance and noise variance as the observed variance. The log-ratio of marginal likelihoods of the two hypotheses acts as a score of differential expression for the profile. Comparison via ROC curves is performed against BATS (Angelini et.al, 2007). A detailed discussion of the ranking approach and dataset used can be found in the paper (http://www.biomedcentral.com/1471-2105/12/180).

License AGPL-3

BugReports alkalait@gmail.com

biocViews Microarray, Preprocessing, DifferentialExpression, TimeCourse

NeedsCompilation no

R topics documented:

compareROC	3
DellaGattaData	3
demTp63Gp1	4
exhaustivePlot	5
gprege	6
rocStats	8
	- 9

Index

gprege-package	gprege - Gaussian Process Ranking and Estimation of Gene Expres-
	sion.

Description

This package implements the method of Kalaitzis and Lawrence (2011) for Gaussian process modelling gene expression time-series data. The method can be used to filter quiet genes and quantify differential expression in time-series expression ratios.

Details

Package:	gprege
Type:	Package
Version:	0.99.0
Date:	2011-07-08
License:	A-GPL Version 3

For details of using the package please refer to the Vignette.

Author(s)

Alfredo A. Kalaitzis Maintainer: Alfredo A. Kalaitzis <a.kalaitzis@ucl.ac.uk>

References

A.~A.~Kalaitzis and N.~D.~Lawrence. A Simple Approach to Ranking Differentially Expressed Gene Expression Time Courses through Gaussian Process Regression *BMC Bioinformatics* 2011, 12:180. DOI:10.1186/1471-2105-12-180.

See Also

demGpCov2D, demGpSample, demInterpolation, demOptimiseGp, demRegression

Examples

see demTp63Gp1.R

compareROC

Make ROC plots.

Description

This rocStats wrapper superimposes ROC curves on a plot to analyse the output performance of a method-A, and optionally compare it with that of a method-B, based on some ground thruth labels.

Usage

```
compareROC(output, groundTruthLabels, compareToRanking)
```

Arguments

output	(vector) The output of ranking scores returned by method-A for each data-point.
groundTruthLab	els
	(vector) A binary vector that contains the ground truth (e.g. which genes are members of the top-100 ground truth list).
compareToRanki	ng
	A matrix where each column is the output vector of ranking scores returned by another competing method.
e	

Value

See Also

rocStats

Examples

data(FragmentDellaGattaData) ## Load demo data. compareROC(output= rnorm(length(DGatta_labels_byTSNI))>0, groundTruthLabels=DGatta_labels_byTSNI)

DellaGattaData	Fragment dataset of 13 time-point mouse microarray time series of
	gene expression ratios and and a ranking list of TP63 targets sug- gested by TSNI.

Description

- **exprs_tp63_RMA** 100 gene reporters of 13 time-points mouse Affymetrix microarray gene expression coming from a study on primary mouse keratinocytes with an induced activation of the TRP63 transcription factor (GEO-accession number:GSE10562, see Source section), where a reverse-engineering algorithm was developed (TSNI: time-series network identification) to infer the direct targets of TRP63 (Della Gatta et.al. 2008). The data has been processed using rma (affy) and the profiles are centred (zero-mean) across the timepoints.
- **DGatta_labels_byTSNI, DGatta_labels_byTSNItop100** a ranking list suggested based by TSNI is provided. The inferred direct targets were biologically confirmed by correlation with ChIP-Seq binding regions; therefore the list is used as a noisy ground truth. See Source section.
- genesymbols Names of the genes that the transcipt_IDs (in exprs_tp63_RMA) correspond to.
- **gpregeOutput** Its field 'rankingScores' contains log-marginal likelihood ratios, used as ranking scores, for each gene reporter in exprs_tp63_RMA. This is the output from a run of gprege on the full DellaGatta dataset (see demTp63Gp1.R) and stored here for convenience.

Usage

data(FragmentDellaGattaData)

Source

GEO:http://www.ncbi.nlm.nih.gov/geo/, TSNI ranking: genome.cshlp.org/content/suppl/ 2008/05/05/gr.073601.107.DC1/DellaGatta_SupTable1.xls

References

Della Gatta G, et al. Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research* 2008, 18(6):939.

demTp63Gp1

gprege on TP63 expression time-series.

Description

Demo script of Gaussian Process Regression and Estimation of Gene Expression on TP63 timeseries data (see gprege.m). See Kalaitzis & Lawrence (2011) for a detailed discussion of the ranking algorithm and dataset used.

Usage

```
demTp63Gp1(fulldataset=FALSE)
```

Arguments

fulldataset (Logical) TRUE downloads and uses the full dataset.

exhaustivePlot

See Also

gprege

Examples

demTp63Gp1(fulldataset=FALSE)

exhaustivePlot *Plot of the LML function by exhaustive search.*

Description

Exhaustively searches the hyperparameter space by a grid, whose resolution is passed as an argument, and plots the LML function for every point in the space.

Usage

exhaustivePlot(y, x, xstar, options, maxwidth, res, nlevels)

Arguments

У	the target (output) data.
х	the input data matrix.
xstar	the points to predict function values.
options	options structure as defined by gpOptions.m.
maxwidth	maximum lengthscale to search for.
res	The search resolution. Number of points to plot for in the search range.
nlevels	Number of contour levels.

Value

area Area under the ROC curve of method-A.

See Also

rocStats

Examples

```
noiseLevel <- 0.2
noiseVar <- noiseLevel^2
options <- gpOptions()
options$kern$comp <- list('rbf','white')
## Create data set
l <- 9; x <- matrix(seq(0,240,by=20), ncol=1)
trueKern <- kernCreate(x, 'rbf')</pre>
```

```
trueKern$inverseWidth <- 1/(20^2) ## Characteristic inverse-width.
K <- kernCompute(trueKern, x) + diag(dim(x)[1])*noiseVar
## Sample some true function values.
y <- gaussSamp(Sigma=K, numSamps=1)
xTest <- as.matrix(seq(0, 240, length=200))
graphics.off(); dev.new(); plot.new(); dev.new(); plot.new()
exhaustivePlot(y, x, xTest, options=options, maxwidth=100, res=50, nlevels=75)</pre>
```

```
gprege
```

Gaussian process ranking and estimation of gene expression timeseries

Description

Fits two GPs with the an RBF (+ noise diagonal) kernel on each profile. One GP kernel is initialised wih a short lengthscale hyperparameter, signal variance as the observed variance and a zero noise variance. It is optimised via scaled conjugate gradients (netlab). The other GP has fixed hyperparameters with a zero inverse-width, zero signal variance and noise variance as the observed variance. The log-ratio of marginal likelihoods of the two hypotheses acts as a score of differential expression for the profile. Comparison via ROC curves is performed against BATS (Angelini et.al, 2007). See Kalaitzis & Lawrence (2011) for a detailed discussion of the ranking algorithm and dataset used.

Usage

gprege(data, inputs, gpregeOptions)

Arguments

data	The matrix of gene expression profiles; one profile per row.
inputs	Inputs (timepoints) to the GP.
gpregeOptions	Options list for gprege with fields
	explore Logical. TRUE operates in a user interactive mode. Used for examining individual gene expression profiles.
	labels A binary vector. TRUE specifies whether the corresponding profile comes from a differentially expressed gene (usually from a ground truth).
	indexRange A numeric vector. Range of indices of profiles on which the func- tion should operate. Useful for selective exploration of specific profiles, e.g. only genes marked as differentially expressed in a ground truth list.
	interpolatedT A numeric vector. New timepoints to interpolate for each pro- file, based on the estimated function values.
	iters A scalar. The number of iterations for scaled-conjugate gradients (SCG) optimisation.
	display Logical. Display gradient and LML information on each SCG iteration.

6

gprege

- **inithypers** The matrix of hyperparameter configurations as its rows. Each row has the following format: [inverse-lengthscale percent-signal-variance percent-noise-variance] The first row corresponds to a (practically constant) function with a very large lengthscale. Such a function will account for 0 percent of the observed variance in the expression profile (hence 0 for signal) and explain it as noise (hence 1 for noise). Subsequent rows (initialisations for SCG optimisation) correspond to functions of various lengthscales that explain all the observed variance as signal. A reasonable lengthscale would be roughly in line with the time-point sampling intervals.
- **exhaustPlotRes** A scalar. The search resolution. Used for interactive mode (explore == 1).
- **exhaustPlotLevels** A scalar. Number of contour levels in the exhaustive plot. Used for interactive mode (explore == 1).
- **exhaustPlotMaxWidth** A scalar. the maximum lengthscale to search for. Used for interactive mode (explore == 1).

Value

gpregeOutput Output list with fields:

- **signalvar** A numeric vector of the vertical lengthscales of the optimised RBF kernel; one for each profile.
- **noisevar** A numeric vector. Similar to signalvar, but for the noise hyperparameter.
- width A numeric vector. Similar to signalvar and noisever, but for the horizontal lengthscales of the RBF.
- LMLs A numeric vector of log-marginal likelihoods of the GP; one for each profile.
- **interpolatedData** A matrix of the extended dataset with interpolated values as the augmenting columns.
- **rankingScores** A numeric vector of the ranking scores, based on the log-ratio of marginal likelihoods.

See Also

gpOptions, gpCreate, gpExpandParam, gpOptimise, gpExtractParam, gpLogLikelihood, gpPosteriorMe

Examples

```
## see demTp63Gp1.R
data(FragmentDellaGattaData) ## Load demo data.
## Setup other gprege options.
gpregeOptions = list(indexRange=(1:2), explore=TRUE, exhaustPlotRes=30, exhaustPlotLevels=10,
        exhaustPlotMaxWidth=100, iters=100, labels=DGatta_labels_byTSNI, display=FALSE)
## Matrix of different hyperparameter configurations as rows:
## [inverse-lengthscale percent-signal-variance percent-noise-variance].
gpregeOptions$inithypers <- matrix( c(
        1/1000, 1e-3, 0.999</pre>
```

rocStats

```
,1/20,0.999,1e-3
    ), ncol=3, byrow=TRUE)
gpregeOutput <- gprege(data=exprs_tp63_RMA, inputs=matrix(seq(0,240,by=20), ncol=1), gpregeOptions=gpregeOptic</pre>
```

rocStats Make ROC curve data.

Description

Computes the points on an ROC curve by varying a threshold on the sorted outputs of the method in question.

Usage

```
rocStats(outputs, groundTruthLabels, decreasing = TRUE)
```

Arguments

outputs	A numeric vector with the outputs of the evaluated method (e.g. likelihoods
	from gprege).
groundTruthLabels	
	A binary vector than contains the ground truth (e.g. which genes belong in the top-100 ground truth list).
decreasing	Logical. TRUE sorts outputs by decreazing order.

Value

stats A list of numeric variables with the necessary statistics to compute an ROC curve, a precision-recall curve, etc.

Examples

```
## see compareROC.R
data(FragmentDellaGattaData) ## Load demo data.
rocStats(gpregeOutput$rankingScores, DGatta_labels_byTSNItop100, decreasing=TRUE)
```

8

Index

*Topic **datasets** DellaGattaData, 3 *Topic package gprege-package, 2 compareROC, 3 DellaGattaData, 3 demGpCov2D, 2demGpSample, 2 ${\tt demInterpolation, 2}$ demOptimiseGp, 2 ${\tt demRegression, 2}$ demTp63Gp1, 4 DGatta_labels_byTSNI (DellaGattaData), 3 DGatta_labels_byTSNItop100 (DellaGattaData), 3 exhaustivePlot, 5 exprs_tp63_RMA (DellaGattaData), 3 FragmentDellaGattaData (DellaGattaData), 3 genesymbols (DellaGattaData), 3 gpCreate, 7 gpExpandParam, 7 gpExtractParam, 7 gpLogLikelihood, 7 gpOptimise, 7 gpOptions, 7 gpPosteriorMeanVar,7 gprege, 5, 6 gprege-package, 2 gpregeOutput (DellaGattaData), 3

rma, 4 rocStats, *3*, *5*, 8