
Package ‘Cardinal’
October 8, 2015

Type Package

Title A mass spectrometry imaging toolbox for statistical analysis

Version 1.0.0

Date 2015-1-12

Author Kyle D. Bemis <kbemis@purdue.edu>

Maintainer Kyle D. Bemis <kbemis@purdue.edu>

Description Implements statistical & computational tools for analyzing
mass spectrometry imaging datasets, including methods for efficient
pre-processing, spatial segmentation, and classification.

License Artistic-2.0

Depends BiocGenerics, Biobase, graphics, methods, stats, ProtGenerics

Imports fields, grid, irlba, lattice, signal, sp, stats4, utils

Suggests BiocStyle, testthat

biocViews Software, Infrastructure, Proteomics, Lipidomics,
Normalization, MassSpectrometry, ImagingMassSpectrometry,
Clustering, Classification

URL http://www.cardinalmsi.org

NeedsCompilation yes

R topics documented:
Cardinal-package . 2
coord-methods . 3
coregister-methods . 4
cvApply-methods . 5
generateImage . 6
generateSpectrum . 7
Hashmat-class . 9
IAnnotatedDataFrame-class . 11
image-methods . 14
ImageData-class . 18

1

http://www.cardinalmsi.org

2 Cardinal-package

imageData-methods . 21
intensity.colors . 22
iSet-class . 23
MIAPE-Imaging-class . 25
MSImageData-class . 29
MSImageProcess-class . 32
MSImageSet-class . 34
mz-methods . 37
normalize-methods . 38
OPLS-methods . 39
PCA-methods . 41
peakAlign-methods . 42
peakFilter-methods . 44
peakPick-methods . 45
pixelApply-methods . 47
pixelData-methods . 49
pixelNames-methods . 50
pixels-methods . 51
plot-methods . 52
PLS-methods . 56
processingData-methods . 58
readMSIData . 59
reduceBaseline-methods . 60
reduceDimension-methods . 62
ResultSet-class . 64
select-methods . 65
SImageData-class . 66
SImageSet-class . 69
smoothSignal-methods . 72
spatialKMeans-methods . 73
spatialShrunkenCentroids-methods . 75
standardizeSamples-methods . 77
topLabels-methods . 79

Index 81

Cardinal-package Mass spectrometry imaging tools

Description

Implements statistical & computational tools for analyzing mass spectrometry imaging datasets,
including methods for efficient pre-processing, spatial segmentation, and classification.

coord-methods 3

Details

Cardinal provides an abstracted interface to manipulating mass spectrometry imaging datasets, sim-
plifying most of the basic programmatic tasks encountered during the statistical analysis of imaging
data. These include image manipulation and processing of both images and mass spectra, and dy-
namic plotting of both.

While pre-processing steps including normalization, baseline correction, and peak-picking are pro-
vided, the core functionality of the package is statistical analysis. The package includes classifi-
cation and clustering methods based on nearest shrunken centroids, as well as traditional tools like
PCA and PLS.

Type vignette("Cardinal-demo") for a brief walkthrough of common workflows.

To view other vignettes, type browseVignettes("Cardinal").

Author(s)

Kyle D. Bemis

Maintainer: Kyle D. Bemis <kbemis@purdue.edu>

coord-methods Retrieve Pixel Coordinates from iSets

Description

These generic functions accesses pixel coordinates stored in an object derived from iSet. The
coordinates method is an alias for coord.

Usage

coord(object)
coord(object) <- value

coordinates(object)
coordinates(object) <- value

coordLabels(object)
coordLabels(object) <- value

Arguments

object An object, possible derived from iSet.

value Value to be assigned to the corresponding object.

Value

coord returns a data.frame with each row containing coordinates for an individual pixel. coordLabels
retrieves the coordinate labels.

4 coregister-methods

Author(s)

Kyle D. Bemis

See Also

iSet, SImageSet, MSImageSet

coregister-methods Coregister Images

Description

Coregister images of an imaging dataset. Currently this is only used to coregister the class as-
signments for clustering methods, but additional functionality may be added in the future for 3D
experiments and registration of optical images.

Usage

S4 method for signature 'SpatialShrunkenCentroids,missing'
coregister(object, ref, ...)

S4 method for signature 'SpatialKMeans,missing'
coregister(object, ref, ...)

Arguments

object An imaging dataset.

ref A reference for the coregistration.

... Ignored.

Value

A new imaging dataset of the same class with coregistered images.

Author(s)

Kyle D. Bemis

See Also

spatialShrunkenCentroids

cvApply-methods 5

cvApply-methods Apply Cross-Validated Analysis to Imaging Datasets

Description

Apply an existing or a user-specified function over imaging datasets.

Usage

S4 method for signature 'SImageSet'
cvApply(.x, .y, .fun, .fold = sample, ...)

Arguments

.x An object of class SImageSet.

.y An appropriate response variable.

.fun The function to be used for the analyses.

.fold A variable determining the cross-validation folds. By default, this will set to
’sample’ from pixelData(.x), to ensure that whole samples are left out during
the cross-validation. This argument is evaluated in pixelData(.x).

... Additional arguments passed to .fun.

Details

This method is designed to be used with the provided classification methods, but can also be used
with user-provided functions and methods as long as they fulfill certain expectations.

The function or method passed to ’.fun’ must take at least two arguments: the first argument must
be a object derived from SImageSet, and the second argument must be the response variable. The
function should return an object of a class derived from ResultSet, which should have a predict
method that takes arguments ’newx’ and ’newy’.

Value

An object of class ’CrossValidated’, which is derived from ResultSet.

Author(s)

Kyle D. Bemis

See Also

PLS, OPLS, spatialShrunkenCentroids

6 generateImage

generateImage Generate a Simulated Image

Description

Generates a simulated image of spectral signals.

Usage

generateImage(data = factor(1),
coord = expand.grid(

x = 1:max(1, nrow(data)),
y = 1:max(1, ncol(data))),

peaks = length(levels(as.factor(data))),
delta = 10,
as = c("SImageSet", "MSImageSet"),
...)

Arguments

data Either a factor or an integer matrix. If a factor is used, the coord argu-
ment should be specified with data to indicate the arrangement of regions in the
image. If a matrix is given, coord should not be specified. The image will auto-
matically be generated with different regions corresponding to unique integers
in the matrix.

coord A data.frame with columns representing the spatial dimensions. Each row
provides a spatial coordinate for the location of an element of data if data is a
factor.

peaks The number of peaks in the signal.

delta The effect size of the difference between peaks differentiating different regions
in the image (as specified by data).

as Should the output object be an SImageSet or MSImageSet?

... Additional arguments to pass to generateSpectrum.

Value

An SImageSet or an MSImageSet.

Author(s)

Kyle D. Bemis

See Also

generateSpectrum

generateSpectrum 7

Examples

data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,
NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,
1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,
1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,
1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA), nrow=9, ncol=9)

set.seed(1)
x <- generateImage(data)

plot(x, pixel=1)
image(x, feature=1)

coord <- expand.grid(x=1:nrow(data), y=1:ncol(data))

data2 <- as.factor(data[is.finite(data)])
coord2 <- coord[is.finite(data),]

set.seed(1)
x2 <- generateImage(data=data, coord=coord, as="MSImageSet")

plot(x, pixel=1)
image(x2, feature=1)

generateSpectrum Generate a Simulated Spectrum

Description

Generates a simulated spectral signal, or multiple such signals, with peaks of specified intensities.

Usage

generateSpectrum(n, peaks = 100,
range = c(1001, 20000),
centers = seq(

from = range[1] + diff(range) / (peaks + 1),
to = range[2] - diff(range) / (peaks + 1),
length.out = peaks),

intensities = runif(peaks, min=0.1, max=1),
step = diff(range)/1e3,
resolution = 500,
noise = 0.05,
sd = 0.1,
baseline = 2000,
auc = TRUE)

8 generateSpectrum

Arguments

n The number of signals to simulate.

peaks The number of peaks in the signal.

range A pair of numbers specifying the range of continues feature values at which the
signal is measured.

centers The values of the singal feature at which peaks occur.

intensities The values of the intensities of the peaks, which could either be heights of the
peaks or their area under the curve.

step The step size between measurements in the feature space.

resolution The instrument resolution. This affects the width of the peaks. Higher resolu-
tions produce sharper peaks.

noise A value without scale that indicates the amount of noise in the signal.

sd Standard deviation of the intensities of the peaks.

baseline A value without scale that indicates the shape and size of the baseline.

auc Should the peak heights be influenced by the area under the curve? This reflects
fragmentation and limited accuracy at higher mass ranges. If ’FALSE’ then the
peak heights correspond directly to the provided intensities.

Value

A list with elements:

• x: numeric, a numeric vector of signal intensities

• t: numeric, a numeric vector of signal features

Author(s)

Kyle D. Bemis

See Also

generateImage

Examples

s <- generateSpectrum(1)
plot(x ~ t, type="l", data=s)

s <- generateSpectrum(1, centers=c(2000,3000), resolution=10, baseline=3000)
plot(x ~ t, type="l", data=s)

s <- generateSpectrum(1, peaks=2, auc=FALSE, baseline=0)
plot(x ~ t, type="l", data=s)

Hashmat-class 9

Hashmat-class Sparse Matrix Class Using Lists as Hash Tables

Description

The Hashmat class implements compressed sparse column (CSC) style matrices using R list ob-
jects as the columns. The implementation is unique in that it allows re-assignment of the keys
describing the rows, allowing for arbitrary re-ordering of rows and row-wise elements. This is
useful for storing sparse signals, such as processed spectra.

Usage

Instance creation
Hashmat(data = NA, nrow = 1, ncol = 1, byrow=FALSE,

dimnames = NULL, ...)

Additional methods documented below

Arguments

data A matrix or a vector. If data is a matrix, then a sparse matrix is construced
from matrix directly and other arguments (except for dimnames) are ignored. If
data is a vector, then the behavior is the same as for ordinary matrix construc-
tion.

nrow The number of rows in the sparse matrix.

ncol The number of columns in the sparse matrix.

byrow If ’FALSE’, the matrix is filled by columns. If ’TRUE’, it is filled by rows.

dimnames The ’dimnames’ giving the dimension names for the matrix, analogous to the
’dimnames’ attribute of an ordinary R matrix. This must be a list of length 2 or
NULL.

... Additional arguments passed to the constructor.

Slots

data: A list with vectors corresponding columns of the sparse matrix, whose elements are its
non-zero elements.

keys: A character vector providing the keys that determine the rows of the non-zero elements of
the matrix.

dim: A length 2 integer vector analogous to the ’dim’ attribute of an ordinary R matrix.

dimnames: A length 2 list analogous to the ’dimnames’ attribute of an ordinary R matrix.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

10 Hashmat-class

Extends

Versioned

Creating Objects

Hashmat instances are usually created through Hashmat().

Methods

Class-specific methods:

pData(object), pData(object)<-: Access or set the list of numeric vectors storing the column-
vectors of the sparse matrix directly.

keys(object), keys(object)<-: Access of set the keys for the row elements. If this is a character,
it sets the keys slot directly, and hence the ’dim’ is also changed. If this is a list, then the
list should have length equal to the number of rows, and each element should be an integer
vector of length equal to the number of non-zero row elements for the respective column. The
vectors are used to index the keys slot and set the key names of the vectors, and hence change
or reorder the row elements.

Standard generic methods:

combine(x, y, ...): Combines two Hashmat objects. See the combine method for matrices for
details of how the Hashmat sparse matrices are combined. The behavior is identical, except
when filling in missing elements in non-shared rows and columns, the resulting Hashmat
object will have zeroes instead of NAs.

dim(x), dim(x) <- value: Return or set the dimensions of the sparse matrix.

dimnames(x), dimnames(x) <- value: Return or set the ’dimnames’ of the sparse matrix.

colnames(x), colnames(x) <- value: Return or set the column names of the sparse matrix.

rownames(x), rownames(x) <- value: Return or set the row names of the sparse matrix.

ncol: Return the number of columns in the sparse matrix.

nrow: Return the number of columns in the sparse matrix.

cbind: Combine sparse matrices by columns. The keys used to resolve the rows must match be-
tween matrices.

rbind: Not allowed for sparse matrices. (Always returns an error.)

Hashmat[i, j, ..., drop], Hashmat[i, j, ...] <- value: Access and assign elements in
the sparse matrix. A Hashmat sparse matrix can be indexed like an ordinary R matrix. Note
however that linear indexing is not supported. Use drop = NA to return a subset of the same
class as the object.

Author(s)

Kyle D. Bemis

See Also

matrix, SImageSet

IAnnotatedDataFrame-class 11

Examples

Create an Hashmat object
Hashmat()

Using a list of elements and keys
dmat1 <- diag(3)
smat1 <- Hashmat(dmat1)
all.equal(smat1[], dmat1, check.attr=FALSE)

Filling an empty sparse matrix
smat2 <- Hashmat(nrow=1000, ncol=1000)
smat2[500,] <- rep(1, 1000)

dmat2 <- matrix(nrow=1000, ncol=1000)
dmat2[500,] <- rep(1, 1000)

print(object.size(dmat2), units="Mb")
print(object.size(smat2), units="Mb") # Much smaller

all.equal(dmat2[500,], smat2[500,], , check.attr=FALSE)

IAnnotatedDataFrame-class

Class Containing Measured Variables and Their Meta-Data Descrip-
tion for Imaging Experiments

Description

An IAnnotatedDataFrame is an extension of an AnnotatedDataFrame as defined in the ’Biobase’
package modified to reflect that individual rows in data represent pixels rather than samples, and
many pixels will come from a single sample. Additionally, it keeps track of the coordinates of the
pixel represented by each row.

Usage

Instance creation
IAnnotatedDataFrame(data, varMetadata,
dimLabels=c("pixelNames", "pixelColumns"),
...)

Additional methods documented below

Arguments

data A data.frame of the pixels (rows) and measured variables (columns). Omitting
this will yield an empty IAnnotatedDataFrame with zero rows.

varMetadata A data.frame with columns describing the measured variables in data. Gen-
erated automatically if missing.

12 IAnnotatedDataFrame-class

dimLabels Aesthetic labels for the rows and columns in the show method.

... Additional arguments passed to the initialize method.

Details

The key difference between a IAnnotatedDataFrame and a AnnotatedDataFrame is that an IAnnotatedDataFrame
makes a distinction between samples and pixels, recognizing that rows belong to pixels, many of
which may belong to the same sample. Therefore, data contains a required column called ’sample’,
which indicates the sample to which the pixel belongs, and varMetadata contains an additional re-
quired column called ’labelType’, which indicates whether a variable is a spatial dimensions (’dim’)
or a phenotype (’pheno’) or a sample (’sample’). The ’labelType’ of the ’sample’ variable depends
on the structure of the experiment. See below for details.

The ’labelType’ for ’sample’ will be ’sample’ in the case of a 2D imaging experiment with a single
sample. The ’labelType’ for ’sample’ will be ’dim’ in the case of a 2D imaging experiment with
multiple samples, since the ’sample’ will be acting as a proxy spatial coordinate. Note however that
in this case, the result of a call to coordLabels will not include ’sample’.

It is possible to compare the results of names(coord(object)) and coordLabels(object) to
distinguish between coordinate types that should be considered independent. It will be assumed
a spatial relationship exists for all variables returned by coordLabels(object), but this is not
necessarily true for all variables returned by names(coord(object)). This is required, because
every row in the data.frame returned by coord(object) should be unique and correspond to a
unique pixel.

The suggested structure for 3D imaging experiments is to create an additional variable solely to
refer to the spatial dimension (e.g., ’z’) and treat it separately from the ’sample’. Therefore, in a 3D
imaging experiment with a single sample, the ’labelType’ for ’sample’ would be ’sample’.

Slots

data: Object of class data.frame containing pixels (rows) and measured variables (columns).
Contains at least one column named ’sample’ which is a factor and gives the sample names
for each pixel. The sample names can be set using sampleNames<-. Inherited from Anno-
tatedDataFrame.

varMetadata: Object of class data.frame with number of rows equal to the number of columns
in data. Contains at least two columns, one named ’labelDescription’ giving a textual de-
scription of each variable, and an additional one named ’labelType’ describing the type of
variable. The ’labelType’ is a factor with levels "dim", "sample", "pheno". Inherited from
AnnotatedDataFrame

dimLabels: Object of class character of length 2 that provides labels for the rows and columns
in the show method. Inherited from AnnotatedDataFrame.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

Extends

Class AnnotatedDataFrame, directly. Class Versioned, by class "AnnotatedDataFrame", distance
2.

IAnnotatedDataFrame-class 13

Creating Objects

IAnnotatedDataFrame instances are usually created through IAnnotatedDataFrame().

Methods

Class-specific methods:

sampleNames(object), sampleNames(object)<-: Return or set the sample names in the object,
as determined by the factor levels of the ’sample’ variable in data.

pixelNames(object), pixelNames(object)<-: Return or set the pixel names (the rows of data).

coordLabels(object), coordLabels(object)<-: Return or set the names of the pixel coodi-
nates. These are the subset of varLabels(object) for which the corresponding variables have a 'labelType' of 'dim'.
Note that this will never include ’sample’, even if the ’sample’ variable has type ’dim’. (See
details.)

coord(object), coord(object)<-: Return or set the coodinates. This is a data.frame contain-
ing the subset of columns of data for which the variables have a ’labelType’ of ’dim’.

Standard generic methods:

combine(x, y, ...): Combine two or more IAnnotatedDataFrame objects. The objects are
combined similarly to ’rbind’ for data.frame objects. Pixels coordinates are checked for
uniqueness. The ’varLabels’ and ’varMetadata’ must match.

Author(s)

Kyle D. Bemis

See Also

AnnotatedDataFrame, iSet, SImageSet MSImageSet

Examples

Create an IAnnotatedDataFrame object
IAnnotatedDataFrame()

Simple IAnnotatedDataFrame
df1 <- IAnnotatedDataFrame(data=expand.grid(x=1:3, y=1:3),
varMetadata=data.frame(labelType=c("dim", "dim")))
pData(df1)
varMetadata(df1)

Example of possible experiment data
coord <- expand.grid(x=1:3, y=1:3)
df2 <- IAnnotatedDataFrame(data=
data.frame(rbind(coord, coord), sample=factor(rep(1:2, each=nrow(coord)))),
varMetadata=data.frame(labelType=c("dim", "dim")))
df2$diagnosis <- factor(rbinom(nrow(df2), 1, 0.5), labels=c("normal", "cancer"))
varMetadata(df2)["diagnosis", "labelDescription"] <- "disease pathology"
df2[["time", labelDescription="time measured"]] <- rep(date(), nrow(df2))

14 image-methods

pData(df2)
varMetadata(df2)

Change labels and pixel coord
coordLabels(df2) <- c("x1", "x2")
pixelNames(df2) <- paste("p", 1:nrow(df2), sep="")
sampleNames(df2) <- c("subject A", "subject B")
coord(df2) <- coord(df2)[nrow(df2):1,]
pData(df2)

image-methods Plot the Pixel-Space of an Imaging Dataset

Description

Create and display plots in the pixel space of an imaging dataset. This uses a formula interface
inspired by the lattice graphics package.

Usage

S4 method for signature 'SImageSet'
image(x, formula = ~ x * y,

feature,
feature.groups,
groups = NULL,
superpose = FALSE,
strip = TRUE,
key = FALSE,
fun = mean,
normalize.image = c("none", "linear"),
contrast.enhance = c("none", "suppression", "histogram"),
smooth.image = c("none", "gaussian", "adaptive"),
...,
xlab,
xlim,
ylab,
ylim,
zlim,
layout,
asp = 1,
col = rainbow(nlevels(feature.groups)),
col.regions = intensity.colors(100),
colorkey = TRUE,
subset = TRUE,
lattice = FALSE)

S4 method for signature 'MSImageSet'
image(x, formula = ~ x * y,

image-methods 15

feature = features(x, mz=mz),
feature.groups,
mz,
plusminus,
...)

S4 method for signature 'ResultSet'
image(x, formula,

model = pData(modelData(x)),
feature,
feature.groups,
superpose = TRUE,
strip = TRUE,
key = superpose,
...,
column,
col = if (superpose) rainbow(nlevels(feature.groups)) else "black",
lattice = FALSE)

S4 method for signature 'CrossValidated'
image(x, fold = 1:length(x), layout, ...)

S4 method for signature 'PCA'
image(x, formula = substitute(mode ~ x * y),

mode = "scores",
...)

S4 method for signature 'PLS'
image(x, formula = substitute(mode ~ x * y),

mode = c("fitted", "scores", "y"),
...)

S4 method for signature 'OPLS'
image(x, formula = substitute(mode ~ x * y),

mode = c("fitted", "scores", "Oscores", "y"),
...)

S4 method for signature 'SpatialShrunkenCentroids'
image(x, formula = substitute(mode ~ x * y),

mode = c("probabilities", "classes", "scores"),
...)

S4 method for signature 'SpatialKMeans'
image(x, formula = substitute(mode ~ x * y),

mode = "cluster",
...)

16 image-methods

Arguments

x An imaging dataset.

formula A formula of the form ’z ~ x * y | g1 * g2 * ...’ (or equivalently, ’z ~ x + y | g1 +
g2 + ...’), indicating a LHS ’y’ (on the y-axis) versus a RHS ’x’ (on the x-axis)
and conditioning variables ’g1, g2, ...’.
Usually, the LHS is not supplied, and the formula is of the form ’~ x * y |
g1 * g2 * ...’, and the y-axis is implicityl assumed to be the feature vectors
corresponding to each pixel in the imaging dataset specified by the object ’x’.
However, a variable evaluating to a vector of pixel values, or a sequence of such
variables, can also be supplied.
The RHS is evaluated in pData(x) and should provide values for the xy-axes.
These must be spatial coordinates.
The conditioning variables are evaluated in fData(x). These can be specified in
the formula as ’g1 * g2 * ...’. The argument ’feature.groups’ allows an alternate
way to specify a single conditioning variable. Conditioning variables specified
using the formula interface will always appear on separate plots. This can be
combined with ’superpose = TRUE’ to both overlay plots based on a condition-
ing variable and use conditioning variables to create separate plots.

model A vector or list specifying which fitted model to plot. If this is a vector, it
should give a subset of the rows of modelData(x) to use for plotting. Otherwise,
it should be a list giving the values of parameters in modelData(x).

feature The feature or vector of features for which to plot the image. This is an expres-
sion that evaluates to a logical or integer indexing vector.

feature.groups An alternative way to express a single conditioning variable. This is a variable
or expression to be evaluated in fData(x), expected to act as a grouping vari-
able for the features specified by ’feature’, typically used to distinguish different
groups or ranges of features. Pixel vectors of images from features in the same
feature group will have ’fun’ applied over them; ’fun’ will be applied to each
feature group separately, usually for averaging. If ’superpose = FALSE’ then
these appear on separate plots.

groups A variable or expression to be evaluated in pData(x), expected to act as a group-
ing variable for the pixel regions in the image(s) to be plotted, typically used to
distinguish different image regions by varying graphical parameters like color
and line type. By default, if ’superpose = FALSE’, these appear overlaid on the
same plot.

superpose Should feature vectors from different feature groups specified by ’feature.groups’
be superposed on the same plot? If ’TRUE’ then the ’groups’ argument is ig-
nored.

strip Should strip labels indicating the plotting group be plotting along with the each
panel? Passed to ’strip’ in levelplot is ’lattice = TRUE’.

key A logical, or list containing components to be used as a key for the plot. This
is passed to ’key’ in levelplot if ’lattice = TRUE’.

fun A function to apply over pixel vectors of images grouped together by ’fea-
ture.groups’. By default, this is used for averaging over features.

image-methods 17

normalize.image

Normalization function to be applied to each image. The function can be user-
supplied, of one of ’none’ or ’linear’. The ’linear’ normalization method nor-
malized each image to the same intensity range using a linear transformation.

contrast.enhance

Contrast enhancement function to be applied to each image. The function can be
user-supplied, or one of ’none’, ’histogram’, or ’suppression’. The ’histogram’
equalization method flatterns the distribution of intensities. The hotspot ’sup-
pression’ method uses thresholding to reduce the intensities of hotspots.

smooth.image Image smoothing function to be applied to each image. The function can be user-
supplied, or one of ’none’, ’gaussian’, or ’adaptive’. The ’gaussian’ smoothing
method smooths images with a simple gaussian kernel. The ’adaptive’ method
uses bilateral filtering to preserve edges.

xlab Character or expression giving the label for the x-axis.

ylab Character or expression giving the label for the x-axis.

xlim A numeric vector of length 2 giving the left and right limits for the x-axis.

ylim A numeric vector of length 2 giving the top and bottom limits for the y-axis.

zlim A numeric vector of length 2 giving the lower and upper limits for the z-axis
(i.e., the range of colors to be plotted).

layout The layout of the plots, given by a length 2 numeric as c(ncol, nrow). This is
passed to levelplot if ’lattice = TRUE’. For base graphics, this defaults to one
plot per page.

asp The aspect ratio of the plot.

col A specification for the default plotting color(s) for groups.

col.regions The default plotting color(s) for the z-axis of image intensities.

colorkey Should a coloykey describing the z-axis be drawn with the plot?

subset An expression that evaluates to a logical or integer indexing vector to be evalu-
ated in pData(x).

lattice Should lattice graphics be used to create the plot?

... additional arguments passed to the underlying plot functions.

mz The m/z value for which to plot the ion image.

plusminus If specified, a window of m/z values surrounding the one given by coord will
be included in the plot with fun applied over them, and this indicates the range
of the window on either side.

fold What folds of the cross-validation should be plotted.

mode What kind of results should be plotted. This is the name of the object to plot in
the ResultSet object.

column What columns of the results should be plotted. If the results are a matrix, this
corresponds to the columns to be plotted, which can be indicated either by nu-
meric index or by name.

Author(s)

Kyle D. Bemis

18 ImageData-class

See Also

plot-methods, select-methods

Examples

data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,
NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,
1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,
1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,
1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA), nrow=9, ncol=9)

mycol <- gradient.colors(100, "red", "black")

set.seed(1)
sset <- generateImage(data, range=c(1000,5000), centers=c(3000,4000), resolution=100)

pData(sset)$pg <- factor(data[is.finite(data)], labels=c("black", "red"))
fData(sset)$fg <- factor(rep("bg", nrow(fData(sset))), levels=c("bg", "black", "red"))
fData(sset)$fg[2950 < fData(sset)$t & fData(sset)$t < 3050] <- "black"
fData(sset)$fg[3950 < fData(sset)$t & fData(sset)$t < 4050] <- "red"

image(sset, feature=1, col=mycol)

image(sset, feature=fData(sset)$fg=="black", col=mycol)

image(sset, feature=fData(sset)$fg=="red", col=mycol)

image(sset, ~ x * y | fg, feature=1:nrow(sset), lattice=TRUE, col=mycol)

image(sset, feature=1:nrow(sset), feature.groups=fg, lattice=TRUE, col=mycol)

set.seed(1)
msset <- generateImage(data, range=c(1000,5000), centers=c(3000,4000), resolution=100, as="MSImageSet")

image(msset, mz=3000, col=mycol)

image(msset, mz=4000, col=mycol)

image(msset, mz=3500, plusminus=500, col=mycol)

ImageData-class Class Containing Arrays of Imaging Data

Description

A container class for holding imaging data, designed to contain one or more arrays in an immutable
environment. It is assumed that the first dimension of each array corresponds to the features.

Note that only visible objects (names not beginning with ’.’) are checked for validity; however, all
objects are copied if any elements in the data slot are modified when data is an "immutableEnvi-
ronment".

ImageData-class 19

Usage

Instance creation
ImageData(...,

data = new.env(parent=emptyenv()),
storageMode = c("immutableEnvironment",

"lockedEnvironment", "environment"))

Additional methods documented below

Arguments

... Named arguments that are passed to the initialize method for instantiating
the object. These must be arrays or array-like objects with an equal number of
dimensions. They will be assigned into the environment in the data slot.

data An environment in which to assign the previously named variables.

storageMode The storage mode to use for the ImageData object for the environment in the
data slot. This must be one of "immutableEnvironment", "lockedEnvironment",
or "environment". See documentation on the storageMode slot below for more
details.

Slots

data: An environment which may contain one or more arrays with an equal number of dimen-
sions. It is assumed that the first dimension corresponds to the features.

storageMode: A character which is one of "immutableEnvironment", "lockedEnvironment",
or "environment". The values "lockedEnvironment" and "environment" behave as de-
scribed in the documentation of AssayData. An "immutableEnvironment" uses a locked
environment while retaining R’s typical copy-on-write behavior. Whenever an object in an
immutable environment is modified, a new environment is created for the data slot, and all
objects copied into it. This allows usual R functional semantics while avoiding copying of
large objects when other slots are modified.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

Extends

Versioned

Creating Objects

ImageData instances are usually created through ImageData().

Methods

Class-specific methods:

storageMode(object), storageMode(object)<-: Return or set the storage mode. See documen-
tation on the storageMode slot above for more details.

20 ImageData-class

Standard generic methods:

initialize: Initialize an ImageData object. Called by new. Not to be used by the user.

validObject: Validity-check that the arrays in the data slot environment are all of equal number
of dimensions, and the storage mode is a valid value.

combine(x, y, ...): Combine two or more ImageData objects. All elements must have match-
ing names, and are combined with calls to combine. Higher dimensional arrays are combined
using the same rules as for matrices. (See combine for more details.)

annotatedDataFrameFrom(object): Returns an IAnnotatedDataFrame with columns for the
dimensions of the elements of data. All dimensions must be named (determined by the
rownames(dims(object))). It is assumed that the first dimension corresponds to the features,
and is not used as a dimension in the returned IAnnotatedDataFrame. Additional arguments
(byrow, . . .) are ignored.

dims: A matrix with each column corresponding to the dimensions of an element in the data slot.

names(x), names(x)<-: Access or replace the array names of the elements contained in the data
slot environment.

ImageData[[name]], ImageData[[name]] <- value: Access or replace an element named "name"
in the environment in the data slot.

Author(s)

Kyle D. Bemis

See Also

AssayData, SImageData, SImageSet, MSImageSet

Examples

Create an ImageData object
ImageData()

idata <- ImageData(data0=matrix(1:4, nrow=2))
idata[["data0"]]

Immutable environments in ImageData objects
storageMode(idata) <- "lockedEnvironment"
try(idata[["data0"]][,1] <- c(10,11)) # Fails

storageMode(idata) <- "immutableEnvironment"
try(idata[["data0"]][,1] <- c(10,11)) # Succeeds

Test copy-on-write for immutable environments
idata2 <- idata
idata2[["data0"]] <- matrix(5:8, nrow=2)
idata[["data0"]] == idata2[["data0"]] # False

imageData-methods 21

imageData-methods Retrieve Image Data from iSets

Description

These generic functions image data (typically spectra) stored in an object derived from iSet.

Usage

imageData(object)
imageData(object) <- value
iData(object)
iData(object) <- value

spectra(object, ...)
spectra(object) <- value

peaks(object, ...)
peaks(object) <- value

mzData(object)
mzData(object) <- value

peakData(object)
peakData(object) <- value

Arguments

object An object, possible derived from iSet.

value Value to be assigned to the corresponding object.

... Additional arguments (ignored).

Value

imageData returns an object containing both image data and metadata, usually an object derived
from ImageData. iData returns only the image data in a matrix-like object with the rows corre-
sponding to features and the columns corresponding to pixels. spectra is an alias for iData for
use with MSImageSet objects. mzData and peakData are used for retrieving both peak data and
metadata from peak-picked objects. peaks retrieves peak cubes from peak-picked objects.

Author(s)

Kyle D. Bemis

See Also

iSet, SImageSet, MSImageSet

22 intensity.colors

intensity.colors Color Palettes for Imaging

Description

Create a vector of n continuous colors.

Usage

intensity.colors(n, alpha=1)
risk.colors(n, alpha=1)
gradient.colors(n, start="white", end="black", alpha=1)
alpha.colors(n, col="red", alpha.power=2, alpha=(seq_len(n)/n)^alpha.power)

Arguments

n the number of colors

alpha a vector of alpha values between 0 and 1

start the starting color value

end the ending color value

col the color(s) to expand with transparency

alpha.power how the alpha should ramp as it increases

Value

A pallete of colors.

Author(s)

Kyle D. Bemis

Examples

col <- intensity.colors(100^2)
if (interactive()) {
image(matrix(1:(100^2), nrow=100), col=col)
}

iSet-class 23

iSet-class Class to Contain High-Throughput Imaging Experiment Data and
Metadata

Description

A container class for data from high-throughput imaging experiments and associated metadata.
Classes derived from from iSet contain one or more arrays or array-like objects with an equal
number of dimensions as imageData elements. It is assumed that the first dimension of each such
element corresponds to the data features, and all other dimensions are described by associated coor-
dinates in the pixelData slot. Otherwise, derived classes are responsible for managing how the el-
ements of imageData behave and their relationship with the rows of pixelData and featureData.

The MSImageSet class for mass spectrometry imaging experiments is the primary derived class of
iSet. Its parent class SImageSet is another derived class for more general images.

This class is based on the eSet virtual class from Biobase. However, the iSet class contains an
imageData slot which is an ’immutableEnvironment’ that preserves copy-on-write behavior for
iSet derived classes, but only copying elements of imageData when that slot specifically is modi-
fied. In addition pixelData is an IAnnotatedDataFrame that stores pixel information such as pixel
coordinates in addition to phenotypic data.

Slots

imageData: An instance of ImageData, which stores one or more array or array-like objects of
equal number of dimensions as elements in an ’immutableEnvironment’. This slot preserves
copy-on-write behavior when it is modified specifically, but is pass-by-reference otherwise,
for memory efficiency.

pixelData: Contains pixel information in an IAnnotatedDataFrame. This includes both pixel
coordinates and phenotypic and sample data. Its rows correspond to individual pixels, many
of which may belong to the same sample. Apart a requirement on columns describing the pixel
coordinates, it is left to derived classes to decide the relationship to elements of imageData.

featureData: Contains variables describing features. It Is left to derived classes to decide the
relationship to elements of imageData.

experimentData: Contains details of experimental methods. Should be an object of a derived class
of MIAxE.

protocolData: Contains variables describing the generation of the samples in pixelData.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

Extends

VersionedBiobase, directly. Versioned, by class "VersionedBiobase", distance 2.

Creating Objects

iSet is a virtual class. No instances can be created.

24 iSet-class

Methods

Class-specific methods:

sampleNames(object), sampleNames(object) <- value: Access and set the sample names in
the pixelData and protocolData slots.

featureNames(object), featureNames(object) <- value: Access and set the feature names
in the featureData slot.

pixelNames(object), pixelNames(object) <- value: Access and set the pixel names in the
pixelData slot.

coordLabels(object), coordLabels(object) <- value: Access and set the coordinate names
described by the coordinate variables in the pixelData slot. Note that this does not set or get
coordinate names with a labelType of sample, regardless of whether they are currently be-
ing used to describe coordinates or not. Therefore, checking coordLabels(object) versus
names(coord(object)) is a simple way of checking whether a dataset is 2D or 3D.

coord(object), coord(object)<-: Return or set the coodinates. This is a data.frame contain-
ing the subset of columns of data for which the variables have a ’labelType’ of ’dim’.

imageData(object), imageData(object) <- value: Access and set the imageData slot.
pixelData(object), pixelData(object) <- value: Access and set the pixelData slot.
pData(object), pData(object) <- value: Access and set the pixel information.
varMetadata(object), varMetadata(object) <- value: Access and set the metadata describ-

ing the variables in pData.
varLabels(object), varLabels(object) <- value: Access and set the variable labels in pixelData.
featureData(object), featureData(object) <- value: Access and set the featureData slot.
fData(object), fData(object) <- value: Access and set the feature information.
fvarMetadata(object), fvarMetadata(object) <- value: Access and set the metadata de-

scribing the features in fData.
fvarLabels(object), fvarLabels(object) <- value: Access and set the feature labels in featureData.
features(object, ...): Access the feature indices (rows in featureData) corresponding to

variables in featureData.
pixels(object, ...): Access the pixel indices (rows in pixelData) corresponding to variables

in pixelData.
experimentData(object), experimentData(object) <-: Access and set the experimentData

slot.
protocolData(object), protocolData(object) <-: Access and set the protocolData slot.
storageMode(object), storageMode(object)<-: Return or set the storage mode of the imageData

slot. See documentation on the storageMode slot above for more details.

Standard generic methods:

initialize: Initialize a object of an iSet derived class. Called by new. Not to be used by the
user.

validObject: Checks that there exist columns in pixelData describing the pixel coordinates,
cooresponding to the dimensions of the elements of imageData. For every named dimension
of the arrays on imageData there must be a pData column describing its pixel coordinates.
Also checks that the sampleNames match between pixelData and protocolData.

MIAPE-Imaging-class 25

combine(x, y, ...): Combine two or more iSet objects. To be combined, iSets must have iden-
tical featureData and distinct pixelNames and sampleNames. All elements of imageData
must have matching names. Elements of imageData are combined by calls for combine.

dim: The dimensions of the object, as determined by the number of features (rows in featureData)
and the number of pixels (rows in pixelData). This may differ from the dimensions returned by
dims(object) (which corresponds to the arrays in data) or returned by dim(imageData(object)).
See SImageSet for an example where this is the case, due to its use of a "virtual" datacube.

dims: A matrix with each column corresponding to the dimensions of an element in the data slot.

iSet$name, iSet$name <- value: Access and set the name column in pixelData.

iSet[[i, ...]], iSet[[i, ...]] <- value: Access and set the column i (character or nu-
meric index) in pixelData. The . . . argument can include named variables (especially ’la-
belDescription’) to be added to the varMetadata.

Author(s)

Kyle D. Bemis

See Also

eSet, SImageSet, MSImageSet

Examples

Cannot create an iSet object
try(new("iSet"))

Create an iSet derived class
MyImageSet <- setClass("MyImageSet", contains="iSet")
MyImageSet()

removeClass("MyImageSet")

MIAPE-Imaging-class Class for Storing Mass Spectrometry Imaging Experiment Information

Description

The Minimum Information About a Proteomics Experiment for MS Imaging. The current imple-
mentation is based on the imzML specification.

Slots

name: Object of class character containing the experimenter name

lab: Object of class character containing the laboratory where the experiment was conducted.

contact: Object of class character containing contact information for lab and/or experimenter.

title: Object of class character containing a single-sentence experiment title.

26 MIAPE-Imaging-class

abstract: Object of class character containing an abstract describing the experiment.
url: Object of class character containing a URL for the experiment.
pubMedIds: Object of class character listing strings of PubMed identifiers of papers relevant to

the dataset.
samples: Object of class list containing information about the samples.
preprocessing: Object of class list containing information about the pre-processing steps used

on the raw data from this experiment.
other: Object of class list containing other information for which none of the above slots does

not applies.
specimenOrigin: Object of class character describing the specimen origin (institution, . . .).
specimenType: Object of class character describing the specimen type (species, organ, . . .).
stainingMethod: Object of class character describing the staining method, if any, applied to the

sample (H&E, . . .).
tissueThickness: Object of class numeric giving the tissue thickness in micrometers (um).
tissueWash: Object of class character describing the wash method (spray, dipping, . . .).
embeddingMethod: Object of class character describing the embedding method (if any); this

could be paraffin, . . .
inSituChemistry: Object of class character describing any on-sample chemistry (tryptic digest,

. . .)
matrixApplication: Object of class character describing how the matrix was applied, if appli-

cable
pixelSize: Object of class numeric describing the size of the pixels in micrometers (um).
instrumentModel: Object of class character indicating the instrument model used to generate

the data.
instrumentVendor: Object of class character indicating the mass spectrometer vendor.
massAnalyzerType: Object of class character describing the mass analyzer type (LTQ, TOF,

. . .).
ionizationType: Object of class character describing the ionization type (MALDI, DESI, . . .).
scanPolarity: Object of class character describing the polarity (negative or positive).
softwareName: Object of class character with the control and/or analysis software name.
softwareVersion: Object of class character with the version of the control and/or analysis soft-

ware.
scanType: Object of class character describing the scan type. This must be either ’horizontal

line scan’ or ’vertical line scan’. See the imzML specifications for more details.
scanPattern: Object of class character describing the scan type. This must be one of ’flyback’,

’meandering’, or ’random access’. See the imzML specifications for more details.
scanDirection: Object of class character describing the scan type. This must be one of ’bottom

up’, ’left right’, ’right left’, or ’top down’. See the imzML specifications for more details.
lineScanDirection: Object of class character describing the scan type. This must be one of

’linescan bottom up’, ’linescan left right’, ’linescan right left’, or ’linescan top down’. See the
imzML specifications for more details.

imageShape: Object of class character describing the image shape (rectangular, free form, . . .).
See the imzML specifications for more details.

MIAPE-Imaging-class 27

Extends

Class MIAxE, directly, Class Versioned, by class "MIAxE", distance 2.

Creating Objects

MIAPE-Imaging instances can be created through new("MIAPE-Imaging"). In general, instances
should not be created by the user, but are automatically generated when reading an external file to
create an MSImageSet object, and then modified through the accessor and setter methods if neces-
sary.

Methods

Class-specific methods:

msiInfo: Displays ’MIAPE-Imaging’ information.

abstract: An accessor function for abstract.

expinfo: An accessor function for name, lab, contact, title, and url.

notes(object), notes(object) <- value: Accessor functions for other. notes(object) <- character
appends character to notes; use notes(object) <- list to replace the notes entirely.

otherInfo: An accessor function for other.

preproc: An accessor function for preprocessing.

pubMedIds(object), pubMedIds(object) <- value: Accessor function for pubMedIds.

samples: An accessor function for samples.

specimenOrigin(object), specimenOrigin(object) <- value: Accessor and setter function
for specimenOrigin.

specimenType(object), specimenType(object) <- value: Accessor and setter function for
specimenType.

stainingMethod(object), stainingMethod(object) <- value: Accessor and setter function
for stainingMethod.

tissueThickness(object), tissueThickness(object) <- value: Accessor and setter func-
tion for tissueThickness.

tissueWash(object), tissueWash(object) <- value: Accessor and setter function for tissueWash.

embeddingMethod(object), embeddingMethod(object) <- value: Accessor and setter func-
tion for embeddingMethod.

inSituChemistry(object), inSituChemistry(object) <- value: Accessor and setter func-
tion for inSituChemistry.

matrixApplication(object), matrixApplication(object) <- value: Accessor and setter func-
tion for matrixApplication.

pixelSize(object), pixelSize(object) <- value: Accessor and setter function for pixelSize.

instrumentModel(object), instrumentModel(object) <- value: Accessor and setter func-
tion for instrumentModel.

instrumentVendor(object), instrumentVendor(object) <- value: Accessor and setter func-
tion for instrumentVendor.

28 MIAPE-Imaging-class

massAnalyzerType(object), massAnalyzerType(object) <- value: Accessor and setter func-
tion for massAnalyzerType.

ionizationType(object), ionizationType(object) <- value: Accessor and setter function
for ionizationType.

scanPolarity(object), scanPolarity(object) <- value: Accessor and setter function for
scanPolarity.

softwareName(object), softwareName(object) <- value: Accessor and setter function for
softwareName.

softwareVersion(object), softwareVersion(object) <- value: Accessor and setter func-
tion for softwareVersion.

scanType(object), scanType(object) <- value: Accessor and setter function for scanType.

scanPattern(object), scanPattern(object) <- value: Accessor and setter function for scanPattern.

scanDirection(object), scanDirection(object) <- value: Accessor and setter function for
scanDirection.

lineScanDirection(object), lineScanDirection(object) <- value: Accessor and setter func-
tion for lineScanDirection.

imageShape(object), imageShape(object) <- value: Accessor and setter function for imageShape.

Standard generic methods:

show: Displays object content.

combine(x, y, ...): Combine two or more MIAPE-Imaging objects.

Author(s)

Kyle D. Bemis

References

Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprevote O, Desbenoit N,
Robbe M-F, Stoeckli M, Spengler B, Rompp A (2012) imzML - A common data format for the
flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics 75
(16):5106-5110. doi:10.1016/j.jprot.2012.07.026

See Also

MIAxE, MSImageSet

Examples

showClass("MIAPE-Imaging")

MSImageData-class 29

MSImageData-class Class Containing Mass Spectrometry Image Data

Description

A container class for mass spectrometry imaging data. This is an extension of the SImageData
class, which adds methods specific for the extraction and replacement of mass spectral peaks.

Usage

Instance creation
MSImageData(

data = Hashmat(nrow=0, ncol=0),
coord = expand.grid(

x = seq_len(ncol(data)),
y = seq_len(ifelse(ncol(data) > 0, 1, 0))),

storageMode = "immutableEnvironment",
positionArray = generatePositionArray(coord),
dimnames = NULL,
...)

Additional methods documented below

Arguments

data A matrix-like object with number of rows equal to the number of features and
number of columns equal to the number of non-missing pixels. Each column
should be a feature vector. Alternatively, a multidimensional array that repre-
sents the datacube with the first dimension as the features can also be supplied.
Additional dimensions could be the spatial dimensions of the image, for exam-
ple.

coord A data.frame with columns representing the spatial dimensions. Each row
provides a spatial coordinate for the location of a feature vector corresponding
to a column in data. This argument is ignored if data is a multidimensional
array rather than a matrix.

storageMode The storage mode to use for the MSImageData object for the environment in the
data slot. Only "immutableEnvironment" is allowed for MSImageData. See
documentation on the storageMode slot below for more details.

positionArray The positionArray for the imaging data. This should not normally be specified
the user, since it is generated automatically from the coord argument, unless for
some reason coord is not specified.

dimnames A list of length two, giving the feature names and pixel names in that order. If
missing, this is taken from the ’dimnames’ of the data argument.

... Additional Named arguments that are passed to the initialize method for
instantiating the object. These must be matrices or matrix-like objects of equal
dimension to data. They will be assigned into the environment in the data slot.

30 MSImageData-class

Slots

data: An environment which contains at least one element named "iData", and possibly con-
taining an element named "peakData" and "mzData". The "peakData" element contains the
intensities of the peak cube in a sparse matrix format. The "mzData" element contians the m/z
values of the peaks in a sparse matrix format. All of these matrices have been aligned for that
their dimensions reflect only the shared peaks, possibly across multiple datasets. They have
been aligned from a call to peakAlign.

coord: An data.frame with rows giving the spatial coordinates of the pixels corresponding to the
columns of "iData".

positionArray: An array with dimensions equal to the spatial dimensions of the image, which
stores the column numbers of the feature vectors corresponding to the pixels in the "iData"
element of the data slot. This allows re-construction of the imaging "datacube" on-the-fly.

dim: A length 2 integer vector analogous to the ’dim’ attribute of an ordinary R matrix.

dimnames: A length 2 list analogous to the ’dimnames’ attribute of an ordinary R matrix.

storageMode: A character which is one of "immutableEnvironment", "lockedEnvironment",
or "environment". The values "lockedEnvironment" and "environment" behave as de-
scribed in the documentation of AssayData. An "immutableEnvironment" uses a locked
environment while retaining R’s typical copy-on-write behavior. Whenever an object in an
immutable environment is modified, a new environment is created for the data slot, and all
objects copied into it. This allows usual R functional semantics while avoiding copying of
large objects when other slots are modified.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

Extends

Versioned

Creating Objects

MSImageData instances are usually created through MSImageData().

Methods

Class-specific methods:

iData(object), iData(object)<-: Return or set the matrix of image intensities. Columns should
correspond to feature vectors, and rows should correspond to pixel vectors.

peakData(object), peakData(object)<-: Return or set the sparse matrix of peak intensities if it
exists.

mzData(object), mzData(object)<-: Return or set the sparse matrix of peak m/z values if it
exists.

coord(object), coord(object)<-: Return or set the coodinates. This is a data.frame with each
row corresponding to the spatial coordinates of a pixel.

positionArray(object), positionArray(object)<-: Return or set the positionArray slot.
When setting, this should be an array returned by a call to generatePositionArray.

MSImageData-class 31

featureNames(object), featureNames(object) <- value: Access and set feature names (names
of the rows of the intensity matrix).

pixelNames(object), pixelNames(object) <- value: Access and set the pixel names (names
of the columns of the intensity matrix).

storageMode(object), storageMode(object)<-: Return or set the storage mode. See documen-
tation on the storageMode slot above for more details.

Standard generic methods:

combine(x, y, ...): Combine two or more MSImageData objects. Elements must be matrix-
like objects and are combined column-wise with a call to ’cbind’. The numbers of rows must
match, but otherwise no checking of row or column names is performed. The pixel coordinates
are checked for uniqueness.

dim: Return the dimensions of the (virtual) datacube. This is equal to the number of features (the
number of rows in the matrix returned by iData) and the dimensions of the positionArray
slot. For a standard imaging dataset, that is the number features followed by the spatial di-
mensions of the image.

dims: A matrix where each column corresponds to the dimensions of the (virtual) datacubes stored
as elements in the data slot. See above for how the dimensions are calculated.

MSImageData[i, j, ..., drop]: Access intensities in the (virtual) imaging datacube. The dat-
acube is reconstructed on-the-fly. The object can be indexed like any ordinary array with
number of dimensions equal to dim(object). Use drop = NA to return a subset of the same
class as the object.

Author(s)

Kyle D. Bemis

See Also

ImageData, SImageData, SImageSet, MSImageSet

Examples

Create an MSImageData object
MSImageData()

Using a P x N matrix
data1 <- matrix(1:27, nrow=3)
coord <- expand.grid(x=1:3, y=1:3)
sdata1 <- MSImageData(data1, coord)
sdata1[] # extract data as array

Using a P x X x Y array
data2 <- array(1:27, dim=c(3,3,3))
sdata2 <- MSImageData(data2)
sdata2[] # should be identical to above

Missing data from some pixels
data3 <- matrix(1:9, nrow=3)

32 MSImageProcess-class

sdata3 <- MSImageData(data3, coord[c(1,5,9),])

dim(sdata3) # presents as an array
iData(sdata3) # stored as matrix
sdata3[] # recontruct the datacube

iData(sdata3)[,1] <- 101:103 # assign using iData()
sdata3[] # can only assign into matrix representation

Sparse feature vectors
data4 <- Hashmat(nrow=9, ncol=9)
sdata4 <- MSImageData(data4, coord)
iData(sdata4)[] <- diag(9)
sdata4[1,,]

MSImageProcess-class Class Containing Mass Spectral Pre-Processing Information

Description

A class containing information about mass spectral pre-processsing operations. These should not
usually be set by the user, and are automatically updated when processing methods are applied.

Slots

files: Object of class character storing the file paths to the raw data files used to create the
dataset.

normalization: Object of class character describing any normalization applied to the dataset.

smoothing: Object of class character describing any smoothing applied to the dataset.

baselineReduction: Object of class character describing baseline correction applied to the
dataset.

spectrumRepresentation: Object of class character describing the spectrum type (profile or
centroid).

peakPicking: Object of class character describing the peak picking applied to the dataset (area
or height).

centroided: Object of class logical describing whether the data have been centroided.

history: Object of class list containing specific information about the function calls applied to
the MSImageSet object to produce the current instance and their parameters.

CardinalVersion: Object of class character indicating the version of Cardinal.

.__classVersion__: Object of class Versions indicating the version of the MSImageProcess
instance. Intended for developer use.

Extends

Class Versioned, directly.

MSImageProcess-class 33

Creating Objects

MSImageProcess instances can be created through new("MSImageProcess"). In general, instances
should not be created by the user, but are automatically generated by processing methods applied to
MSImageSet objects.

Methods

Class-specific methods:

prochistory(object), prochistory(object) <- value: Accessor and setter for the history
of methods applied to the experiment dataset.

files(object), files(object) <- value: Accessor and setter function for files.

normalization(object), normalization(object) <- value: Accessor and setter function for
normalization.

smoothing(object), smoothing(object) <- value: Accessor and setter function for smoothing.

baselineReduction(object), baselineReduction(object) <- value: Accessor and setter func-
tion for baselineReduction.

spectrumRepresentation(object), spectrumRepresentation(object) <- value: Accessor
and setter function for spectrumRepresentation.

peakPicking(object), peakPicking(object) <- value: Accessor and setter function for peakPicking.

centroided(object), centroided(object) <- value: Accessor and setter function for centroided.

Standard generic methods:

show: Displays object content.

combine(x, y, ...): Combine two or more MSImageProcess objects.

Author(s)

Kyle D. Bemis

See Also

MSImageSet

Examples

showClass("MSImageProcess")

34 MSImageSet-class

MSImageSet-class Class to Contain Mass Spectrometry Imaging Experiment Data

Description

Container for mass spectrometry imaging experimental data and metadata. MSImageSet is derived
from iSet through SImageSet. It extends these classes with information about the processing and
analysis, requiring MIAPE-Imaging in its experimentData slot.

Usage

Instance creation
MSImageSet(

spectra = Hashmat(nrow=0, ncol=0),
mz = seq_len(dim(spectra)[1]),
coord = expand.grid(

x = seq_len(prod(dim(spectra)[-1])),
y = seq_len(ifelse(prod(dim(spectra)[-1]) > 0, 1, 0))),

imageData = MSImageData(data=spectra, coord=coord),
pixelData = IAnnotatedDataFrame(

data=coord,
varMetadata=data.frame(labelType=rep("dim", ncol(coord)))),

featureData = AnnotatedDataFrame(
data=data.frame(mz=mz)),

processingData = new("MSImageProcess"),
protocolData = AnnotatedDataFrame(

data=data.frame(row.names=sampleNames(pixelData))),
experimentData = new("MIAPE-Imaging"),
...)

Additional methods documented below

Arguments

spectra A matrix-like object with number of rows equal to the number of features and
number of columns equal to the number of non-missing pixels. Each column
should be a mass spectrum. Alternatively, a multidimensional array that rep-
resents the datacube with the first dimension as the features (m/z values) can
also be supplied. Additional dimensions could be the spatial dimensions of the
image, for example.

mz A numeric vector representing the mass-to-charge ratio features (m/z values)
corresponding to the rows in the spectra matrix. Must be strictly increasing or
decreasing.

coord A data.frame with columns representing the spatial dimensions. Each row pro-
vides a spatial coordinate for the location of a mass spectrum corresponding to a
column in spectra. This argument is ignored if spectra is a multidimensional
array rather than a matrix.

MSImageSet-class 35

imageData An object of class SImageData that will contain the imaging mass spectra. Usu-
ally constructed through the spectra and coord arguments.

pixelData An object of class IAnnotatedDataFrame giving the information about the pix-
els including coordinates of the data in imageData.

featureData An object of class AnnotatedDataFrame giving information about the data fea-
tures. Requires a column named "mz".

processingData An object of class MSImageProcess giving information about the pre-processing
steps applied to the spectra.

protocolData An object of class AnnotatedDataFrame giving information about the samples.
It must have one row for each of the sampleNames in pixelData.

experimentData An object derived from class MIAxE giving information about the imaging ex-
periment.

... Additional arguments passed to the initializer.

Slots

imageData: An instance of SImageData, which stores one or more matrices of equal number of
dimensions as elements in an ’immutableEnvironment’. This slot preserves copy-on-write
behavior when it is modified specifically, but is pass-by-reference otherwise, for memory effi-
ciency.

pixelData: Contains pixel information in an IAnnotatedDataFrame. This includes both pixel co-
ordinates and phenotypic and sample data. Its rows correspond to the columns in imageData.

featureData: Contains variables describing features. Its rows correspond to the rows in imageData
in an IAnnotatedDataFrame.

processingData: Contains details about the pre-processing steps that have been applied to the
spectra. An object of class MSImageProcess.

experimentData: Contains details of experimental methods. Must be MIAPE-Imaging.

protocolData: Contains variables describing the generation of the samples in pixelData in an
IAnnotatedDataFrame.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

Extends

SImageSet, directly. iSet, by class "SImageSet", distance 1. VersionedBiobase, by class "iSet",
distance 2. Versioned, by class "VersionedBiobase", distance 3.

Creating Objects

MSImageSet instances can be created through MSImageSet(), but are more commonly created
through reading of external data files.

36 MSImageSet-class

Methods

Class-specific methods:

spectra(object), spectra(object) <- value: Access and set the mass spectra in imageData.
This is a matrix-like object with rows corresponding to features and columns corresponding
to pixels, so that each column of the returned object is a mass spectrum.

peaks(object), peaks(object) <- value: Access and set the peaks in imageData if peak pick-
ing have been performed. This is a shortcut for peakData(imageData(object)). These are
the unaligned peaks. Aligned peaks (if they exist) are accesed by spectra(object).

mz(object), mz(object) <- value: Returns and sets the common m/z values of the mass spec-
tra in the dataset. This is a required column of featureData.

features(object, ..., mz): Access the feature indices (rows in featureData) corresponding
to variables in featureData. Bisection search is used for fuzzy matching of m/z values.

pixels(object, ..., coord): Access the pixel indices (rows in pixelData) corresponding to
variables in pixelData. If specified, coord should be a data.frame where each row corre-
sponds to the coordinates of a desired pixel.

centroided(object), centroided(object) <- value: Access whether the dataset consists of
profile or centroided mass spectra. This is a shortcut for centroided(processingData(object)).
A setter is also provided, and is sometimes necessary for forcing some analysis methods to
accept unprocessed spectra. (This is usually a bad idea.)

processingData(object), processingData(object) <- value: Access and set the processingData
slot.

Standard generic methods:

combine(x, y, ...): Combine two or more MSImageSet objects. Unique ’sample’s in pixelData
are treated as a dimension.

MSImageSet[i, j, ..., drop]: Subset an SImageSet based on the rows (featureData compo-
nents) and the columns (pixelData components). The result is a new MSImageSet.

See iSet and SImageSet for additional methods.

Author(s)

Kyle D. Bemis

See Also

iSet, SImageSet

Examples

Create an MSImageSet object
spectra <- matrix(1:27, nrow=3)
mz <- 101:103
coord <- expand.grid(x=1:3, y=1:3)
msset <- MSImageSet(spectra=spectra, mz=mz, coord=coord)

mz-methods 37

Access a single image corresponding to the first feature
imageData(msset)[1,,]

Reconstruct the datacube
imageData(msset)[]

Access the P x N matrix of column-wise mass spectra
spectra(msset)

Subset the MSImageSet to the first 2 m/z values and first 6 mass spectra
msset2 <- msset[1:2, 1:6]
imageData(msset2)[]
msset2

mz-methods Retrieve m/z-values from MSImageSets

Description

This generic function accesses m/z values from MSImageSet objects.

Usage

mz(object, ...)
mz(object) <- value

Arguments

object An MSImageSet object.

value Value to be assigned to the corresponding object.

... Additional arguments (ignored).

Value

mz returns a numeric vector of m/z values.

Author(s)

Kyle D. Bemis

See Also

MSImageSet

38 normalize-methods

normalize-methods Normalize an Imaging Dataset

Description

Apply normalization to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImageSet'
normalize(object, method = "tic",
...,
pixel = pixels(object),
plot = FALSE)

TIC normalization
normalize.tic(x, tic=length(x), ...)

Arguments

object An object of class MSImageSet.

method The normalization method to use.

pixel The pixels to normalize. If less than the extent of the dataset, this will result in
a subset of the data being processed.

plot Plot the mass spectrum for each pixel while it is being processed?

... Additional arguments passed to the normalization method.

x The mass spectrum to be normalized.

tic The value to which to normalize the total ion current.

Details

Normalization is usually performed using the provided functions, but a user-created function can
also be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

A user-created function should return a numeric vector of the same length.

Internally, pixelApply is used to apply the normalization. See its documentation page for more
details on additional objects available to the environment installed to the normalization function.

Value

An object of class MSImageSet with the normalized spectra.

OPLS-methods 39

Author(s)

Kyle D. Bemis

See Also

MSImageSet, pixelApply

Examples

data <- generateImage(as="MSImageSet")
normalize(data, method="tic", plot=interactive())

OPLS-methods Orthogonal Partial Least Squares

Description

Performs orthogonal partial least squares (also called orthogonal projection to latent structures or
O-PLS) on an imaging dataset. This will also perform discriminant analysis (O-PLS-DA) if the
response is a factor.

Usage

S4 method for signature 'SImageSet,matrix'
OPLS(x, y, ncomp = 20,

method = "nipals",
scale = FALSE,
keep.Xnew = TRUE,
iter.max = 100, ...)

S4 method for signature 'SImageSet,numeric'
OPLS(x, y, ...)

S4 method for signature 'SImageSet,factor'
OPLS(x, y, ...)

S4 method for signature 'SImageSet,character'
OPLS(x, y, ...)

S4 method for signature 'OPLS'
predict(object, newx, newy, keep.Xnew = TRUE, ...)

Arguments

x The imaging dataset on which to perform partial least squares.

y The response variable, which can be a matrix or a vector for ordinary O-PLS,
or a factor or a character for O-PLS-DA.

40 OPLS-methods

ncomp The number of O-PLS components to calculate.

method The function used to calculate the projection.

scale Shoud the data be scaled first? This is passed to scale.

keep.Xnew Should the new data matrix be kept after filtering out the orthogonal variation?

iter.max The number of iterations to perform for the NIPALS algorithm.

... Passed to the next OPLS method.

object The result of a previous call to OPLS.

newx An imaging dataset for which to calculate their OPLS projection and predict a
response from an already-calculated OPLS object.

newy Optionally, a new response from which residuals should be calculated.

Value

An object of class OPLS, which is a ResultSet, where each component of the resultData slot
contains at least the following components:

Xnew: A new data matrix that has been filtered of the orthogonal variation.

Xortho: A new data matrix that consists of only the orthogonal variation.

Oscores: A matrix with the orthogonal component scores for the explanatary variable.

Oloadings: A matrix objects with the orthogonal explanatory variable loadings.

Oweights: A matrix with the orthgonal explanatory variable weights.

scores: A matrix with the component scores for the explanatary variable.

loadings: A matrix with the explanatory variable loadings.

weights: A matrix with the explanatory variable weights.

Yscores: A matrix objects with the component scores for the response variable.

Yweights: A matrix objects with the response variable weights.

projection: The projection matrix.

coefficients: The matrix of the regression coefficients.

ncomp: The number of O-PLS components.

method: The method used to calculate the projection.

center: The center of the dataset. Used for calculating O-PLS scores on new data.

scale: The scaling factors for the dataset. Used for O-PLS scores on new data.

Ycenter: The centers of the response variables. Used for predicting new observations.

Yscale: The scaling factors for the response variables. Used for predicting new observation.

fitted: The fitted response.

Author(s)

Kyle D. Bemis

PCA-methods 41

References

Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of
Chemometrics, 16(3), 119-128. doi:10.1002/cem.695

See Also

PLS, PCA, spatialShrunkenCentroids,

Examples

sset <- generateImage(diag(4), range=c(200, 300), step=1)

y <- factor(diag(4))

opls <- OPLS(sset, y, ncomp=1:2)

PCA-methods Principal Components Analysis

Description

Performs principal components analysis efficiently on large datasets using implicitly restarted Lanc-
zos bi-diagonalization (IRLBA) algorithm for approximate singular value decomposition of the data
matrix.

Usage

S4 method for signature 'SImageSet'
PCA(x, ncomp = 20,

method = c("irlba", "svd"),
scale = FALSE, ...)

S4 method for signature 'PCA'
predict(object, newx, ...)

Arguments

x The imaging dataset for which to calculate the principal components.

ncomp The number of principal components to calculate.

method The function used to calculate the singular value decomposition.

scale Shoud the data be scaled first? This is passed to scale.

... Ignored.

object The result of a previous call to PCA.

newx An imaging dataset for which to calculate the principal components scores based
on the aleady-calculated principal components loadings.

42 peakAlign-methods

Value

An object of class PCA, which is a ResultSet, where each component of the resultData slot
contains at least the following components:

scores: A matrix with the principal component scores.

loadings: A matrix with the principal component loadings.

sdev: The standard deviations of the principal components.

method: The method used to calculate the principal components.

ncomp: The number of principal components calculated.

center: The center of the dataset. Used for calculating principal components scores on new data.

scale: The scaling factors for the dataset. Used for calculating principal components scores on
new data.

Author(s)

Kyle D. Bemis

See Also

OPLS, PLS, irlba, svd

Examples

sset <- generateImage(diag(4), range=c(200, 300), step=1)

pca <- PCA(sset, ncomp=2)

peakAlign-methods Peak Align an Imaging Dataset

Description

Apply peak alignment to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImageSet,numeric'
peakAlign(object, ref, method = c("diff", "DP"),

...,
pixel = pixels(object),
plot = FALSE)

S4 method for signature 'MSImageSet,MSImageSet'
peakAlign(object, ref, ...)

S4 method for signature 'MSImageSet,missing'

peakAlign-methods 43

peakAlign(object, ref, ...)

Absolute difference alignment
peakAlign.diff(x, y, diff.max=200, units=c("ppm", "mz"), ...)

Dynamic programming alignment
peakAlign.DP(x, y, gap=0, ...)

Arguments

object An object of class MSImageSet.

ref A reference to which to align the peaks.

method The peak alignment method to use.

pixel The pixels to align. If less than the extent of the dataset, this will result in a
subset of the data being processed.

plot Plot the mass spectrum for each pixel while it is being processed?

... Additional arguments passed to the peak alignment method.

x The vector of m/z values to be aligned.

y The vector of reference m/z values.

diff.max Peaks that differ less than this value will be aligned together.

units Either parts-per-million of the raw m/z values.

gap The gap penalty for the dynamic programming sequence alignment.

Details

If a MSImageSet object is used as the reference, then the local maxima in its mean spectrum will be
calculated and used as the reference m/z values. If the reference is missing, the method will use the
object itself as the reference.

Peak alignment is usually performed using the provided functions, but a user-created function can
also be passed to method. In this case it should take the following arguments:

• x: The vector of m/z values to be aligned.

• y: The vector of reference m/z values.

• ...: Additional arguments.

A user-created function should return a vector of the same length as x and y where NA values indicate
no match, and non-missing values give the index of the matched peak in the reference set.

Internally, pixelApply is used to apply the peak alignment. See its documentation page for more
details on additional objects available to the environment installed to the peak alignment function.

Value

An object of class MSImageSet with the peak aligned spectra.

44 peakFilter-methods

Author(s)

Kyle D. Bemis

See Also

MSImageSet, peakPick, peakFilter, reduceDimension, pixelApply

Examples

data <- generateImage(diag(2), as="MSImageSet")
peaks <- peakPick(data, method="simple", plot=interactive())
peaks <- peakAlign(peaks, data, method="diff", plot=interactive())

peakFilter-methods Peak Filter an Imaging Dataset

Description

Apply peak filtering to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImageSet'
peakFilter(object, method = "freq",

...,
pixel = pixels(object),
plot = FALSE)

Filter based on the frequency of a peak
peakFilter.freq(x, freq.min=length(x) / 100, ...)

Arguments

object An object of class MSImageSet.

method The peak filtering method to use.

pixel The pixels to filter. If less than the extent of the dataset, this will result in a
subset of the data being processed.

plot Not supported for this processing method.

... Additional arguments passed to the peak filtering method.

x The vector of ion image intensities to filter.

freq.min Peaks that occur in the dataset fewer times than this will be removed.

peakPick-methods 45

Details

Unlike most other processing methods, peakFilter operates on the feature space (ion images) of
the dataset.

Peak filtering is usually performed using the provided functions, but a user-created function can
also be passed to method. In this case it should take the following arguments:

• x: The vector of ion image intensities to filter.

• ...: Additional arguments.

A user-created function should return a logical: TRUE means keep the peak, and FALSE means
remove the peak.

Internally, featureApply is used to apply the filtering. See its documentation page for more details
on additional objects available to the environment installed to the peak filtering function.

Value

An object of class MSImageSet with the filtered peaks.

Author(s)

Kyle D. Bemis

See Also

MSImageSet, peakPick, peakAlign, reduceDimension, featureApply

Examples

data <- generateImage(diag(2), as="MSImageSet")
peaks <- peakPick(data, method="simple", plot=interactive())
peaks <- peakAlign(peaks, method="diff", plot=interactive())
peaks <- peakFilter(peaks, method="freq")

peakPick-methods Peak Pick an Imaging Dataset

Description

Apply peak picking to a mass spectrometry imaging dataset.

46 peakPick-methods

Usage

S4 method for signature 'MSImageSet'
peakPick(object, method = c("simple", "adaptive", "limpic"),

...,
pixel = pixels(object),
plot = FALSE)

Local maxima and SNR with constant noise
peakPick.simple(x, SNR=6, window=5, blocks=100, ...)

Local maxima and SNR with adaptive noise
peakPick.adaptive(x, SNR=6, window=5, blocks=100, spar=1, ...)

LIMPIC peak detection
peakPick.limpic(x, SNR=6, window=5, blocks=100, thresh=0.75, ...)

Arguments

object An object of class MSImageSet.

method The peak picking method to use.

pixel The pixels to peak pick. If less than the extent of the dataset, this will result in a
subset of the data being processed.

plot Plot the mass spectrum for each pixel while it is being processed?

... Additional arguments passed to the peak picking method.

x The mass spectrum to be peak picked.

SNR The minimum signal-to-noise ratio to be considered a peak.

window The window width for seeking local maxima.

blocks The number of blocks in which to divide the mass spectrum in order to calculate
the noise.

spar Smoothing parameter for the spline smoothing applied to the spectrum in order
to decide the cutoffs for throwing away false noise spikes that might occur inside
peaks.

thresh The thresholding quantile to use when comparing slopes in order to throw away
peaks that are too flat.

Details

Peak picking is usually performed using the provided functions, but a user-created function can also
be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

A user-created function should return a list with two vectors of the same length as x:

• peaks: A logical vector indicating peaks.

pixelApply-methods 47

• noise: A numeric vector with the estimated noise.

Internally, pixelApply is used to apply the peak picking. See its documentation page for more
details on additional objects available to the environment installed to the peak picking function.

Value

An object of class MSImageSet with the peak picking spectra.

Author(s)

Kyle D. Bemis

References

Mantini, D., Petrucci, F., Pieragostino, D., Del Boccio, P., Di Nicola, M., Di Ilio, C., et al. (2007).
LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from
noise. BMC Bioinformatics, 8(101), 101. doi:10.1186/1471-2105-8-101

See Also

MSImageSet, peakAlign, peakFilter, reduceDimension, pixelApply

Examples

data <- generateImage(as="MSImageSet")
peakPick(data, method="simple", plot=interactive())

pixelApply-methods Apply Functions over Imaging Datasets

Description

Apply an existing or a user-specified function over either all of the features or all of the pixels of an
SImageSet. These are provided for convenience by analogy to the ’apply’ family of functions, but
allowing greater control over how the functions are applied over an imaging dataset.

Usage

S4 method for signature 'SImageSet'
pixelApply(.object, .fun, ...,

.pixel,

.feature,

.feature.groups,

.pixel.dependencies,

.simplify = TRUE,

.use.names = TRUE,

.verbose = FALSE)

48 pixelApply-methods

S4 method for signature 'SImageSet'
featureApply(.object, .fun, ...,

.feature,

.pixel,

.pixel.groups,

.feature.dependencies,

.simplify = TRUE,

.use.names = TRUE,

.verbose = FALSE)

Arguments

.object An object of class SImageSet.

.fun The function to be applied.

... Additional arguments passed to .fun.

.pixel A subset of pixels to use, given by an integer vector of numeric indices, a
character vector of pixel names, or a logical vector indicating which pixels
to use.

.feature A subset of features to use, given in the same manner as pixels.

.pixel.groups A grouping factor or a vector that can be coerced into a factor, that indicates
groups of pixels over which the function should be applied. Groups pixels are
treated as cells in a ragged array, by analogy to the tapply function.

.feature.groups

A grouping factor features, in the same manner as for pixels.
.pixel.dependencies

Not currently used. This may be used in the future to allow caching when ap-
plying functions to data on disk.

.feature.dependencies

Not currently used. May be used for caching in the future.

.simplify Should the result be simplified into a matrix of higher-dimensional array rather
than a list, if appropriate?

.use.names Should the names of elements of .object (pixels, features, and grouping vari-
ables, as appropriate) be used for the names of the result?

.verbose Used for debugging. Currently ignored.

Details

The use of .pixel and .feature can be used to apply the function over only a subset of pixels or
features (or both), allowing faster computation when calculation on only a subset of data is needed.

For pixelApply, the function is applied to the feature vector belonging to each pixel. The use of
.feature.groups allows codetapply-like functionality on the feature vectors, applied separately to
each pixel.

For featureApply, the function is applied to the vector of intensity values (i.e., the flattened image)
corresponding to each feature. The use of .feature.groups allows codetapply-like functionality
on the flattened image intensity vectors, applied separately to each feature.

pixelData-methods 49

The fData from .object is installed into the environment of .fun for pixelApply, and the pData
from .object is installed into the environment of .fun for featureApply. This allows access to
the symbols from fData or pData during the execution of .fun. If .fun already has an environment,
it is retained as the parent of the installed environment.

Additionally, the following objects are made available by installing them into the .fun environment:

• .Object: The passed .object. (Note the case.)

• .Index: The index of the current iteration.

It is expected that these methods will be expanded in the future for different types of imaging
datasets (e.g., data read directly from disk).

Value

If .simplify = FALSE, a list. Otherwise, a matrix, or a higher-dimensional array if grouping is
specified.

Author(s)

Kyle D. Bemis

See Also

MSImageSet

Examples

data <- matrix(1:256, nrow=4)
coord <- expand.grid(x=1:4, y=1:4, z=1:4)
sset <- SImageSet(data=data, coord=coord)

fData(sset)$flag <- rep(c(TRUE, FALSE), 2)
pixelApply(sset, max, .feature.groups=flag)

pData(sset)$flag <- rep(c(TRUE, FALSE), 32)
featureApply(sset, max, .pixel.groups=flag)

pixelData-methods Retrieve Information on Pixels in iSet-derived Classes

Description

This generic function accesses pixel data (experiment specific information about pixels) and pixel
metadata (e.g., coordinates or experimental conditions).

50 pixelNames-methods

Usage

pixelData(object)
pixelData(object) <- value
pData(object)
pData(object) <- value

Arguments

object An object, possible derived from iSet.

value Value to be assigned to the corresponding object.

Value

pixelData returns an object containing information on pixel variables and pixel metadata. pixelData
returns an object containing information on pixel variables and pixel metadata. pData returns a
data.frame with pixels as rows and variables as columns.

Author(s)

Kyle D. Bemis

See Also

iSet, SImageSet, MSImageSet

pixelNames-methods Retrieve Pixel Names from iSets

Description

This generic function accesses pixel names (typically image coordinates) stored in an object derived
from iSet.

Usage

pixelNames(object)
pixelNames(object) <- value

Arguments

object An object, possible derived from iSet.

value Value to be assigned to the corresponding object.

Value

pixelNames returns an object containing information on pixel names.

pixels-methods 51

Author(s)

Kyle D. Bemis

See Also

iSet, SImageSet, MSImageSet

pixels-methods Retrieve Pixel or Feature Indices Based on Metadata

Description

These are generic functions to retrieve pixel or feature row indices in an iSet-derived object’s
pixelData or featureData slots based on metadata variables.

Usage

S4 method for signature 'iSet'
pixels(object, ...)

S4 method for signature 'iSet'
features(object, ...)

S4 method for signature 'MSImageSet'
pixels(object, ..., coord)

S4 method for signature 'MSImageSet'
features(object, ..., mz)

Arguments

object An imaging dataset object.
... Variables that appear in pixelData(object) or featureData(object).
mz A vector of m/z values.
coord A list or data.frame of named pixel coordinates.

Details

It is often more convenient to specify a pixel or feature by identifying metadata such as pixel coor-
dinates or m/z-values than by their row indices in the pixelData and featureData slots. However,
many functions expect indices rather than coordinates or m/z-values. These generic functions make
it easy to retrieve indices based on such metadata.

It is important to note that when passing multiple variables via . . . , the ’AND’ operator is used to
resolve the query. However, when vectors are passed, all combinations of the given values will be
used.

For convenience, MSImageSet uses a special implementation for the ’mz’ variable, which uses a
bisection search so that exact precision is not required when searching based on m/z-values.

52 plot-methods

Value

A numeric vector of pixel or feature indices.

Author(s)

Kyle D. Bemis

See Also

PLS, OPLS, spatialShrunkenCentroids

Examples

Create an MSImageSet object
spectra <- matrix(1:27, nrow=3)
mz <- 101:103
coord <- expand.grid(x=1:3, y=1:3)
msset <- MSImageSet(spectra=spectra, mz=mz, coord=coord)

Find pixel indices
pixels(msset, x=2, y=2)
pixels(msset, coord=list(x=2, y=2))
pixels(msset, coord=list(x=c(2,3), y=c(2,3)))

Find feature indices
features(msset, mz=102)
features(msset, mz=c(101,103))
features(msset, mz=c(102.2))

plot-methods Plot the Feature-Space of an Imaging Dataset

Description

Create and display plots in the feature space of an imaging dataset. This uses a formula interface
inspired by the lattice graphics package.

Usage

S4 method for signature 'SImageSet,missing'
plot(x, formula = ~ Feature,

pixel,
pixel.groups,
groups = NULL,
superpose = FALSE,
strip = TRUE,
key = FALSE,
fun = mean,

plot-methods 53

...,
xlab,
xlim,
ylab,
ylim,
layout,
type = 'l',
col = "black",
subset = TRUE,
lattice = FALSE)

S4 method for signature 'MSImageSet,missing'
plot(x, formula = ~ mz,

pixel = pixels(x, coord=coord),
pixel.groups,
coord,
plusminus,
...,
type = if (centroided(x)) 'h' else 'l')

S4 method for signature 'ResultSet,missing'
plot(x, formula,

model = pData(modelData(x)),
pixel,
pixel.groups,
superpose = TRUE,
strip = TRUE,
key = superpose,
...,
xlab,
ylab,
column,
col = if (superpose) rainbow(nlevels(pixel.groups)) else "black",
lattice = FALSE)

S4 method for signature 'CrossValidated,missing'
plot(x, fold = 1:length(x), layout, ...)

S4 method for signature 'PCA,missing'
plot(x, formula = substitute(mode ~ mz),

mode = "loadings",
type = 'h',
...)

S4 method for signature 'PLS,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("coefficients", "loadings",
"weights", "projection"),

54 plot-methods

type = 'h',
...)

S4 method for signature 'OPLS,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("coefficients", "loadings", "Oloadings",
"weights", "Oweights", "projection"),

type = 'h',
...)

S4 method for signature 'SpatialShrunkenCentroids,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("centers", "tstatistics"),
type = 'h',
...)

S4 method for signature 'SpatialKMeans,missing'
plot(x, formula = substitute(mode ~ mz),

mode = c("centers", "betweenss", "withinss"),
type = 'h',
...)

Arguments

x An imaging dataset.
formula A formula of the form ’y ~ x | g1 * g2 * ...’ (or equivalently, ’y ~ x | g1 + g2 +

...’), indicating a LHS ’y’ (on the y-axis) versus a RHS ’x’ (on the x-axis) and
conditioning variables ’g1, g2, ...’.
Usually, the LHS is not supplied, and the formula is of the form ’~ x | g1 * g2 *
...’, and the y-axis is implicityl assumed to be the feature vectors corresponding
to each pixel in the imaging dataset specified by the object ’x’. However, a
variable evaluating to a feature vector, or a sequence of such variables, can also
be supplied.
The RHS is evaluated in fData(x) and should provide values for the x-axis.
The conditioning variables are evaluated in pData(x). These can be specified
in the formula as ’g1 * g2 * ...’. The argument ’pixel.groups’ allows an alternate
way to specify a single conditioning variable. Conditioning variables specified
using the formula interface will always appear on separate plots. This can be
combined with ’superpose = TRUE’ to both overlay plots based on a condition-
ing variable and use conditioning variables to create separate plots.

model A vector or list specifying which fitted model to plot. If this is a vector, it
should give a subset of the rows of modelData(x) to use for plotting. Otherwise,
it should be a list giving the values of parameters in modelData(x).

pixel The pixel or vector of pixels for which to plot the feature vectors. This is an
expression that evaluates to a logical or integer indexing vector.

pixel.groups An alternative way to express a single conditioning variable. This is a variable or
expression to be evaluated in pData(x), expected to act as a grouping variable

plot-methods 55

for the pixels specified by ’pixel’, typically used to distinguish different regions
of the imaging data for comparison. Feature vectors from pixels in the same
pixel group will have ’fun’ applied over them; ’fun’ will be applied to each
pixel group separately, usually for averaging. If ’superpose = FALSE’ then these
appear on separate plots.

groups A variable or expression to be evaluated in fData(x), expected to act as a group-
ing variable for the features in the feature vector(s) to be plotted, typically used
to distinguish different groups of features by varying graphical parameters like
color and line type. By default, if ’superpose = FALSE’, these appear overlaid
on the same plot.

superpose Should feature vectors from different pixel groups specified by ’pixel.groups’
be superposed on the same plot?

strip Should strip labels indicating the plotting group be plotting along with the each
panel? Passed to ’strip’ in xyplot.

key A logical, or list containing components to be used as a key for the plot. This
is passed to ’key’ in levelplot if ’lattice = TRUE’.

fun A function to apply over feature vectors grouped together by ’pixel.groups’. By
default, this is used for averaging over pixels.

xlab Character or expression giving the label for the x-axis.

ylab Character or expression giving the label for the x-axis.

xlim A numeric vector of length 2 giving the left and right limits for the x-axis.

ylim A numeric vector of length 2 giving the lower and upper limits for the y-axis.

layout The layout of the plots, given by a length 2 numeric as c(ncol, nrow). This is
passed to levelplot if ’lattice = TRUE’. For base graphics, this defaults to one
plot per page.

col A specification for the default plotting color(s).

type A character indicating the type of plotting.

subset An expression that evaluates to a logical or integer indexing vector to be evalu-
ated in fData(x).

lattice Should lattice graphics be used to create the plot?

... Additional arguments passed to the underlying plot or xyplot functions.

coord A named vector or list giving the coordinate of the pixel to plot.

plusminus If specified, a window of pixels surrounding the one given by coord will be
included in the plot with fun applied over them, and this indicates the number
of pixels to include on either side.

fold What folds of the cross-validation should be plotted.

mode What kind of results should be plotted. This is the name of the object to plot in
the ResultSet object.

column What columns of the results should be plotted. If the results are a matrix, this
corresponds to the columns to be plotted, which can be indicated either by nu-
meric index or by name.

56 PLS-methods

Author(s)

Kyle D. Bemis

See Also

image-methods

Examples

data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,
NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,
1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,
1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,
1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA), nrow=9, ncol=9)

set.seed(1)
sset <- generateImage(data, range=c(1000,5000), centers=c(3000,4000), resolution=100)

pData(sset)$pg <- factor(data[is.finite(data)], labels=c("black", "red"))
fData(sset)$fg <- factor(rep("bg", nrow(fData(sset))), levels=c("bg", "black", "red"))
fData(sset)$fg[2950 < fData(sset)$t & fData(sset)$t < 3050] <- "black"
fData(sset)$fg[3950 < fData(sset)$t & fData(sset)$t < 4050] <- "red"

plot(sset, pixel=1)

plot(sset, ~ t, pixel=1:ncol(sset))

plot(sset, ~ t | pg, pixel=1:ncol(sset), lattice=TRUE)

plot(sset, ~ t, pixel.groups=pg, pixel=1:ncol(sset), lattice=TRUE, superpose=TRUE)

plot(sset, ~ t | pg, groups=fg, pixel=1:ncol(sset), lattice=TRUE)

set.seed(1)
msset <- generateImage(data, as="MSImageSet", resolution=50)

plot(msset, pixel=1)

plot(msset, coord=list(x=3, y=1))

plot(msset, coord=list(x=3, y=1), plusminus=1)

plot(msset, coord=list(x=5, y=5), plusminus=c(2, 1))

PLS-methods Partial Least Squares

PLS-methods 57

Description

Performs partial least squares (also called projection to latent structures or PLS) on an imaging
dataset. This will also perform discriminant analysis (PLS-DA) if the response is a factor.

Usage

S4 method for signature 'SImageSet,matrix'
PLS(x, y, ncomp = 20,

method = "nipals",
scale = FALSE,
iter.max = 100, ...)

S4 method for signature 'SImageSet,numeric'
PLS(x, y, ...)

S4 method for signature 'SImageSet,factor'
PLS(x, y, ...)

S4 method for signature 'SImageSet,character'
PLS(x, y, ...)

S4 method for signature 'PLS'
predict(object, newx, newy, ...)

Arguments

x The imaging dataset on which to perform partial least squares.

y The response variable, which can be a matrix or a vector for ordinary PLS, or
a factor or a character for PLS-DA.

ncomp The number of PLS components to calculate.

method The function used to calculate the projection.

scale Shoud the data be scaled first? This is passed to scale.

iter.max The number of iterations to perform for the NIPALS algorithm.

... Passed to the next PLS method.

object The result of a previous call to PLS.

newx An imaging dataset for which to calculate their PLS projection and predict a
response from an already-calculated PLS object.

newy Optionally, a new response from which residuals should be calcualted.

Value

An object of class PLS, which is a ResultSet, where each component of the resultData slot
contains at least the following components:

scores: A matrix with the component scores for the explanatary variable.

loadings: A matrix with the explanatory variable loadings.

58 processingData-methods

weights: A matrix with the explanatory variable weights.

Yscores: A matrix objects with the component scores for the response variable.

Yweights: A matrix objects with the response variable weights.

projection: The projection matrix.

coefficients: The matrix of the regression coefficients.

ncomp: The number of PLS components.

method: The method used to calculate the projection.

center: The center of the dataset. Used for calculating PLS scores on new data.

scale: The scaling factors for the dataset. Used for PLS scores on new data.

Ycenter: The centers of the response variables. Used for predicting new observations.

Yscale: The scaling factors for the response variables. Used for predicting new observation.

fitted: The fitted response.

Author(s)

Kyle D. Bemis

References

Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of
Chemometrics, 16(3), 119-128. doi:10.1002/cem.695

See Also

OPLS, PCA, spatialShrunkenCentroids,

Examples

sset <- generateImage(diag(4), range=c(200, 300), step=1)

y <- factor(diag(4))

pls <- PLS(sset, y, ncomp=1:2)

processingData-methods

Retrieve Pre-Processing Information from MSImageSets

Description

This generic function accesses pre-processing information from MSImageSet objects.

Usage

processingData(object)
processingData(object) <- value

readMSIData 59

Arguments

object A MSImageSet object.

value Value to be assigned to the corresponding object.

Value

processingData returns pre-processing information.

Author(s)

Kyle D. Bemis

See Also

MSImageProcess, MSImageSet

readMSIData Read Mass Spectrometry Imaging Data Files

Description

Read supported mass spectrometry imaging data files. Supported formats include imzML and An-
alyze 7.5.

Usage

Read any supported MS imaging file
readMSIData(file)

Read imzML files
readImzML(name, folder=getwd())

Read Analyze 7.5 files
readAnalyze(name, folder=getwd())

Arguments

file A description of the data file to be read. This may be either an absolute or
relative path. The file extension must be included.

name The common file name for the ’.imzML’ and ’.ibd’ files for imzML or for the
’.hdr’, ’.t2m’, and ’.img’ files for Analyze 7.5.

folder The path to the folder containing the data files.

60 reduceBaseline-methods

Details

In the current implementation, the file extensions must match exactly: ’.imzML’ and ’.ibd’ for
imzML and ’.hdr’, ’.t2m’, and ’.img’ for Analyze 7.5.

The readImzML function currently only supports reading and returning the ’continuous’ format.
Support for ’processed’ format is in development.

Value

A MSImageSet object.

Author(s)

Kyle D. Bemis

References

Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprevote O, Desbenoit N,
Robbe M-F, Stoeckli M, Spengler B, Rompp A (2012) imzML - A common data format for the
flexible exchange and processing of mass spectrometry imaging data. Journal of Proteomics 75
(16):5106-5110. doi:10.1016/j.jprot.2012.07.026

See Also

MSImageSet

reduceBaseline-methods

Reduce the Baseline for an Imaging Dataset

Description

Apply baseline reduction to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImageSet'
reduceBaseline(object, method = "median",

...,
pixel = pixels(object),
plot = FALSE)

Median baseline reduction
reduceBaseline.median(x, blocks=500, fun=min, spar=1, ...)

reduceBaseline-methods 61

Arguments

object An object of class MSImageSet.

method The baseline reduction method to use.

pixel The pixels to baseline subtract. If less than the extent of the dataset, this will
result in a subset of the data being processed.

plot Plot the mass spectrum for each pixel while it is being processed?

... Additional arguments passed to the baseline reduction method.

x The mass spectrum to be baseline subtracted.

blocks The number of intervals to break the mass spectrum into in order to choose
minima or medians from which to interpolate the baseline.

fun Function used to determine the points from which the baseline will be interpo-
lated.

spar Smoothing parameter for the spline smoothing applied to the spectrum in order
to decide the cutoffs for throwing away baseline references that might occur
inside peaks.

Details

Baseline reduction is usually performed using the provided functions, but a user-created function
can also be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

A user-created function should return a numeric vector of the same length. with the baseline-
subtracted intensities.

Internally, pixelApply is used to apply the baseline reduction. See its documentation page for
more details on additional objects available to the environment installed to the baseline reduction
function.

Value

An object of class MSImageSet with the baseline-subtracted spectra.

Author(s)

Kyle D. Bemis

See Also

MSImageSet, pixelApply

Examples

data <- generateImage(as="MSImageSet")
reduceBaseline(data, method="median", plot=interactive())

62 reduceDimension-methods

reduceDimension-methods

Reduce the Dimension of an Imaging Dataset

Description

Apply dimension reduction to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImageSet,missing'
reduceDimension(object, method = c("bin", "resample"),

...,
pixel = pixels(object),
plot = FALSE)

S4 method for signature 'MSImageSet,numeric'
reduceDimension(object, ref, method = "peaks", ...)

S4 method for signature 'MSImageSet,MSImageSet'
reduceDimension(object, ref, method = "peaks", ...)

Bin the signal
reduceDimension.bin(x, t, width=1, offset=0, fun=sum, ...)

Resample the signal
reduceDimension.resample(x, t, step=1, offset=0, ...)

Reduce the signal to peaks
reduceDimension.peaks(x, t, peaklist, type=c("height", "area"), ...)

Arguments

object An object of class MSImageSet.

ref A reference to use to reduce the dimension, usually a peak list of m/z values or
a peak-picked and aligned MSImageSet.

method The method to use to reduce the dimensions of the signal.

pixel The pixels to process. If less than the extent of the dataset, this will result in a
subset of the data being processed.

plot Plot the mass spectrum for each pixel while it is being processed?

... Additional arguments passed to the dimension reduction method.

x The mass spectrum to be reduced.

t The corresponding m/z values.

width The width of a bin.

reduceDimension-methods 63

step The step size.

offset Offset from the nearest integer.

fun The function to be applied to each bin.

peaklist A vector of m/z values corresponding to peaks.

type Should the peak height or area under the curve be taken as the intensity value?

Details

Dimension reduction is usually performed using the provided functions, but a user-created function
can also be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• t: A numeric vector of m/z values.

• ...: Additional arguments.

A user-created function should return a list with two vectors of equal length, where the new length
must be shorter than x and t:

• x: A numeric vector of new intensities.

• t: A numeric vector of new m/z values.

Internally, pixelApply is used to apply the dimension reduction. See its documentation page for
more details on additional objects available to the environment installed to the dimension reduction
function.

Value

An object of class MSImageSet with the dimension-reduced spectra.

Author(s)

Kyle D. Bemis

See Also

MSImageSet, peakPick, peakAlign, pixelApply

Examples

data <- generateImage(as="MSImageSet")
reduceDimension(data, method="resample", step=100, plot=interactive())

64 ResultSet-class

ResultSet-class Class to Contain Analysis Results for Imaging Experiments

Description

This class is used as a return value by most of the analysis methods provided by Cardinal, including
PCA, PLS, OPLS, spatialKMeans, spatialShrunkenCentroids.

Slots

imageData: This slot is unused in a ResultSet.
pixelData: The pixelData from the analyzed dataset.
featureData: The featureData from the analyzed dataset.
experimentData: The experimentData from the analyzed dataset.
protocolData: The protocolData from the analyzed dataset.
resultData: A list of analysis results. Each element contains the results from a different param-

eter set.
modelData: An AnnotatedDataFrame containing information about the parameters of the models

in resultData.
.__classVersion__: A Versions object describing the version of the class used to created the

instance. Intended for developer use.

Extends

iSet, directly. VersionedBiobase, by class "iSet", distance 1. Versioned, by class "Versioned-
Biobase", distance 2.

Creating Objects

ResultSet is a virtual class. No instances can be created.

Methods

Class-specific methods:

resultData(object): Access and set the results of the analyses.
modelData(object): Access and set the model parameters.

Standard generic methods:

length(x): Access the number of elements of resultData.
names(x): Access the names of the components of all of the elements of resultData.
ResultSet$name: Access all of the result components with the name name.
ResultSet[[i, ...]]: Access ith element of the resultData slot.
ResultSet[i, j, ..., drop]: Subset an ResultSet based on the model parameters in modelData.

See iSet for additional methods.

select-methods 65

Author(s)

Kyle D. Bemis

See Also

iSet, PCA, PLS, OPLS, spatialKMeans, spatialShrunkenCentroids

select-methods Select Regions of an Imaging Dataset

Description

Manually select regions-of-interest or pixels on an imaging dataset. This uses the built-in locator
function. The method has the same form as the image method for plotting imaging datasets.

Usage

S4 method for signature 'SImageSet'
select(x, formula = ~ x * y,

mode = c("region", "pixel"),
...,
main,
subset = TRUE,
lattice = FALSE)

Arguments

x An imaging dataset.
formula Passed to image.
mode What kind of selection to perform: ’region’ to select a region-of-interest, or

’pixel’ to select individual pixels.
... Addtional arguments to be passed to image.
main Passed to image.
subset Passed to image.
lattice Must be false.

Value

A logical vector of length equal to the number of pixels.

Author(s)

Kyle D. Bemis

See Also

image

66 SImageData-class

SImageData-class Class Containing Sparse Image Data

Description

A container class for holding pixel-sparse image as a virtual datacube. It is assumed there will be
missing pixels, so the feature vectors are stored as a matrix for memory efficiency, and the datacube
is reconstructed on-the-fly. The implementation remains efficient even for non-sparse data as long
as the full datacube does not need to be reconstructed as often as single images and feature vectors.
All elements of data must have an identical number of rows (features) and columns (pixels).

Usage

Instance creation
SImageData(

data = Hashmat(nrow=0, ncol=0),
coord = expand.grid(

x = seq_len(ncol(data)),
y = seq_len(ifelse(ncol(data) > 0, 1, 0))),

storageMode = "immutableEnvironment",
positionArray = generatePositionArray(coord),
dimnames = NULL,
...)

Additional methods documented below

Arguments

data A matrix-like object with number of rows equal to the number of features and
number of columns equal to the number of non-missing pixels. Each column
should be a feature vector. Alternatively, a multidimensional array that repre-
sents the datacube with the first dimension as the features can also be supplied.
Additional dimensions could be the spatial dimensions of the image, for exam-
ple.

coord A data.frame with columns representing the spatial dimensions. Each row
provides a spatial coordinate for the location of a feature vector corresponding
to a column in data. This argument is ignored if data is a multidimensional
array rather than a matrix.

storageMode The storage mode to use for the SImageData object for the environment in the
data slot. Only "immutableEnvironment" is allowed for SImageData. See
documentation on the storageMode slot below for more details.

positionArray The positionArray for the imaging data. This should not normally be specified
the user, since it is generated automatically from the coord argument, unless for
some reason coord is not specified.

dimnames A list of length two, giving the feature names and pixel names in that order. If
missing, this is taken from the ’dimnames’ of the data argument.

SImageData-class 67

... Additional Named arguments that are passed to the initialize method for
instantiating the object. These must be matrices or matrix-like objects of equal
dimension to data. They will be assigned into the environment in the data slot.

Slots

data: An environment which contains at least one element named "iData", which is a matrix-
like object with rows equal to the number of features and columns equal to the number of
non-missing pixels. Each column is a feature vector.

coord: An data.frame with rows giving the spatial coordinates of the pixels corresponding to the
columns of "iData".

positionArray: An array with dimensions equal to the spatial dimensions of the image, which
stores the column numbers of the feature vectors corresponding to the pixels in the "iData"
element of the data slot. This allows re-construction of the imaging "datacube" on-the-fly.

dim: A length 2 integer vector analogous to the ’dim’ attribute of an ordinary R matrix.

dimnames: A length 2 list analogous to the ’dimnames’ attribute of an ordinary R matrix.

storageMode: A character which is one of "immutableEnvironment", "lockedEnvironment",
or "environment". The values "lockedEnvironment" and "environment" behave as de-
scribed in the documentation of AssayData. An "immutableEnvironment" uses a locked
environment while retaining R’s typical copy-on-write behavior. Whenever an object in an
immutable environment is modified, a new environment is created for the data slot, and all
objects copied into it. This allows usual R functional semantics while avoiding copying of
large objects when other slots are modified.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

Extends

Versioned

Creating Objects

SImageData instances are usually created through SImageData().

Methods

Class-specific methods:

iData(object), iData(object)<-: Return or set the matrix of image intensities. Columns should
correspond to feature vectors, and rows should correspond to pixel vectors.

coord(object), coord(object)<-: Return or set the coodinates. This is a data.frame with each
row corresponding to the spatial coordinates of a pixel.

positionArray(object), positionArray(object)<-: Return or set the positionArray slot.
When setting, this should be an array returned by a call to generatePositionArray.

featureNames(object), featureNames(object) <- value: Access and set feature names (names
of the rows of the intensity matrix).

68 SImageData-class

pixelNames(object), pixelNames(object) <- value: Access and set the pixel names (names
of the columns of the intensity matrix).

storageMode(object), storageMode(object)<-: Return or set the storage mode. See documen-
tation on the storageMode slot above for more details.

Standard generic methods:

combine(x, y, ...): Combine two or more SImageData objects. Elements must be matrix-like
objects and are combined column-wise with a call to ’cbind’. The numbers of rows must
match, but otherwise no checking of row or column names is performed. The pixel coordinates
are checked for uniqueness.

dim: Return the dimensions of the (virtual) datacube. This is equal to the number of features (the
number of rows in the matrix returned by iData) and the dimensions of the positionArray
slot. For a standard imaging dataset, that is the number features followed by the spatial di-
mensions of the image.

dims: A matrix where each column corresponds to the dimensions of the (virtual) datacubes stored
as elements in the data slot. See above for how the dimensions are calculated.

SImageData[i, j, ..., drop]: Access intensities in the (virtual) imaging datacube. The dat-
acube is reconstructed on-the-fly. The object can be indexed like any ordinary array with
number of dimensions equal to dim(object). Use drop = NA to return a subset of the same
class as the object.

Author(s)

Kyle D. Bemis

See Also

ImageData, MSImageData, SImageSet, MSImageSet

Examples

Create an SImageData object
SImageData()

Using a P x N matrix
data1 <- matrix(1:27, nrow=3)
coord <- expand.grid(x=1:3, y=1:3)
sdata1 <- SImageData(data1, coord)
sdata1[] # extract data as array

Using a P x X x Y array
data2 <- array(1:27, dim=c(3,3,3))
sdata2 <- SImageData(data2)
sdata2[] # should be identical to above

Missing data from some pixels
data3 <- matrix(1:9, nrow=3)
sdata3 <- SImageData(data3, coord[c(1,5,9),])

SImageSet-class 69

dim(sdata3) # presents as an array
iData(sdata3) # stored as matrix
sdata3[] # recontruct the datacube

iData(sdata3)[,1] <- 101:103 # assign using iData()
sdata3[] # can only assign into matrix representation

Sparse feature vectors
data4 <- Hashmat(nrow=9, ncol=9)
sdata4 <- SImageData(data4, coord)
iData(sdata4)[] <- diag(9)
sdata4[1,,]

SImageSet-class Class to Contain Pixel-Sparse Imaging Data

Description

An iSet derived class for pixel-sparse imaging data. Data is stored to be memory efficient when
there are missing pixels or when the the stored images are non-rectangular regions. The data struc-
tures remain efficient for non-sparse pixel data as long as the full datacube does not need to be
reconstructed often, and single images or feature vectors are of primary interest. This class can
be combined with Hashmat to be sparse in both feature space and pixel space. This is useful for
datasets with sparse signals, such as processed spectra.

MSImageSet is a derived class of SImageSet for storing mass spectrometry imaging experiments.

Usage

Instance creation
SImageSet(

data = Hashmat(nrow=0, ncol=0),
coord = expand.grid(

x = seq_len(prod(dim(data)[-1])),
y = seq_len(ifelse(prod(dim(data)[-1]) > 0, 1, 0))),

imageData = SImageData(
data=data,
coord=coord),

pixelData = IAnnotatedDataFrame(
data=coord,
varMetadata=data.frame(labelType=rep("dim", ncol(coord)))),

featureData = AnnotatedDataFrame(
data=data.frame(row.names=seq_len(nrow(data)))),

protocolData = AnnotatedDataFrame(
data=data.frame(row.names=sampleNames(pixelData))),

experimentData = new("MIAPE-Imaging"),
...)

Additional methods documented below

70 SImageSet-class

Arguments

data A matrix-like object with number of rows equal to the number of features and
number of columns equal to the number of non-missing pixels. Each column
should be a feature vector. Alternatively, a multidimensional array that repre-
sents the datacube with the first dimension as the features can also be supplied.
Additional dimensions could be the spatial dimensions of the image, for exam-
ple.

coord A data.frame with columns representing the spatial dimensions. Each row
provides a spatial coordinate for the location of a feature vector corresponding
to a column in data. This argument is ignored if data is a multidimensional
array rather than a matrix.

imageData An object of class SImageData that will contain the imaging data. Usually con-
structed using data and coord.

pixelData An object of class IAnnotatedDataFrame giving the information about the pix-
els including coordinates of the data in imageData.

featureData An object of class AnnotatedDataFrame giving information about the data fea-
tures.

protocolData An object of class AnnotatedDataFrame giving information about the samples.
It must have one row for each of the sampleNames in pixelData.

experimentData An object derived from class MIAxE giving information about the imaging ex-
periment.

... Additional arguments passed to the initializer.

Slots

imageData: An instance of SImageData, which stores one or more matrices of equal number of
dimensions as elements in an ’immutableEnvironment’. This slot preserves copy-on-write
behavior when it is modified specifically, but is pass-by-reference otherwise, for memory effi-
ciency.

pixelData: Contains pixel information in an IAnnotatedDataFrame. This includes both pixel co-
ordinates and phenotypic and sample data. Its rows correspond to the columns in imageData.

featureData: Contains variables describing features in an IAnnotatedDataFrame. Its rows cor-
respond to the rows in imageData.

experimentData: Contains details of experimental methods. Should be an object of a derived class
of MIAxE.

protocolData: Contains variables in an IAnnotatedDataFrame describing the generation of the
samples in pixelData.

.__classVersion__: A Versions object describing the version of the class used to created the
instance. Intended for developer use.

Extends

iSet, directly. VersionedBiobase, by class "iSet", distance 1. Versioned, by class "Versioned-
Biobase", distance 2.

SImageSet-class 71

Creating Objects

SImageSet instances are usually created through SImageSet().

Methods

Class-specific methods:

iData(object), iData(object) <- value: Access and set the sparse image data in imageData.
This is a matrix-like object with rows corresponding to features and columns corresponding
to pixels, so that each column of the returned object is a feature vector.

regeneratePositions: Regenerates the positionArray in imageData used to reconstruct the
datacube based on the coordinates in pixelData. Normally, this should not be called by the
user. However, if the coordinates are modified manually, it can be used to re-sync the data
structures.

Standard generic methods:

combine(x, y, ...): Combine two or more SImageSet objects. Unique ’sample’s in pixelData
are treated as a dimension.

SImageSet[i, j, ..., drop]: Subset an SImageSet based on the rows (featureData compo-
nents) and the columns (pixelData components). The result is a new SImageSet.

See iSet for additional methods.

Author(s)

Kyle D. Bemis

See Also

iSet, SImageData, MSImageSet

Examples

Create an SImageSet object
data <- matrix(1:27, nrow=3)
coord <- expand.grid(x=1:3, y=1:3)
sset <- SImageSet(data=data, coord=coord)

Access a single image corresponding to the first feature
imageData(sset)[1,,]

Reconstruct the datacube
imageData(sset)[]

Access the P x N matrix of column-wise feature vectors
iData(sset)

Subset the SImageSet to the first 2 features and first 6 pixels
sset2 <- sset[1:2, 1:6]
imageData(sset2)[]
sset2

72 smoothSignal-methods

smoothSignal-methods Smooth the Feature-Vectors of an Imaging Dataset

Description

Apply smoothing to a mass spectrometry imaging dataset.

Usage

S4 method for signature 'MSImageSet'
smoothSignal(object, method = c("gaussian", "sgolay", "ma"),

...,
pixel = pixels(object),
plot = FALSE)

Gaussian smoothing
smoothSignal.gaussian(x, sd=window/4, window=5, ...)

Savitsky-Golay smoothing
smoothSignal.sgolay(x, order=3, window=order + 3 - order %% 2, ...)

Moving average smoothing
smoothSignal.ma(x, coef=rep(1, window + 1 - window %% 2), window=5, ...)

Arguments

object An object of class MSImageSet.

method The smoothing method to use.

pixel The pixels to smooth. If less than the extent of the dataset, this will result in a
subset of the data being processed.

plot Plot the mass spectrum for each pixel while it is being processed?

... Additional arguments passed to the smoothing method.

x The mass spectrum to be smoothed.

sd The standard deviation for the Gaussian kernel.

window The smoothing window.

order The order of the smoothing filter.

coef The coefficients for the moving average filter.

Details

Smoothing is usually performed using the provided functions, but a user-created function can also
be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

spatialKMeans-methods 73

• ...: Additional arguments.

A user-created function should return a numeric vector of the same length.

Internally, pixelApply is used to apply the smooothing. See its documentation page for more
details on additional objects available to the environment installed to the smoothing function.

Value

An object of class MSImageSet with the smoothed spectra.

Author(s)

Kyle D. Bemis

See Also

MSImageSet, pixelApply

Examples

data <- generateImage(as="MSImageSet")
smoothSignal(data, method="gaussian", plot=interactive())

spatialKMeans-methods Spatially-Aware K-Means Clustering

Description

Performs spatially-aware (SA) or spatially-aware structurally-adaptive (SASA) clustering of imag-
ing data. The data are first projected into an embedded feature space where spatial structure is
maintained using the Fastmap algorithm, and then ordinary k-means clustering is performed on the
projected dataset.

Usage

S4 method for signature 'SImageSet'
spatialKMeans(x, r = 1, k = 2,

method = c("gaussian", "adaptive"),
weights = 1, iter.max = 100, nstart = 100,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",

"MacQueen"),
ncomp = 20, ...)

74 spatialKMeans-methods

Arguments

x The imaging dataset to cluster.

r The spatial neighborhood radius of nearby pixels to consider. This can be a
vector of multiple radii values.

k The number of clusters. This can be a vector to try different numbers of clusters.

method The method to use to calculate the spatial smoothing kernels for the embedding.
The ’gaussian’ method refers to spatially-aware (SA) clustering, and ’adaptive’
refers to spatially-aware structurally-adaptive (SASA) clustering.

weights An optional vector of feature weights to be applied to the features during the
clustering.

iter.max The maximum number of k-means iterations.

nstart The number of restarts for the k-means algorithm.

algorithm The k-means algorithm to use. See kmeans for details.

ncomp The number of fastmap components to calculate.

... Ignored.

Value

An object of class SpatialKMeans, which is a ResultSet, where each component of the resultData
slot contains at least the following components:

cluster: A vector of integers indicating the cluster for each pixel in the dataset.

centers: A matrix of cluster centers.

time: The amount of time the algorithm took to run.

r: The neighborhood spatial smoothing radius.

k: The number of clusters.

method: The method for calculating spatial distances.

weights: The feature weights (defaults to 1s).

fastmap: A list with components giving details of the Fastmap projection.

Author(s)

Kyle D. Bemis

References

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), i230-i238. doi:10.1093/bioinformatics/btr246

Faloutsos, C., & Lin, D. (1995). FastMap: A Fast Algorithm for Indexing, Data-Mining and Visu-
alization of Traditional and Multimedia Datasets. Presented at the Proceedings of the 1995 ACM
SIGMOD international conference on Management of data.

spatialShrunkenCentroids-methods 75

See Also

spatialShrunkenCentroids

Examples

set.seed(1)
data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,

NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,
1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,
1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,
1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA), nrow=9, ncol=9)

sset <- generateImage(data, range=c(200, 300), step=1)

clust1 <- spatialKMeans(sset, r=c(1,2), k=c(2,3), method="gaussian")

clust2 <- spatialKMeans(sset, r=c(1,2), k=c(2,3), method="adaptive")

spatialShrunkenCentroids-methods

Spatially-Aware Shrunken Centroid Clustering and Classification

Description

Performs spatially-aware nearest shrunken centroid clustering or classification on an imaging dataset.
These methods use statistical regularization to shrink the t-statistics of the features toward 0 so that
unimportant features are removed from the analysis. A Gaussian spatial kernel or an adaptive kernel
based on bilateral filtering are used for spatial smoothing.

Usage

S4 method for signature 'SImageSet,missing'
spatialShrunkenCentroids(x, y, r = 1, k = 2, s = 0,

method = c("gaussian", "adaptive"),
iter.max=10, ...)

S4 method for signature 'SImageSet,factor'
spatialShrunkenCentroids(x, y, r = 1, s = 0,

method = c("gaussian", "adaptive"),
priors = table(y), ...)

S4 method for signature 'SImageSet,character'
spatialShrunkenCentroids(x, y, ...)

S4 method for signature 'SpatialShrunkenCentroids'
predict(object, newx, newy, ...)

76 spatialShrunkenCentroids-methods

Arguments

x The imaging dataset to cluster.

y A factor or character response.

r The spatial neighborhood radius of nearby pixels to consider. This can be a
vector of multiple radii values.

k The number of clusters. This can be a vector to try different numbers of clusters.

s The sparsity thresholding parameter by which to shrink the t-statistics.

method The method to use to calculate the spatial smoothing kernels for the embedding.
The ’gaussian’ method refers to spatially-aware (SA) weights, and ’adaptive’
refers to spatially-aware structurally-adaptive (SASA) weights.

iter.max The maximum number of clustering iterations.

priors Prior probabilities on the classes for classification. Improper priors will be nor-
malized automatically.

... Ignored.

object The result of a previous call to spatialShrunkenCentroids.

newx An imaging dataset for which to calculate the predicted response from shrunken
centroids.

newy Optionally, a new response from which residuals should be calculated.

Value

An object of class SpatialShrunkenCentroids, which is a ResultSet, where each component of
the resultData slot contains at least the following components:

classes: A factor indicating the predicted class for each pixel in the dataset.

centers: A matrix of shrunken class centers.

time: The amount of time the algorithm took to run.

r: The neighborhood spatial smoothing radius.

k: The number of clusters.

s: The sparsity parameter.

method: The type of spatial kernel used.

scores: A matrix of discriminant scores.

probabilities: A matrix of class probabilities.

tstatistics: A matrix of shrunken t-statistics of the features.

sd: The pooled within-class standard deviations for each feature.

iter: The number of iterations performed.

Author(s)

Kyle D. Bemis

standardizeSamples-methods 77

References

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2003). Class Prediction by Nearest Shrunken
Centroids, with Applications to DNA Microarrays. Statistical Science, 18, 104-117.

Alexandrov, T., & Kobarg, J. H. (2011). Efficient spatial segmentation of large imaging mass spec-
trometry datasets with spatially aware clustering. Bioinformatics, 27(13), i230-i238. doi:10.1093/bioinformatics/btr246

See Also

spatialKMeans

Examples

set.seed(1)
data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,

NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,
1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,
1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,
1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA), nrow=9, ncol=9)

sset <- generateImage(data, range=c(200, 300), step=1)

clust1 <- spatialShrunkenCentroids(sset, r=c(1,2), k=c(2,3), s=c(0,1), method="gaussian")

clust2 <- spatialShrunkenCentroids(sset, r=c(1,2), k=c(2,3), s=c(0,1), method="adaptive")

y <- factor(data[!is.na(data)], labels=c("black", "red"))

class1 <- spatialShrunkenCentroids(sset, y, r=c(1,2), s=c(0,1), method="gaussian")

class1 <- spatialShrunkenCentroids(sset, y, r=c(1,2), s=c(0,1), method="adaptive")

standardizeSamples-methods

Standardize the Samples in an Imaging Dataset

Description

Apply standardization across the samples in a mass spectrometry imaging dataset to correct for
between-sample variation.

Usage

S4 method for signature 'MSImageSet'
standardizeSamples(object, method = "sum", ...)

TIC normalization
standardizeSamples.sum(x, sum=length(x), ...)

78 standardizeSamples-methods

Arguments

object An object of class MSImageSet.

method The standardization method to use.

... Additional arguments passed to the standardization method.

x The flattened ion image to be standardized.

sum The value to which to standardize the sum of the ion image intensity values.

Details

Standardization is usually performed using the provided functions, but a user-created function can
also be passed to method. In this case it should take the following arguments:

• x: A numeric vector of intensities.

• ...: Additional arguments.

A user-created function should return a numeric vector of the same length.

Internally, featureApply is used to apply the standardization, with .pixel.groups=sample. See
its documentation page for more details on additional objects available to the environment installed
to the standardization function.

Value

An object of class MSImageSet with the ion images standardized across samples.

Author(s)

Kyle D. Bemis

See Also

MSImageSet, featureApply

Examples

data1 <- generateImage(as="MSImageSet")
data2 <- generateImage(as="MSImageSet")
sampleNames(data2) <- "2"
data3 <- combine(data1, data2)
standardizeSamples(data3, method="sum")

topLabels-methods 79

topLabels-methods Retrieve Top-Ranked Labels from Analysis Results

Description

The generic function is a convenience method for retrieving top-ranked labels from the results of
imaging experiment analyses. For mass spectrometry-based imaging experiments, this can be used
for identifying important masses from an analysis.

Usage

S4 method for signature 'ResultSet'
topLabels(object, n = 6,

model = pData(modelData(object)),
type = c('+', '-', 'b'),
sort.by = fvarLabels(object),
filter = list(),
...)

S4 method for signature 'PCA'
topLabels(object, n = 6,

sort.by = "loadings",
...)

S4 method for signature 'PLS'
topLabels(object, n = 6,

sort.by = c("coefficients", "loadings", "weights"),
...)

S4 method for signature 'OPLS'
topLabels(object, n = 6,

sort.by = c("coefficients",
"loadings", "Oloadings",
"weights", "Oweights"),

...)

S4 method for signature 'SpatialKMeans'
topLabels(object, n = 6,

sort.by = c("betweenss", "withinss"),
...)

S4 method for signature 'SpatialShrunkenCentroids'
topLabels(object, n = 6,

sort.by = c("tstatistics", "p.values"),
...)

S4 method for signature 'CrossValidated'

80 topLabels-methods

topLabels(object, ...)

Arguments

object A ResultSet derived object.

n The number of top-ranked records to return.

model If more than one model was fitted, results from which should be shown? De-
faults to all models in the ResultSet. This can name the models explicitly or
specify a list of parameter values.

type How should the records be ranked? ’+’ shows greatest values first (decreasing
order), ’-’ shows least values first (increasing order), and ’b’ uses decreasing
order based on absolute values.

sort.by What variable should be used for sorting?

filter A list of named variables with values to use to filter the results. For example, for
testing or classification, this can be used to only show rankings for a particular
condition.

... Passed to the ’head’ function when sorting the final list of results.

Value

A data.frame with the top-ranked labels from the analysis.

Author(s)

Kyle D. Bemis

See Also

ResultSet, PCA, PLS, OPLS, spatialKMeans, spatialShrunkenCentroids

Examples

set.seed(1)
data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,

NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,
1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,
1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,
1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA), nrow=9, ncol=9)

msset <- generateImage(data, range=c(200, 300), step=1, as="MSImageSet")

clust1 <- spatialShrunkenCentroids(msset, r=c(1,2), k=c(2,3), s=c(0,1), method="gaussian")

topLabels(clust1)

topLabels(clust1, filter=list(classes=1))

topLabels(clust1, filter=list(r=1, k=2, s=1))

Index

∗Topic IO
readMSIData, 59

∗Topic array
Hashmat-class, 9

∗Topic classes
Hashmat-class, 9
IAnnotatedDataFrame-class, 11
ImageData-class, 18
iSet-class, 23
MIAPE-Imaging-class, 25
MSImageData-class, 29
MSImageProcess-class, 32
MSImageSet-class, 34
ResultSet-class, 64
SImageData-class, 66
SImageSet-class, 69

∗Topic classif
cvApply-methods, 5
OPLS-methods, 39
PLS-methods, 56
spatialShrunkenCentroids-methods,

75
∗Topic clustering

spatialKMeans-methods, 73
spatialShrunkenCentroids-methods,

75
∗Topic color

intensity.colors, 22
∗Topic datagen

generateImage, 6
generateSpectrum, 7

∗Topic hplot
image-methods, 14
plot-methods, 52

∗Topic iplot
select-methods, 65

∗Topic manip
coord-methods, 3
cvApply-methods, 5

imageData-methods, 21
mz-methods, 37
pixelApply-methods, 47
pixelData-methods, 49
pixelNames-methods, 50
processingData-methods, 58

∗Topic methods
coregister-methods, 4
normalize-methods, 38
peakAlign-methods, 42
peakFilter-methods, 44
peakPick-methods, 45
pixels-methods, 51
reduceBaseline-methods, 60
reduceDimension-methods, 62
smoothSignal-methods, 72
standardizeSamples-methods, 77
topLabels-methods, 79

∗Topic multivariate
OPLS-methods, 39
PCA-methods, 41
PLS-methods, 56

∗Topic package
Cardinal-package, 2

∗Topic spatial
spatialKMeans-methods, 73
spatialShrunkenCentroids-methods,

75
[,Hashmat,ANY,ANY,ANY-method

(Hashmat-class), 9
[,Hashmat-method (Hashmat-class), 9
[,IAnnotatedDataFrame,ANY,ANY,ANY-method

(IAnnotatedDataFrame-class), 11
[,ResultSet,ANY,ANY,ANY-method

(ResultSet-class), 64
[,ResultSet-method (ResultSet-class), 64
[,SImageData,ANY,ANY,ANY-method

(SImageData-class), 66
[,SImageData-method (SImageData-class),

81

82 INDEX

66
[,SImageSet,ANY,ANY,ANY-method

(SImageSet-class), 69
[,SImageSet-method (SImageSet-class), 69
[<-,Hashmat,ANY,ANY,ANY-method

(Hashmat-class), 9
[<-,Hashmat-method (Hashmat-class), 9
[[,ImageData,character,missing-method

(ImageData-class), 18
[[,ImageData-method (ImageData-class),

18
[[,ResultSet,ANY,ANY-method

(ResultSet-class), 64
[[,ResultSet-method (ResultSet-class),

64
[[,iSet,ANY,ANY-method (iSet-class), 23
[[,iSet-method (iSet-class), 23
[[<-,ImageData,character,missing-method

(ImageData-class), 18
[[<-,ImageData-method

(ImageData-class), 18
[[<-,iSet,ANY,ANY-method (iSet-class),

23
[[<-,iSet-method (iSet-class), 23
$,ResultSet-method (ResultSet-class), 64
$,iSet-method (iSet-class), 23
$<-,iSet-method (iSet-class), 23

abstract,MIAPE-Imaging-method
(MIAPE-Imaging-class), 25

alpha.colors (intensity.colors), 22
AnnotatedDataFrame, 11–13, 35, 64, 70
annotatedDataFrameFrom,ImageData-method

(ImageData-class), 18
AssayData, 19, 20, 30, 67

baselineReduction
(MSImageProcess-class), 32

baselineReduction,MSImageProcess-method
(MSImageProcess-class), 32

baselineReduction<-
(MSImageProcess-class), 32

baselineReduction<-,MSImageProcess-method
(MSImageProcess-class), 32

Cardinal (Cardinal-package), 2
Cardinal-package, 2
cbind,Hashmat-method (Hashmat-class), 9
centroided (MSImageProcess-class), 32

centroided,MSImageProcess-method
(MSImageProcess-class), 32

centroided,MSImageSet-method
(MSImageSet-class), 34

centroided<- (MSImageProcess-class), 32
centroided<-,MSImageProcess-method

(MSImageProcess-class), 32
centroided<-,MSImageSet-method

(MSImageSet-class), 34
class:Hashmat (Hashmat-class), 9
class:IAnnotatedDataFrame

(IAnnotatedDataFrame-class), 11
class:ImageData (ImageData-class), 18
class:iSet (iSet-class), 23
class:MIAPE-Imaging

(MIAPE-Imaging-class), 25
class:MSImageData (MSImageData-class),

29
class:MSImageProcess

(MSImageProcess-class), 32
class:MSImageSet (MSImageSet-class), 34
class:OPLS (OPLS-methods), 39
class:PCA (PCA-methods), 41
class:PLS (PLS-methods), 56
class:ResultSet (ResultSet-class), 64
class:SImageData (SImageData-class), 66
class:SImageSet (SImageSet-class), 69
class:SpatialKMeans

(spatialKMeans-methods), 73
class:SpatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
75

colnames,Hashmat-method
(Hashmat-class), 9

colnames<-,Hashmat-method
(Hashmat-class), 9

combine, 10, 20
combine,array,array-method

(ImageData-class), 18
combine,Hashmat,Hashmat-method

(Hashmat-class), 9
combine,IAnnotatedDataFrame,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
combine,ImageData,ImageData-method

(ImageData-class), 18
combine,iSet,iSet-method (iSet-class),

23
combine,MIAPE-Imaging,MIAPE-Imaging-method

INDEX 83

(MIAPE-Imaging-class), 25
combine,MSImageProcess,MSImageProcess-method

(MSImageProcess-class), 32
combine,MSImageSet,MSImageSet-method

(MSImageSet-class), 34
combine,SImageData,SImageData-method

(SImageData-class), 66
combine,SImageSet,SImageSet-method

(SImageSet-class), 69
coord (coord-methods), 3
coord,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
coord,iSet-method (iSet-class), 23
coord,SImageData-method

(SImageData-class), 66
coord-methods, 3
coord<- (coord-methods), 3
coord<-,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
coord<-,iSet-method (iSet-class), 23
coord<-,SImageData-method

(SImageData-class), 66
coord<-,SImageSet-method

(SImageSet-class), 69
coordinates (coord-methods), 3
coordinates-methods (coord-methods), 3
coordinates<- (coord-methods), 3
coordLabels (coord-methods), 3
coordLabels,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
coordLabels,iSet-method (iSet-class), 23
coordLabels-methods (coord-methods), 3
coordLabels<- (coord-methods), 3
coordLabels<-,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
coordLabels<-,iSet-method (iSet-class),

23
coordLabels<-,SImageSet-method

(SImageSet-class), 69
coregister (coregister-methods), 4
coregister,SpatialKMeans,missing-method

(coregister-methods), 4
coregister,SpatialShrunkenCentroids,missing-method

(coregister-methods), 4
coregister-methods, 4
cvApply (cvApply-methods), 5
cvApply,SImageSet-method

(cvApply-methods), 5

cvApply-methods, 5

dim,Hashmat-method (Hashmat-class), 9
dim,ImageData-method (ImageData-class),

18
dim,iSet-method (iSet-class), 23
dim,SImageData-method

(SImageData-class), 66
dim<-,Hashmat-method (Hashmat-class), 9
dimnames,Hashmat-method

(Hashmat-class), 9
dimnames<-,Hashmat,ANY-method

(Hashmat-class), 9
dimnames<-,Hashmat-method

(Hashmat-class), 9
dims,ImageData-method

(ImageData-class), 18
dims,iSet-method (iSet-class), 23
dims,SImageData-method

(SImageData-class), 66

embeddingMethod (MIAPE-Imaging-class),
25

embeddingMethod,MIAPE-Imaging-method
(MIAPE-Imaging-class), 25

embeddingMethod<-
(MIAPE-Imaging-class), 25

embeddingMethod<-,MIAPE-Imaging-method
(MIAPE-Imaging-class), 25

eSet, 25
experimentData,iSet-method

(iSet-class), 23
experimentData<-,iSet-method

(iSet-class), 23
expinfo,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25

fData,iSet-method (iSet-class), 23
fData<-,iSet,ANY-method (iSet-class), 23
fData<-,iSet-method (iSet-class), 23
featureApply, 45, 78
featureApply (pixelApply-methods), 47
featureApply,SImageSet-method

(pixelApply-methods), 47
featureApply-methods

(pixelApply-methods), 47
featureData,iSet-method (iSet-class), 23
featureData<-,iSet,ANY-method

(iSet-class), 23

84 INDEX

featureData<-,iSet-method (iSet-class),
23

featureNames,iSet-method (iSet-class),
23

featureNames,SImageData-method
(SImageData-class), 66

featureNames<-,iSet-method
(iSet-class), 23

featureNames<-,SImageData-method
(SImageData-class), 66

featureNames<-,SImageSet-method
(SImageSet-class), 69

features (pixels-methods), 51
features,iSet-method (pixels-methods),

51
features,MSImageSet-method

(pixels-methods), 51
features-methods (pixels-methods), 51
files (MSImageProcess-class), 32
files,MSImageProcess-method

(MSImageProcess-class), 32
files<- (MSImageProcess-class), 32
files<-,MSImageProcess-method

(MSImageProcess-class), 32
fvarLabels,iSet-method (iSet-class), 23
fvarLabels<-,iSet-method (iSet-class),

23
fvarMetadata,iSet-method (iSet-class),

23
fvarMetadata<-,iSet,ANY-method

(iSet-class), 23
fvarMetadata<-,iSet-method

(iSet-class), 23

generateImage, 6, 8
generateSpectrum, 6, 7
gradient.colors (intensity.colors), 22

Hashmat, 69
Hashmat (Hashmat-class), 9
Hashmat-class, 9

IAnnotatedDataFrame, 20, 23, 35, 70
IAnnotatedDataFrame

(IAnnotatedDataFrame-class), 11
IAnnotatedDataFrame-class, 11
iData (imageData-methods), 21
iData,iSet-method (iSet-class), 23

iData,SImageData-method
(SImageData-class), 66

iData,SImageSet-method
(SImageSet-class), 69

iData-methods (imageData-methods), 21
iData<- (imageData-methods), 21
iData<-,iSet-method (iSet-class), 23
iData<-,SImageData-method

(SImageData-class), 66
iData<-,SImageSet-method

(SImageSet-class), 69
image, 65
image (image-methods), 14
image,CrossValidated-method

(image-methods), 14
image,MSImageSet-method

(image-methods), 14
image,OPLS-method (image-methods), 14
image,PCA-method (image-methods), 14
image,PLS-method (image-methods), 14
image,ResultSet-method (image-methods),

14
image,SImageSet-method (image-methods),

14
image,SpatialKMeans-method

(image-methods), 14
image,SpatialShrunkenCentroids-method

(image-methods), 14
image-methods, 14
ImageData, 21, 23, 31, 68
ImageData (ImageData-class), 18
imageData (imageData-methods), 21
imageData,iSet-method (iSet-class), 23
ImageData-class, 18
imageData-methods, 21
imageData<- (imageData-methods), 21
imageData<-,iSet-method (iSet-class), 23
imageShape (MIAPE-Imaging-class), 25
imageShape,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
imageShape<- (MIAPE-Imaging-class), 25
imageShape<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
initialize,Hashmat-method

(Hashmat-class), 9
initialize,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
initialize,ImageData-method

INDEX 85

(ImageData-class), 18
initialize,iSet-method (iSet-class), 23
initialize,MSImageData-method

(MSImageData-class), 29
initialize,MSImageProcess-method

(MSImageProcess-class), 32
initialize,MSImageSet-method

(MSImageSet-class), 34
initialize,SImageData-method

(SImageData-class), 66
initialize,SImageSet-method

(SImageSet-class), 69
inSituChemistry (MIAPE-Imaging-class),

25
inSituChemistry,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
inSituChemistry<-

(MIAPE-Imaging-class), 25
inSituChemistry<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
instrumentModel (MIAPE-Imaging-class),

25
instrumentModel,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
instrumentModel<-

(MIAPE-Imaging-class), 25
instrumentModel<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
instrumentVendor (MIAPE-Imaging-class),

25
instrumentVendor,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
instrumentVendor<-

(MIAPE-Imaging-class), 25
instrumentVendor<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
intensity.colors, 22
ionizationType (MIAPE-Imaging-class), 25
ionizationType,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
ionizationType<- (MIAPE-Imaging-class),

25
ionizationType<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
irlba, 42
iSet, 3, 4, 13, 21, 34–36, 50, 51, 64, 65, 69–71
iSet (iSet-class), 23
iSet-class, 23

keys (Hashmat-class), 9
keys,Hashmat-method (Hashmat-class), 9
keys<- (Hashmat-class), 9
keys<-,Hashmat,character-method

(Hashmat-class), 9
keys<-,Hashmat,list-method

(Hashmat-class), 9
keys<-,Hashmat-method (Hashmat-class), 9
kmeans, 74

lattice, 14, 52
length,ResultSet-method

(ResultSet-class), 64
levelplot, 16, 17, 55
lineScanDirection

(MIAPE-Imaging-class), 25
lineScanDirection,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
lineScanDirection<-

(MIAPE-Imaging-class), 25
lineScanDirection<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
locator, 65
logLik,SpatialShrunkenCentroids-method

(spatialShrunkenCentroids-methods),
75

massAnalyzerType (MIAPE-Imaging-class),
25

massAnalyzerType,MIAPE-Imaging-method
(MIAPE-Imaging-class), 25

massAnalyzerType<-
(MIAPE-Imaging-class), 25

massAnalyzerType<-,MIAPE-Imaging-method
(MIAPE-Imaging-class), 25

matrix, 10
matrixApplication

(MIAPE-Imaging-class), 25
matrixApplication,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
matrixApplication<-

(MIAPE-Imaging-class), 25
matrixApplication<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
MIAPE-Imaging (MIAPE-Imaging-class), 25
MIAPE-Imaging-class, 25
MIAxE, 23, 27, 28, 35, 70
modelData (ResultSet-class), 64

86 INDEX

modelData,ResultSet-method
(ResultSet-class), 64

modelData<- (ResultSet-class), 64
modelData<-,ResultSet-method

(ResultSet-class), 64
msiInfo (MIAPE-Imaging-class), 25
msiInfo,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
MSImageData, 68
MSImageData (MSImageData-class), 29
MSImageData-class, 29
MSImageProcess, 35, 59
MSImageProcess (MSImageProcess-class),

32
MSImageProcess-class, 32
MSImageSet, 4, 6, 13, 20, 21, 23, 25, 27, 28,

31–33, 37–39, 43–47, 49–51, 58–63,
68, 69, 71–73, 78

MSImageSet (MSImageSet-class), 34
MSImageSet-class, 34
mz (mz-methods), 37
mz,MSImageSet-method

(MSImageSet-class), 34
mz-methods, 37
mz<- (mz-methods), 37
mz<-,MSImageSet-method

(MSImageSet-class), 34
mzData (imageData-methods), 21
mzData,MSImageData-method

(MSImageData-class), 29
mzData,SImageData-method

(SImageData-class), 66
mzData-methods (imageData-methods), 21
mzData<- (imageData-methods), 21
mzData<-,MSImageData-method

(MSImageData-class), 29
mzData<-,SImageData-method

(SImageData-class), 66

names,ImageData-method
(ImageData-class), 18

names,ResultSet-method
(ResultSet-class), 64

names<-,ImageData-method
(ImageData-class), 18

normalization (MSImageProcess-class), 32
normalization,MSImageProcess-method

(MSImageProcess-class), 32

normalization<- (MSImageProcess-class),
32

normalization<-,MSImageProcess-method
(MSImageProcess-class), 32

normalize (normalize-methods), 38
normalize,MSImageSet-method

(normalize-methods), 38
normalize-methods, 38
normalize.tic (normalize-methods), 38
notes,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
notes<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25

OPLS, 5, 40, 42, 52, 58, 64, 65, 80
OPLS (OPLS-methods), 39
OPLS,SImageSet,character-method

(OPLS-methods), 39
OPLS,SImageSet,factor-method

(OPLS-methods), 39
OPLS,SImageSet,matrix-method

(OPLS-methods), 39
OPLS,SImageSet,numeric-method

(OPLS-methods), 39
OPLS-class (OPLS-methods), 39
OPLS-methods, 39
otherInfo,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25

PCA, 41, 58, 64, 65, 80
PCA (PCA-methods), 41
PCA,SImageSet-method (PCA-methods), 41
PCA-class (PCA-methods), 41
PCA-methods, 41
pData (pixelData-methods), 49
pData,Hashmat-method (Hashmat-class), 9
pData,iSet-method (iSet-class), 23
pData-methods (pixelData-methods), 49
pData<- (pixelData-methods), 49
pData<-,Hashmat,ANY-method

(Hashmat-class), 9
pData<-,Hashmat-method (Hashmat-class),

9
pData<-,iSet,ANY-method (iSet-class), 23
pData<-,iSet-method (iSet-class), 23
peakAlign, 30, 45, 47, 63
peakAlign (peakAlign-methods), 42
peakAlign,MSImageSet,missing-method

(peakAlign-methods), 42

INDEX 87

peakAlign,MSImageSet,MSImageSet-method
(peakAlign-methods), 42

peakAlign,MSImageSet,numeric-method
(peakAlign-methods), 42

peakAlign-methods, 42
peakAlign.diff (peakAlign-methods), 42
peakAlign.DP (peakAlign-methods), 42
peakData (imageData-methods), 21
peakData,MSImageData-method

(MSImageData-class), 29
peakData,SImageData-method

(SImageData-class), 66
peakData-methods (imageData-methods), 21
peakData<- (imageData-methods), 21
peakData<-,MSImageData-method

(MSImageData-class), 29
peakData<-,SImageData-method

(SImageData-class), 66
peakFilter, 44, 47
peakFilter (peakFilter-methods), 44
peakFilter,MSImageSet-method

(peakFilter-methods), 44
peakFilter-methods, 44
peakFilter.freq (peakFilter-methods), 44
peakPick, 44, 45, 63
peakPick (peakPick-methods), 45
peakPick,MSImageSet-method

(peakPick-methods), 45
peakPick-methods, 45
peakPick.adaptive (peakPick-methods), 45
peakPick.limpic (peakPick-methods), 45
peakPick.simple (peakPick-methods), 45
peakPicking (MSImageProcess-class), 32
peakPicking,MSImageProcess-method

(MSImageProcess-class), 32
peakPicking<- (MSImageProcess-class), 32
peakPicking<-,MSImageProcess-method

(MSImageProcess-class), 32
peaks (imageData-methods), 21
peaks,MSImageSet-method

(MSImageSet-class), 34
peaks-methods (imageData-methods), 21
peaks<- (imageData-methods), 21
peaks<-,MSImageSet-method

(MSImageSet-class), 34
pixelApply, 38, 39, 43, 44, 47, 61, 63, 73
pixelApply (pixelApply-methods), 47
pixelApply,SImageSet-method

(pixelApply-methods), 47
pixelApply-methods, 47
pixelData (pixelData-methods), 49
pixelData,iSet-method (iSet-class), 23
pixelData-methods, 49
pixelData<- (pixelData-methods), 49
pixelData<-,iSet-method (iSet-class), 23
pixelNames (pixelNames-methods), 50
pixelNames,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
pixelNames,iSet-method (iSet-class), 23
pixelNames,SImageData-method

(SImageData-class), 66
pixelNames-methods, 50
pixelNames<- (pixelNames-methods), 50
pixelNames<-,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
pixelNames<-,iSet-method (iSet-class),

23
pixelNames<-,SImageData-method

(SImageData-class), 66
pixelNames<-,SImageSet-method

(SImageSet-class), 69
pixels (pixels-methods), 51
pixels,iSet-method (pixels-methods), 51
pixels,MSImageSet-method

(pixels-methods), 51
pixels-methods, 51
pixelSize (MIAPE-Imaging-class), 25
pixelSize,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
pixelSize<- (MIAPE-Imaging-class), 25
pixelSize<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
plot, 17, 55
plot (plot-methods), 52
plot,CrossValidated,missing-method

(plot-methods), 52
plot,MSImageSet,formula-method

(plot-methods), 52
plot,MSImageSet,missing-method

(plot-methods), 52
plot,OPLS,missing-method

(plot-methods), 52
plot,PCA,missing-method (plot-methods),

52
plot,PLS,missing-method (plot-methods),

52

88 INDEX

plot,ResultSet,formula-method
(plot-methods), 52

plot,ResultSet,missing-method
(plot-methods), 52

plot,SImageSet,formula-method
(plot-methods), 52

plot,SImageSet,missing-method
(plot-methods), 52

plot,SpatialKMeans,missing-method
(plot-methods), 52

plot,SpatialShrunkenCentroids,missing-method
(plot-methods), 52

plot-methods, 52
plot.summary.CrossValidated

(cvApply-methods), 5
plot.summary.OPLS (OPLS-methods), 39
plot.summary.PCA (PCA-methods), 41
plot.summary.PLS (PLS-methods), 56
plot.summary.SpatialKMeans

(spatialKMeans-methods), 73
plot.summary.SpatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
75

PLS, 5, 41, 42, 52, 57, 64, 65, 80
PLS (PLS-methods), 56
PLS,SImageSet,character-method

(PLS-methods), 56
PLS,SImageSet,factor-method

(PLS-methods), 56
PLS,SImageSet,matrix-method

(PLS-methods), 56
PLS,SImageSet,numeric-method

(PLS-methods), 56
PLS-class (PLS-methods), 56
PLS-methods, 56
positionArray (SImageData-class), 66
positionArray,SImageData-method

(SImageData-class), 66
positionArray<- (SImageData-class), 66
positionArray<-,SImageData-method

(SImageData-class), 66
predict,OPLS-method (OPLS-methods), 39
predict,PCA-method (PCA-methods), 41
predict,PLS-method (PLS-methods), 56
predict,SpatialShrunkenCentroids-method

(spatialShrunkenCentroids-methods),
75

print.summary.CrossValidated

(cvApply-methods), 5
print.summary.iSet (iSet-class), 23
print.summary.OPLS (OPLS-methods), 39
print.summary.PCA (PCA-methods), 41
print.summary.PLS (PLS-methods), 56
print.summary.SpatialKMeans

(spatialKMeans-methods), 73
print.summary.SpatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
75

processingData
(processingData-methods), 58

processingData,MSImageSet-method
(MSImageSet-class), 34

processingData-methods, 58
processingData<-

(processingData-methods), 58
processingData<-,MSImageSet-method

(MSImageSet-class), 34
prochistory (MSImageProcess-class), 32
prochistory,MSImageProcess-method

(MSImageProcess-class), 32
prochistory<- (MSImageProcess-class), 32
prochistory<-,MSImageProcess,character-method

(MSImageProcess-class), 32
prochistory<-,MSImageProcess,list-method

(MSImageProcess-class), 32
prochistory<-,MSImageProcess-method

(MSImageProcess-class), 32
protocolData,iSet-method (iSet-class),

23
protocolData<-,iSet-method

(iSet-class), 23
pubMedIds,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
pubMedIds<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25

rbind,Hashmat-method (Hashmat-class), 9
readAnalyze (readMSIData), 59
readImzML (readMSIData), 59
readMSIData, 59
reduceBaseline

(reduceBaseline-methods), 60
reduceBaseline,MSImageSet-method

(reduceBaseline-methods), 60
reduceBaseline-methods, 60
reduceBaseline.median

(reduceBaseline-methods), 60

INDEX 89

reduceDimension, 44, 45, 47
reduceDimension

(reduceDimension-methods), 62
reduceDimension,MSImageSet,missing-method

(reduceDimension-methods), 62
reduceDimension,MSImageSet,MSImageSet-method

(reduceDimension-methods), 62
reduceDimension,MSImageSet,numeric-method

(reduceDimension-methods), 62
reduceDimension-methods, 62
reduceDimension.bin

(reduceDimension-methods), 62
reduceDimension.peaks

(reduceDimension-methods), 62
reduceDimension.resample

(reduceDimension-methods), 62
regeneratePositions (SImageData-class),

66
regeneratePositions,SImageData-method

(SImageData-class), 66
regeneratePositions,SImageSet-method

(SImageSet-class), 69
resultData (ResultSet-class), 64
resultData,ResultSet-method

(ResultSet-class), 64
resultData<- (ResultSet-class), 64
resultData<-,ResultSet-method

(ResultSet-class), 64
ResultSet, 5, 64, 80
ResultSet (ResultSet-class), 64
ResultSet-class, 64
risk.colors (intensity.colors), 22
rownames,Hashmat-method

(Hashmat-class), 9
rownames<-,Hashmat-method

(Hashmat-class), 9

sampleNames,IAnnotatedDataFrame-method
(IAnnotatedDataFrame-class), 11

sampleNames,iSet-method (iSet-class), 23
sampleNames<-,IAnnotatedDataFrame,ANY-method

(IAnnotatedDataFrame-class), 11
sampleNames<-,IAnnotatedDataFrame-method

(IAnnotatedDataFrame-class), 11
sampleNames<-,iSet,ANY-method

(iSet-class), 23
sampleNames<-,iSet-method (iSet-class),

23

samples,MIAPE-Imaging-method
(MIAPE-Imaging-class), 25

scanDirection (MIAPE-Imaging-class), 25
scanDirection,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
scanDirection<- (MIAPE-Imaging-class),

25
scanDirection<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
scanPattern (MIAPE-Imaging-class), 25
scanPattern,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
scanPattern<- (MIAPE-Imaging-class), 25
scanPattern<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
scanPolarity (MIAPE-Imaging-class), 25
scanPolarity,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
scanPolarity<- (MIAPE-Imaging-class), 25
scanPolarity<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
scanType (MIAPE-Imaging-class), 25
scanType,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
scanType<- (MIAPE-Imaging-class), 25
scanType<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
select (select-methods), 65
select,SImageSet-method

(select-methods), 65
select-methods, 65
show,Hashmat-method (Hashmat-class), 9
show,ImageData-method

(ImageData-class), 18
show,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
show,MSImageProcess-method

(MSImageProcess-class), 32
show,ResultSet-method

(ResultSet-class), 64
SImageData, 20, 29, 31, 35, 70, 71
SImageData (SImageData-class), 66
SImageData-class, 66
SImageSet, 4–6, 10, 13, 20, 21, 23, 25, 31,

34–36, 47, 48, 50, 51, 68, 69
SImageSet (SImageSet-class), 69
SImageSet-class, 69
smoothing (MSImageProcess-class), 32

90 INDEX

smoothing,MSImageProcess-method
(MSImageProcess-class), 32

smoothing<- (MSImageProcess-class), 32
smoothing<-,MSImageProcess-method

(MSImageProcess-class), 32
smoothSignal (smoothSignal-methods), 72
smoothSignal,MSImageSet-method

(smoothSignal-methods), 72
smoothSignal-methods, 72
smoothSignal.gaussian

(smoothSignal-methods), 72
smoothSignal.ma (smoothSignal-methods),

72
smoothSignal.sgolay

(smoothSignal-methods), 72
softwareName (MIAPE-Imaging-class), 25
softwareName,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
softwareName<- (MIAPE-Imaging-class), 25
softwareName<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
softwareVersion (MIAPE-Imaging-class),

25
softwareVersion,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
softwareVersion<-

(MIAPE-Imaging-class), 25
softwareVersion<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
spatialKMeans, 64, 65, 77, 80
spatialKMeans (spatialKMeans-methods),

73
spatialKMeans,SImageSet-method

(spatialKMeans-methods), 73
SpatialKMeans-class

(spatialKMeans-methods), 73
spatialKMeans-methods, 73
spatialShrunkenCentroids, 4, 5, 41, 52, 58,

64, 65, 75, 76, 80
spatialShrunkenCentroids

(spatialShrunkenCentroids-methods),
75

spatialShrunkenCentroids,SImageSet,character-method
(spatialShrunkenCentroids-methods),
75

spatialShrunkenCentroids,SImageSet,factor-method
(spatialShrunkenCentroids-methods),
75

spatialShrunkenCentroids,SImageSet,missing-method
(spatialShrunkenCentroids-methods),
75

SpatialShrunkenCentroids-class
(spatialShrunkenCentroids-methods),
75

spatialShrunkenCentroids-methods, 75
specimenOrigin (MIAPE-Imaging-class), 25
specimenOrigin,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
specimenOrigin<- (MIAPE-Imaging-class),

25
specimenOrigin<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
specimenType (MIAPE-Imaging-class), 25
specimenType,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
specimenType<- (MIAPE-Imaging-class), 25
specimenType<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
spectra (imageData-methods), 21
spectra,MSImageSet-method

(MSImageSet-class), 34
spectra-methods (imageData-methods), 21
spectra<- (imageData-methods), 21
spectra<-,MSImageSet-method

(MSImageSet-class), 34
spectrumRepresentation

(MSImageProcess-class), 32
spectrumRepresentation,MSImageProcess-method

(MSImageProcess-class), 32
spectrumRepresentation<-

(MSImageProcess-class), 32
spectrumRepresentation<-,MSImageProcess-method

(MSImageProcess-class), 32
stainingMethod (MIAPE-Imaging-class), 25
stainingMethod,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
stainingMethod<- (MIAPE-Imaging-class),

25
stainingMethod<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
standardizeSamples

(standardizeSamples-methods),
77

standardizeSamples,MSImageSet-method
(standardizeSamples-methods),
77

INDEX 91

standardizeSamples-methods, 77
standardizeSamples.sum

(standardizeSamples-methods),
77

storageMode,ImageData-method
(ImageData-class), 18

storageMode,iSet-method (iSet-class), 23
storageMode<-,ImageData,character-method

(ImageData-class), 18
storageMode<-,iSet,ANY-method

(iSet-class), 23
storageMode<-,iSet,character-method

(iSet-class), 23
summary,CrossValidated-method

(cvApply-methods), 5
summary,iSet-method (iSet-class), 23
summary,OPLS-method (OPLS-methods), 39
summary,PCA-method (PCA-methods), 41
summary,PLS-method (PLS-methods), 56
summary,SpatialKMeans-method

(spatialKMeans-methods), 73
summary,SpatialShrunkenCentroids-method

(spatialShrunkenCentroids-methods),
75

svd, 42

tapply, 48
tissueThickness (MIAPE-Imaging-class),

25
tissueThickness,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
tissueThickness<-

(MIAPE-Imaging-class), 25
tissueThickness<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
tissueWash (MIAPE-Imaging-class), 25
tissueWash,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
tissueWash<- (MIAPE-Imaging-class), 25
tissueWash<-,MIAPE-Imaging-method

(MIAPE-Imaging-class), 25
topLabels (topLabels-methods), 79
topLabels,CrossValidated-method

(topLabels-methods), 79
topLabels,OPLS-method

(topLabels-methods), 79
topLabels,PCA-method

(topLabels-methods), 79

topLabels,PLS-method
(topLabels-methods), 79

topLabels,ResultSet-method
(topLabels-methods), 79

topLabels,SpatialKMeans-method
(topLabels-methods), 79

topLabels,SpatialShrunkenCentroids-method
(topLabels-methods), 79

topLabels-methods, 79

varLabels,iSet-method (iSet-class), 23
varLabels<-,iSet-method (iSet-class), 23
varMetadata,iSet-method (iSet-class), 23
varMetadata<-,iSet,ANY-method

(iSet-class), 23
varMetadata<-,iSet-method (iSet-class),

23
Versioned, 10, 12, 19, 23, 27, 30, 32, 35, 64,

67, 70
VersionedBiobase, 23, 35, 64, 70

xyplot, 55

	Cardinal-package
	coord-methods
	coregister-methods
	cvApply-methods
	generateImage
	generateSpectrum
	Hashmat-class
	IAnnotatedDataFrame-class
	image-methods
	ImageData-class
	imageData-methods
	intensity.colors
	iSet-class
	MIAPE-Imaging-class
	MSImageData-class
	MSImageProcess-class
	MSImageSet-class
	mz-methods
	normalize-methods
	OPLS-methods
	PCA-methods
	peakAlign-methods
	peakFilter-methods
	peakPick-methods
	pixelApply-methods
	pixelData-methods
	pixelNames-methods
	pixels-methods
	plot-methods
	PLS-methods
	processingData-methods
	readMSIData
	reduceBaseline-methods
	reduceDimension-methods
	ResultSet-class
	select-methods
	SImageData-class
	SImageSet-class
	smoothSignal-methods
	spatialKMeans-methods
	spatialShrunkenCentroids-methods
	standardizeSamples-methods
	topLabels-methods
	Index

