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1 Introduction

This document supplements the manuscript “Analyzing ChIP-chip data using Bioconduc-
tor” [1]. The manuscript demonstrates how to use the tools R and Bioconductor for a
ChIP-chip data analysis.

The R software can be obtained by following the installation instructions at http://www.
r-project.org.

For obtaining the Bioconductor packages that are needed for redoing this analysis, we
recommend biocLite function from the Bioconductor web site. Follow these steps from
within R to install the required package (the data package ccTutorial is > 300 MB in size).

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("Ringo", "biomaRt", "topGO", "ccTutorial"))

Further information about the installation of Bioconductor packages can be found at http:
//www.bioconductor.org/docs/install.

> library("Ringo")

> library("biomaRt")

> library("topGO")

> library("xtable")

> library("ccTutorial")

> library("CMARRT")

This document has been written in the Sweave [2] format, which combines explanatory text
and the R source code that has been used in this analysis. One advantage of this format is
that the analysis can easily be reproduced by the reader. The R package ccTutorial contains
all the data and scripts used in this manuscript.

2 Importing the data into R

The provided data are measurements of enrichment for H3K4me3 in heart and brain cells.
For each microarray, the scanning output consists of two files, one holding the Cy3 intensities
(the untreated input sample), the other one the Cy5 intensities from the immunoprecipitated
sample. These files are tab-delimited text files in NimbleGen’s pair format.

The microarray platform was a set of 4 arrays containing about 390k reporters each and
meant to tile selected promoter regions in the Mus musculus genome (assembly mm5 ) with
one base every 100 bp. Thus for every sample, we have 8 files (4 arrays × 2 dyes).

> pairDir <- system.file("PairData",package="ccTutorial")

> list.files(pairDir, pattern="pair$")

[1] "47101_532.pair" "47101_635.pair" "48153_532.pair" "48153_635.pair"
[5] "48158_532.pair" "48158_635.pair" "48170_532.pair" "48170_635.pair"
[9] "48175_532.pair" "48175_635.pair" "48180_532.pair" "48180_635.pair"
[13] "48182_532.pair" "48182_635.pair" "49728_532.pair" "49728_635.pair"
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In addition, there is one text file for each array type that holds details on the samples,
including which two pair files belong to which sample.

> read.delim(file.path(pairDir,"files_array1.txt"), header=TRUE)

SlideNumber FileNameCy3 FileNameCy5 DESIGN_NAME
1 48153 48153_532.pair 48153_635.pair 2005-06-17_Ren_MM5Tiling_Set1
2 48170 48170_532.pair 48170_635.pair 2005-06-17_Ren_MM5Tiling_Set1
SAMPLE_SPECIES Cy3 Cy5 Tissue

1 Mus_musculus input H3K4me3 brain
2 Mus_musculus input H3K4me3 heart

The columns FileNameCy3 and FileNameCy5 hold which of the raw data files belong to
which sample. The immunoprecipitated extract was tagged with the Cy5 dye in the experi-
ment; so the column Cy5 holds which antibody has been used for the immunoprecipitation,
in this case one against the histone modification H3K4me3.

The file spottypes.text describes the reporter categories on the array (such Spot Types
files are also used in the Bioconductor package limma [3]).

From these files, we can read in the raw reporter intensities and obtain four objects of
class RGList , a class defined in package limma. Each object contains the readouts from all
samples measured on the same array type.

> RGs <- lapply(sprintf("files_array%d.txt",1:4),

+ readNimblegen, "spottypes.txt", path=pairDir)

An RGList object is a list and contains the raw intensities of the two hybridizations for the
red and green channel plus information about the reporters on the array and the analyzed
samples.

> head(RGs[[1]]$R)

48153_635 48170_635
[1,] 18680.45 27445.45
[2,] 19510.55 28003.45
[3,] 19269.45 26622.55
[4,] 348.67 24435.33
[5,] 312.78 214.00
[6,] 348.89 25187.22

> head(RGs[[1]]$G)

48153_532 48170_532
[1,] 65535.00 65535.00
[2,] 65535.00 65535.00
[3,] 62598.89 65535.00
[4,] 1197.89 65535.00
[5,] 1433.00 1781.56
[6,] 1608.56 61490.45
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> tail(RGs[[1]]$genes)

GENE_EXPR_OPTION PROBE_ID POSITION X Y Status ID
390606 MM5 MM5000P03209684 52759608 140 32 Probe MM5000P03209684
390607 MM5 MM5000P03370281 82709533 146 534 Probe MM5000P03370281
390608 MM5 MM5000P03410577 89884304 33 495 Probe MM5000P03410577
390609 MM5 MM5000P03428135 93306337 404 786 Probe MM5000P03428135
390610 MM5 MM5000P03152702 42800575 548 836 Probe MM5000P03152702
390611 MM5 MM5000P03113901 35200666 687 907 Probe MM5000P03113901

Among the read-in values are those coming from reporters1 matching the genome sequence
as well as some from the manufacturer’s “control” reporters on the array.

> table(RGs[[1]]$genes$Status)

H_Code Negative Probe Random V_Code
40 2063 373896 14572 40

The RGList is a common class for raw two-color data. Thus, the following steps can easily
be applied to other, non-NimbleGen microarrays, which for example can be read in into R
using limma’s function read.maimages.

3 Quality assessment

First, we look at the spatial distribution of the intensities on the array. This is useful for
detecting obvious artifacts on the array, such as scratches, bright spots, finger prints etc.,
which may render parts or all of the readouts of one hybridization useless.

For demonstration, we first show three array surface plots with artifacts. These three
microarrays were generated for another ChIP-chip study for histone modifications [4]. See
the spatial distribution plots of these arrays in Figure S1. The coordinates in the picture
correspond to coordinates on the surface of the microarray. The color of the dots represents
the value of the raw reporter intensity, with brighter shades of green corresponding to higher
intensities. For well-hybridized microarrays, a homogeneous picture can be expected. Two
of the displayed three arrays show strong artifacts. The array in the left panel shows two
distinct problems. The bright rim on the picture suggests that all reporters near the rim of
the array high raw intensities. The second artifact is the wave pattern on the surface. This
effect is known as a Moiré pattern in image processing and emerged during the scanning
process of the microarray. The spatial distribution of Cy5 channel intensities on this array
looks homogeneous (data not shown), which provides more evidence that the artifacts in
this plot are likely due to errors in scanning the Cy3 intensities of this array. The array in
the middle panel shows a large artifact that only affects the right side of the array. The

1the misleading slot name “genes” is due to historical reasons, dating back to the time when cDNA
microarrays were mostly used to measure gene expression. In our case, each reporter is not associated to
one gene but to one or more genomic locations.
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Figure S1: Spatial distribution of reporter intensities on microarrays from another ChIP-
chip study [4]. Coordinates in the picture correspond to coordinates on the surface of the
microarray. The color of the dots represents the value of the raw reporter intensity, with
brighter shades of green corresponding to higher intensities. For well-hybridized microarrays,
a homogeneous picture can be expected.The two arrays in the left and the middle panel show
strong artifacts and were excluded from later analyses. The array in the right panel shows
weak artifacts and was kept for later analysis.

array in the right panel finally shows a bright spot in the center of the array and slightly
higher intensities in the upper half of the array than in the lower array. However, these
artifacts are mild in comparison with the other two arrays. The array on the right side was
kept for further analysis in the study, while the two on the left side and in the middle were
replaced by newly hybridized arrays.

For the data of Barrera et al. [5], we construct one picture showing the spatial distributions
for all arrays and both channels.

> RG1breaks <- c(0,quantile(RGs[[1]]$G, probs=seq(0,1,by=0.1)),2^16)

> png("ccTutorialArrayImages.png", units="in", res=200,

+ height=10.74*1.5, width=7.68*1.5)

> par(mar=c(0.01,0.01,2.2,0.01))

> layout(matrix(c(1,2,5,6,3,4,7,8,9,10,13,14,11,12,15,16),

+ ncol=4,byrow=TRUE))

> for (this.set in 1:4){

+ thisRG <- RGs[[this.set]]

+ for (this.channel in c("green","red")){

+ my.colors <- colorRampPalette(c("black",paste(this.channel,c(4,1),

+ sep="")))(length(RG1breaks)-1)

+ for (arrayno in 1:2){

+ image(thisRG, arrayno, channel=this.channel,

+ mybreaks=RG1breaks, mycols=my.colors)

+ mtext(side=3, line=0.2, font=2, text=colnames(thisRG[[toupper(

+ substr(this.channel,1,1))]])[arrayno])

+ }}}

> dev.off()
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Figure S2: Spatial distribution of raw reporter intensities laid out by the reporter position
on the microarray surface. Each pair of one green and one red image on top of each other
are the Cy3 and Cy5 readouts of the same hybridized microarray.

6



48158_532

10 12 14 16

10
12

14
16

CC 0.877

10 12 14 16

10
12

14
16

10 12 14 16

10
12

14
16

as.vector(x[, j])

as
.v

ec
to

r(
x[

, i
])

48175_532

(a)

48158_635

8 10 12 14 16

8
10

12
14

16

CC 0.734

8 10 12 14 16

8
10

12
14

16

8 10 12 14 16

8
10

12
14

16

as.vector(x[, j])

as
.v

ec
to

r(
x[

, i
])

48175_635

(b)

Figure S3: Scatterplot and Spearman correlation of the raw intensities from the two mi-
croarrays for (a) the Cy3 channel, the genomic input samples (b) the Cy5 channel, the
H3K4me3-ChIP sample for M. musculus brain and heart cells.

See Figure S2 for the images. Minor artifacts can be seen. The arrays of the first set (48153
and 48172) show a blotch of lower intensities in the upper right area of the array. These
artifacts affect only a small part of the array and thus probably have a negligible effect
on the results. The reporters in those affected areas of the array will yield meaningless
readouts but enriched regions will be determined based on a set of multiple reporters that
are distributed over the microarray surface and not on single reporters only. Also a few
arrays are brighter than others, which indicate higher raw intensities for the respective
arrays. These effects could be due to a larger amounts of DNA being hybridized. The
scaling step during preprocessing later on is able to correct for such shifts.

On all arrays in our set, the Cy3 channel holds the intensities from the untreated input
sample, and the Cy5 channel holds the ChIP result for heart and heart, respectively. We
investigate whether this experiment setup is reflected in the reporter intensity correlation
per channel (see Figure S3). Compare these two plots:

> corPlot(log2(RGs[[2]]$G))

> corPlot(log2(RGs[[2]]$R))

See Figure S3 for plots comparing the two arrays. In the scatter plots of raw reporter
intensities, the fraction of dots at the diagonal is higher for the input samples than for the
ChIP samples. Concordantly, the correlation between the intensities of the input samples
is higher than between the ChIP samples (0.877 versus 0.734).

We also show the same plots for two of the previous arrays with artifacts (left and right
panels in Figure S1). With these arrays, the Cy3 channel also holds the input samples,
while the Cy5 channel are the ChIP samples.

These correlation plots are shown in Figure 3. The input (Cy3) intensities do not show
any correlation, while the ChIP intensities of these samples show a much better correlation.
This is unexpected, since the ChIP samples used antibodies against different histone mod-
ifications (H4ac and H3K4me2), while the input samples are both genomic DNA from the
same cell type (cell line C2C12).
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(a) (b)

Figure S4: Scatterplot and Spearman correlation of the raw intensities from two microarrays
with artifacts (see Figure S1 for (a) the Cy3 channel, the genomic input samples (b) the
Cy5 channel, ChIP sample for M. musculus brain and heart cells.

4 Mapping reporters to the genome

A mapping of reporters to genomic coordinates is usually provided by the array manu-
facturer. For several reasons, however, remapping the reporter sequences to the genome
may be useful. Here, the microarray had been designed on an outdated assembly of the
mouse genome (mm5, May 2004). The reporter sequences were remapped to the current,
almost final assembly of the mouse genome (mm9, July 2007). Remapping also allows you
to specify custom criteria for what degree of sequence identity you require for a match and
for uniqueness of a match.

We extracted the reporter nucleotide sequences from the downloaded NDF (NimbleGen
Design Files) files. We re-mapped the reporter sequences to the genome, using the alignment
tool Exonerate [6]. We required 97% sequence identity for a match2. Since the reporters
on the microarray were 50mers, a sequence identity of 97% corresponds to one mismatch at
most. The implicit assumption is that if 49 out of 50 nucleotides are complimentary that
would be sufficient for hybridization. We did not consider a more complex hybridisation
model, in which the position of the mismatch in the reporter sequence and its impact on
secondary structure formation are taken into account. However, with one mismatch per
50mer, there is always a perfert match segment of ≥ 25 nucleotides in length. A matching
segment of 18 or more nucleotides in length was reported to be sufficient for hybridization [7].

Exonerate was run matching the reporter sequences in the Fasta file RenMM5TilingProbe-
Sequences.fsa against each chromosome’s sequence using the shell script runExoner-
ate.sh and then condensing the per-chromosome output files into one single file using
the Perl script condenseExonerateOutput.pl3.

From this result file, we construct an object of class probeAnno to store the mapping between
reporters and genome positions.

2Remapping 1.5 million reporters took about 100 processor hours on an AMD Opteron Processor 275.
3all the scripts mentioned here are included in the scripts directory of the package
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> probeAnno <- posToProbeAnno(file.path(system.file("exonerateData",

+ package="ccTutorial"), "allChromExonerateOut.txt"))

> allChrs <- chromosomeNames(probeAnno)

> genome(probeAnno) <- "M. musculus (mm9)"

> arrayName(probeAnno) <- "2005-06-17_Ren_MM5Tiling"

> show(probeAnno)

A 'probeAnno' object holding the mapping between
reporters and genomic positions.
Chromosomes: 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 X Y
Microarray platform: 2005-06-17_Ren_MM5Tiling
Genome: M. musculus (mm9)

> ls(probeAnno)

[1] "10.end" "10.index" "10.start" "10.unique" "11.end" "11.index"
[7] "11.start" "11.unique" "12.end" "12.index" "12.start" "12.unique"
[13] "13.end" "13.index" "13.start" "13.unique" "14.end" "14.index"
[19] "14.start" "14.unique" "15.end" "15.index" "15.start" "15.unique"
[25] "16.end" "16.index" "16.start" "16.unique" "17.end" "17.index"
[31] "17.start" "17.unique" "18.end" "18.index" "18.start" "18.unique"
[37] "19.end" "19.index" "19.start" "19.unique" "1.end" "1.index"
[43] "1.start" "1.unique" "2.end" "2.index" "2.start" "2.unique"
[49] "3.end" "3.index" "3.start" "3.unique" "4.end" "4.index"
[55] "4.start" "4.unique" "5.end" "5.index" "5.start" "5.unique"
[61] "6.end" "6.index" "6.start" "6.unique" "7.end" "7.index"
[67] "7.start" "7.unique" "8.end" "8.index" "8.start" "8.unique"
[73] "9.end" "9.index" "9.start" "9.unique" "X.end" "X.index"
[79] "X.start" "X.unique" "Y.end" "Y.index" "Y.start" "Y.unique"

For each genomic position matched by a reporter, it was recorded whether it was the sole
match position of that reporter in the genome or whether that reporter also matched other
genomic positions4. For example, how many reporter-match positions on chromosome 9 are
unique matches of those reporters (code: 0) and how many are matched by reporters that
have multiple matches in the genome (code: 3)?

> table(probeAnno["9.unique"])

0 3
65556 11018

4More precisely, a reporter matches a 25-nucleotide “segment”. That segment, however, is uniquely
defined by the genomic position of its central nucleotide, which is why I refer to the “position” that is
matched by a reporter.

9



The majority of match positions are unique reporter match positions. The intensities of
reporters matching multiple genomic locations will be excluded from later analysis (smooth-
ing, identification of ChIP-enriched regions), since the readouts of these reporters are am-
biguous.

4.1 Average spacing between reporter mach positions

> startDiffByChr <- lapply(as.list(allChrs), function(chr){

+ chrsta <- probeAnno[paste(chr,"start",sep=".")]

+ chruni <- probeAnno[paste(chr,"unique",sep=".")]

+ ## get start positions of unique reporter match positions

+ return(diff(sort(chrsta[chruni=="0"])))})

> startDiff <- unlist(startDiffByChr, use.names=FALSE)

> table(cut(startDiff, breaks=c(0,50,99,100,200,1000,max(startDiff))))

(0,50] (50,99] (99,100] (100,200]
1995 2323 1150525 78846

(200,1e+03] (1e+03,7.65e+06]
132674 34888

The majority of unique reporter match positions have an offset of 100 bp between their
start positions.

5 Genome annotation

Later on, found enriched regions will be related to annotated genome features, such as gene
start and end positions. Using the Bioconductor package biomaRt [8], we can obtain an
up-to-date annotation of the mouse genome from the Ensembl data base [9].

> ensembl <- useMart("ensembl", dataset="mmusculus_gene_ensembl")

Checking attributes ... ok
Checking filters ... ok

> gene.ids <- unique(unlist(lapply(as.list(c(1:19,"X","Y")),

+ function(this.chr)

+ getBM(attributes="ensembl_gene_id", filters="chromosome_name",

+ values=this.chr, mart=ensembl)[,1]), use.names=FALSE))

> sel.attributes=c("ensembl_gene_id", "mgi_symbol", "chromosome_name",

+ "strand", "start_position","end_position", "description")

> mm9genes <- getBM(attributes=sel.attributes, filters="ensembl_gene_id",

+ value=gene.ids, mart=ensembl)

For later use, we replace the formal element names retrieved from the data base by simpler
ones.
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> mm9genes$name <- mm9genes$"ensembl_gene_id"

> mm9genes$gene <- mm9genes$"ensembl_gene_id"

> mm9genes$chr <- mm9genes$"chromosome_name"

> mm9genes$symbol <- mm9genes$"mgi_symbol"

> mm9genes$start <- mm9genes$"start_position"

> mm9genes$end <- mm9genes$"end_position"

> mm9genes$feature <- rep("gene",nrow(mm9genes))

Some genes occur in multiples in the table because an Ensembl gene can have more than
one MGI Symbol defined for it. We keep allow only one row in the table per gene and
append additional MGI symbols to the description element of each gene.

> if (any(duplicated(mm9genes$name))){

+ dupl <- unique(mm9genes$name[duplicated(mm9genes$name)])

+ G <- lapply(as.list(dupl), function(this.gene){

+ this.gff <- subset(mm9genes,name == this.gene)

+ if (nrow(unique(this.gff[,c("name","chr","start","end",

+ "description")]))>1) return(this.gff[1,,drop=FALSE])

+ non.zero.gff <- subset(this.gff, nchar(symbol)>0)

+ this.other.sym <- NULL

+ if (nrow(non.zero.gff)> 0){

+ shortest <- which.min(nchar(non.zero.gff$symbol))

+ this.new.sym <- non.zero.gff$symbol[shortest]

+ if (nrow(non.zero.gff)>1)

+ this.other.sym <- paste("Synonyms",

+ paste(non.zero.gff$symbol[-shortest],collapse=","),sep=":")

+ } else { this.new.sym <- "" }

+ this.gff$symbol[1] <- this.new.sym

+ if (!is.null(this.other.sym))

+ this.gff$description[1] <- paste(this.gff$description[1],

+ this.other.sym,sep=";")

+ return(this.gff[1,,drop=FALSE])

+ })

+ mm9genes <- rbind(mm9genes[-which(mm9genes$name %in% dupl),],

+ do.call("rbind",G))

+ }

Finally, we reorder the table rows by gene chromosome and start position.

> mm9genes <- mm9genes[order(mm9genes$chr, mm9genes$start),

+ c("name","chr","strand","start","end","symbol","description","feature")]

> rownames(mm9genes) <- NULL

The resulting table holds the coordinates, Ensembl gene identifiers, MGI symbols, and
description of all the genes annotated for the mm9 mouse assembly. Have a look at a few
example lines from the table.

> mm9genes[sample(seq(nrow(mm9genes)),4),

+ c("name", "chr", "strand", "start", "end", "symbol")]

11



name chr strand start end symbol
8357 ENSMUSG00000064973 14 -1 55068795 55068901
11712 ENSMUSG00000040490 17 1 49071704 49236913 Lrfn2
18028 ENSMUSG00000028212 4 1 11118930 11131640 Ccne2
28581 ENSMUSG00000074183 9 1 78078481 78090489 Gsta1

We also retrieve the Gene Ontology (GO, [10]) annotation for each gene, but discard those
annotations that have only been inferred from electronic annotation (evidence code: IEA),
are based on a non-traceable author statement (NAS) or for which there is no biological
data (ND) available.

> ensembl <- useMart("ensembl", dataset="mmusculus_gene_ensembl")

Checking attributes ... ok
Checking filters ... ok

> ontoGOs <- lapply(as.list(c("biological_process","cellular_component",

+ "molecular_function")), function(onto){

+ ontoBM <- getBM(mart=ensembl, attributes=c("ensembl_gene_id",

+ paste("go",onto,"id", sep="_"),

+ paste("go",onto,"linkage_type", sep="_")),

+ filters="ensembl_gene_id", value=mm9genes$name)

+ names(ontoBM) <- c("ensembl_gene_id","go","evidence_code")

+ ontoBM <- subset(ontoBM,!( evidence_code %in% c("","IEA","NAS","ND")))

+ })

> mm9GO <- do.call("rbind", ontoGOs)

> mm9.gene2GO <- with(mm9GO, split(go, ensembl_gene_id))

Finally, we create a mapping of gene identifiers to reporters that had been mapped into the
gene or its upstream region.

> mm9.g2p <- features2Probes(gff=mm9genes, probeAnno=probeAnno)

> table(cut(listLen(mm9.g2p),breaks=c(-1,0,10,50,100,500,1200)))

(-1,0] (0,10] (10,50] (50,100] (100,500]
14078 875 7887 5932 2660

(500,1.2e+03]
40

This last table shows how many genes have that number of reporters mapped into their
upstream region or inside of them. The numbers of reporters are given in open interval
notation with, e.g., (10,50] meaning 11 to 50 reporters.

For later use, we determine which genes have a sufficient number - arbitrarily we say 5 - of
reporters mapped to their upstream region or inside of them. We also determine which of
these genes have been annotated with at least one GO term.

> arrayGenes <- names(mm9.g2p)[listLen(mm9.g2p)>=5]

> arrayGenesWithGO <- intersect(arrayGenes, names(mm9.gene2GO))
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6 Preprocessing

We derive log2 fold changes Cy5/Cy3 for each reporter and scale these by subtracting
Tukey’s biweight mean from each log2 ratio, the standard scaling procedure suggested by
NimbleGen. We only perform this scaling procedure, since we are not aware of any nor-
malization method that is completely appropriate for ChIP-chip with antibodies against
histone modifications. One common assumption of many normalization methods is that
the variation of almost all reporter levels does not reflect biological variation between sam-
ples/conditions (input, ChIP) but is non-biological variation, e. g., due to differences in
sample processing and hybridization. This assumption probably does not hold in this case,
as the fraction of histones bearing post-translational modifications cannot safely be assumed
to be small.

Each of the four microarrays used contains a unique set of reporters. Thus, we preprocess
the arrays separately by type and only then combine the results into one object holding the
preprocessed readouts for all reporters.

> MAs <- lapply(RGs, function(thisRG)

+ preprocess(thisRG[thisRG$genes$Status=="Probe",],

+ method="nimblegen", returnMAList=TRUE))

> MA <- do.call("rbind",MAs)

> X <- asExprSet(MA)

> sampleNames(X) <- paste(X$Cy5, X$Tissue, sep=".")

The result is an object of class ExpressionSet , the Bioconductor class for storing prepro-
cessed microarray data. Note that first creating an MAList for each array type, combining
them with rbind and then converting the result into an ExpressionSet is only necessary if
the reporters are distributed over more than one microarray design (four in this case).

> show(X)

ExpressionSet (storageMode: lockedEnvironment)
assayData: 1495582 features, 2 samples
element names: exprs

phenoData
sampleNames: H3K4me3.brain, H3K4me3.heart
varLabels and varMetadata description:
SlideNumber: NA
FileNameCy3: NA
...: ...
Tissue: NA
(8 total)

additional varMetadata: varLabel
featureData
featureNames: 16716, 16717, ..., 3906113 (1495582 total)
fvarLabels and fvarMetadata description:
GENE_EXPR_OPTION: NA
PROBE_ID: NA
...: ...
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Figure S5: Normalized reporter intensities for H3K4me3 ChIP around the TSS of the
gene Crmp1 in M. musculus brain and heart cells. The ticks on the genomic coordinate
axis on below indicate genomic positions matched by reporters on the microarray. The blue
box above the genomic coordinate axis marks the position of the gene Crmp1 with its position
above the axis indicating that the gene is located on the Watson strand.

ID: NA
(7 total)

experimentData: use 'experimentData(object)'

Annotation:

7 Preprocessed reporter intensities around the gene Crmp1

We visualize the preprocessed H3K4me3 ChIP-chip reporter-wise readouts around the start
of the Crmp1 gene. H3K4me3 has frequently been shown to be associated to active tran-
scription (e. g. , [4]) and the gene Crmp1 has been reported as being expressed in brain
cells [11].

> plot(X, probeAnno, chrom="5", xlim=c(37.63e6,37.64e6), ylim=c(-3,5),

+ gff=mm9genes, paletteName="Set2")

See the result in Figure S5. In brain cells, the intensities for enrichment of H3K4me3 around
the gene’s start position tend to be positive, while the signal for heart cells is around or
below zero.

8 Smoothing of reporter intensities

To ameliorate specific reporter effects as well as the stochastic noise, we perform a smoothing
over individual reporter intensities before looking for ChIP-enriched regions. A window of
900 bp width is slided along the chromosome, and the reporter level at genomic position x0
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Figure S6: Normalized and smoothed reporter intensities for H3K4me3 ChIP around the
TSS of the gene Crmp1 in M. musculus brain and heart cells.

is replaced by the median over the intensities of those reporters mapped inside the window
centered at x0.

Factors taken into account in the choice of the sliding-window width were the size distribu-
tion of DNA fragments after sonication (commonly around 1 kbp) and the spacing between
reporter matches on the genome (mostly 100 bp). We chose a window-width of 900 bp,
which was slightly less than the average fragment size and meant that most windows in-
cluded >= 5 reporters. With this window width, we could be sure that the signal is not
smoothed over many fragments and was calculated as the median over ≥ 5 reporters. At any
position x0 at which the window comprised less than three reporter-matched positions, the
smoothed level was flagged as missing, as the data was insufficient to provide information
about ChIP enrichment at such a position.

> smoothX <- computeRunningMedians(X, probeAnno=probeAnno,

+ modColumn="Tissue", allChr=allChrs, winHalfSize=450, min.probes=5)

> sampleNames(smoothX) <- paste(sampleNames(X),"smoothed",sep=".")

> combX <- cbind2(X, smoothX)

Compare the smoothed reporter intensities with the non-smoothed ones around the start
of the gene Crmp1.

> plot(combX, probeAnno, chrom="5", xlim=c(37.63e6,37.64e6),

+ gff=mm9genes, ylim=c(-3,5),

+ colPal=c(brewer.pal(8,"Set2")[1:2],brewer.pal(8,"Dark2")[1:2]))

See Figure S6 for a comparison of the original and smoothed reporter levels around the
gene Crmp1.
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9 Alternative methods for finding ChIP-enriched regions

We have presented the algorithm of package Ringo for finding Chip-enriched regions in
ChIP-Chip against H3K4me3. There are important differences between ChIP-chip against
histone modifications and ChIP-chip against transcription factors. With transcription fac-
tors, it is safe to assume that the majority of genomic regions will not show a real binding
site for that transcription factor. Hence, most reporters on the microarray will not indicate
true enrichment, at least not when the tiling microarrays represent the whole genome or
an unbiased subset of the genome. This situation is beneficial for the data preprocessing
and for identifying ChIP-enriched regions, since most of the data can safely be assumed
to show non-enrichment. With histone modifications, on the other hand, the degree and
extent to which the genome shows a certain histone modification can only be guessed at
the present time. This situation make estimation of the background distribution of reporter
levels under non-enrichment difficult.

Moreover, transcription factor binding sites are highly localized point effects, meaning that
the transcription factor binds at one specific position directly or indirectly to the DNA
and the signal will show a peak shape around this position. The highest point of the
signal peak will be as close to the actual binding site as the reporter-tiling on the microar-
ray allows (see [12] for an extended discussion and for a derived model of TF ChIP-chip
data). With histone modifications, the enzyme which modifies the histone tail is unlikely
to act on only one single histone protein, but will modify a number of nearby histones. A
single-nucleosome resolution study of histone modifications in Saccharomyces cerevisiae has
shown that modifications occur in the form of broad modified domains and that adjacent
nucleosomes mostly share the same modifications [13].

Many other suggested algorithms for finding ChIP-enriched regions are based on the as-
sumption that the fraction of reporters that show enrichment is very small and are therefore
not applicable to ChIP-chip against histone modifications. However, the algorithm in Ringo
is by no means the only suitable algorithm for this task. Users can choose to apply other
algorithms that are contained in other R/Bioconductor packages. In the following, we
demonstrate an example application of one other algorithm to the data.

CMARRT The package CMARRT [14] can be obtained from http://www.stat.wisc.
edu/~kuanp/CMARRT . Based on the example source code in the package vignette, we use
CMARRT to identify which regions are enriched by ChIP against H3K4me3 in brain cells.

> cmarrtDat <- do.call("rbind", lapply(as.list(allChrs), function(chr){

+ areUni <- probeAnno[paste(chr,"unique",sep=".")]==0

+ chrIdx <- match(probeAnno[paste(chr,"index",sep=".")][areUni],

+ featureNames(X))

+ chrDat <- data.frame("chr"=rep(chr, sum(areUni)),

+ "start"=probeAnno[paste(chr,"start",sep=".")][areUni],

+ "stop"=probeAnno[paste(chr,"end",sep=".")][areUni],

+ "logR"=exprs(X)[chrIdx,1],

+ stringsAsFactors=FALSE)

+ }))

> cmarrtRes <- cmarrt.ma(cmarrtDat, M=0.5, frag.length=900,

+ window.opt = "fixed.gen.dist")

> cmarrtReg <- cmarrt.peak(cmarrtRes, alpha=0.05, method="BY", minrun=4)
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> cmarrtRegDf <- lapply(cmarrtReg, as.data.frame)$cmarrt.bound

> names(cmarrtRegDf)[1:3] <- c("chr","start","end")

These are a few of the ChIP-enriched regions for H3K4me3 in brain cells, as identified by
CMARRT :

> head(cmarrtRegDf)

chr start end n.probe min.pv ave.pv
1 10 4521803 4523152 14 9.585187e-09 2.532042e-05
2 10 4540005 4541530 15 7.250199e-08 6.426842e-05
3 10 4795875 4797192 13 1.393900e-11 2.201104e-05
4 10 4978403 4979752 14 2.373338e-08 3.682241e-05
5 10 5151588 5152337 8 2.276438e-09 2.914762e-05
6 10 5913414 5914925 14 1.736376e-08 4.641960e-06

We assess the overlap between ChIP-enriched regions identified by the two methods, exem-
plarily for chromosome 9.

> ringoChersChr9 <- subset(chersXD, chr=="9" & cellType=="brain")

> cmarrtChersChr9 <- subset(cmarrtRegDf, chr=="9")

> dim(ringoChersChr9)

[1] 675 9

> dim(cmarrtChersChr9)

[1] 627 6

The overlap between two ChIP-enriched regions Ri,Ringo and Rj,CMARRT , which were iden-
tified by Ringo and CMARRT , respectively, is computed as

Ov (Ri,Ringo , Rj,CMARRT ) =
length (Ri,Ringo ∩Rj,CMARRT )

min (length(Ri,h1), length(Rj,h2))
(1)

where“∩”denotes region intersection and length(Ri) is the length of region Ri in nucleotides.

> chersChr9Overlap <- as.matrix(

+ regionOverlap(ringoChersChr9, cmarrtChersChr9))

> minRegChr9Len <- outer(with(ringoChersChr9, end-start+1),

+ with(cmarrtChersChr9, end-start+1), pmin)

> fracChr9Overlap <- chersChr9Overlap /minRegChr9Len

> summary(apply(fracChr9Overlap, 1, max))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.9721 0.9894 0.8912 1.0000 1.0000

One average, a ChIP-enriched region identified by Ringo is overlapped to ≈ 91% by a
ChIP-enriched region identified by CMARRT . The identified regions are highly consistent
between the two methods.
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10 Comparing ChIP-enrichment between the tissues

First, we have taken a gene-centric position and consider which genes are associated to each
tissue specifically.

> brainGenes <- getFeats(chersX[sapply(chersX, cellType)=="brain"])

> heartGenes <- getFeats(chersX[sapply(chersX, cellType)=="heart"])

> brainOnlyGenes <- setdiff(brainGenes, heartGenes)

> heartOnlyGenes <- setdiff(heartGenes, brainGenes)

10.1 Enriched-region-wise comparison

We compute the base-pair overlap between enriched regions found in brain cells with those
found in heart cells. We define that region Ri is defined to overlap with region Rj if

length(Ri ∩Rj) ≥ 0.7 ·min(length(Ri), length(Rj)) (2)

where length(Ri) denotes the length of region Ri in nucleotides. We define an enriched
region as tissue-specific if it does not overlap with any region from another tissue according
to the definition above.

> brainRegions <- subset(chersXD, cellType=="brain")

> heartRegions <- subset(chersXD, cellType=="heart")

> chersOBL <- as.matrix(regionOverlap(brainRegions, heartRegions))

> minRegLen <- outer(with(brainRegions, end-start+1),

+ with(heartRegions, end-start+1), pmin)

> fracOverlap <- chersOBL/minRegLen

> brainSpecReg <- brainRegions[rowMax(fracOverlap)<0.7,]

> heartSpecReg <- heartRegions[rowMax(t(fracOverlap))<0.7,]

> mean(is.element(unlist(strsplit(brainSpecReg$features,

+ split="[[:space:]]"), use.names=FALSE), brainOnlyGenes))

[1] 0.799639

> selGenes <- intersect(unlist(strsplit(brainSpecReg$features,

+ split="[[:space:]]"), use.names=FALSE), heartGenes)

Note that only 80% of the genes related to non-overlapping ChIP-enriched regions show
such regions in brain cells only. The other genes show such regions in both tissues but their
positions differ between the tissues.

We can assess whether these 690 genes show a typical positioning of H3K4me3 to each
other, such as ’in heart cells they display H3K4me3 enriched regions upstream of the genes,
while in brain cells the show H3K4me3 between gene start and stop coordinates’. We use
the genes-to-reporters mapping that we have created earlier for this investigation.
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Figure S7: Densities of selected quantiles of the smoothed fold-changes for H3K4me3 ChIP
in M. musculus brain and heart cells for genes that show H3K4me3 enriched regions in both
tissues but in separate positions.

> targetPos <- seq(-5000, 10000, by=250)

For each gene, we assess the genomic region from 5kb upstream to 10 kb downstream of the
gene start, obtain the fold-change values for each distance bin and for all selected genes,
summarize the fold-changes by specified quantiles and obtain densities of fold-change over
distance to gene start. We normalize these densities of the observed fold changes by the
densities of mapped reporters.

> selQop <- quantilesOverPositions(smoothX,

+ selGenes=selGenes, quantiles=c(0.5, 0.9),

+ g2p=mm9.g2p, positions=targetPos)

> plot(selQop, c("green","orange"))

See Figure S7 for the densities. There are no clear tissue-wise trends where these enriched
regions are in relation to the gene start coordinate. In both tissues, the smoothed intensities
on average are highest within 1kb after the gene start coordinate, while in brain cells the
density shows a second, smaller cher within 1kb upstream of the gene start.

We also investigate genes that have separate enriched regions in both tissues for over-
represented GO annotations.

> sepRegRes <- sigGOTable(selGenes=selGenes, gene2GO=mm9.gene2GO,

+ universeGenes=arrayGenesWithGO)

> print(sepRegRes)

See the results in Table S1.
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GO.ID Term Annotated Significant Expected p.value
GO:0045648 positive regulation of erythrocyte diffe... 5 4 0.26 3.3e-05
GO:0043506 regulation of JUN kinase activity 14 6 0.72 3.8e-05
GO:0050789 regulation of biological process 2411 156 124.39 5.2e-05
GO:0045176 apical protein localization 8 4 0.41 0.00041
GO:0007267 cell-cell signaling 258 26 13.31 0.00067

Table S1: GO terms that are significantly over-represented among genes that show different
H3K4me3 regions in heart and brain cells

11 ChIP results and expression microarray data

Barrera et al. [5] also provide expression microarray data for five their analyzed M. musculus
tissues.

11.1 Preprocess the microarray expression data

The data were obtained from the supplementary web page to the publication [5], imported
into R and preprocessed as follows.

> library("affy")

> library("mouse4302cdf")

> AB <- ReadAffy(celfile.path=system.file("expression",

+ package="ccTutorial"))

> barreraExpressionX <- mas5(AB)

> barreraExpressionX$Tissue <- sapply(

+ strsplit(sampleNames(barreraExpressionX),split="\\."),"[",3)

11.2 Map Ensembl identifier to Affymetrix probe sets

The expression data were generated using the Mouse_430_2 oligonucleotide microarray plat-
form from Affymetrix. Using biomaRt, we create a mapping of Ensembl gene identifiers to
the probe set identifiers on that microarray design.

> ensembl <- useMart("ensembl", dataset="mmusculus_gene_ensembl")

> bmRes <- getBM(attributes=c("ensembl_gene_id","affy_mouse430_2"),

+ filters="ensembl_gene_id", value=arrayGenes,

+ mart=ensembl)

> bmRes <- subset(bmRes, nchar(affy_mouse430_2)>0)

> arrayGenesToProbeSets <- split(bmRes[["affy_mouse430_2"]],

+ bmRes[["ensembl_gene_id"]])

How many probe sets are mapped to each gene?

> table(listLen(arrayGenesToProbeSets))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17
7426 3860 1770 770 343 165 76 34 22 12 6 4 1 1 1 1
22
1
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Software versions

This supplement was generated using the following package versions:

� R version 2.10.0 Under development (unstable) (2009-08-16 r49268),
x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, grid, methods, stats, tools, utils

� Other packages: affy 1.23.5, AnnotationDbi 1.7.11, Biobase 2.5.6, biomaRt 2.1.0,
ccTutorial 1.0.13, CMARRT 1.3, codetools 0.2-2, DBI 0.2-4, digest 0.3.1, GO.db 2.3.0,
graph 1.23.3, lattice 0.17-25, limma 2.19.4, Matrix 0.999375-30, mouse4302cdf 2.4.0,
RColorBrewer 1.0-2, Ringo 1.9.10, RSQLite 0.7-2, SparseM 0.80, topGO 1.13.1,
weaver 1.11.0, xtable 1.5-5

� Loaded via a namespace (and not attached): affyio 1.13.3, annotate 1.23.1, genefilter 1.25.7,
KernSmooth 2.23-2, preprocessCore 1.7.5, RCurl 1.2-0, splines 2.10.0, survival 2.35-4,
XML 2.6-0
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