
tigre User Guide

Antti Honkela, Pei Gao,
Jonatan Ropponen, Miika-Petteri Matikainen,

Magnus Rattray, and Neil D. Lawrence

October 13, 2014

1 Abstract

The tigre package implements our methodology of Gaussian process differential equation models for analysis of
gene expression time series from single input motif networks. The package can be used for inferring unobserved
transcription factor (TF) protein concentrations from expression measurements of known target genes, or for ranking
candidate targets of a TF.

2 Citing tigre

The tigre package is based on a body of methodological research. Citing tigre in publications will usually involve
citing one or more of the methodology papers [1, 2, 3] that the software is based on as well as citing the software
package itself [4].

3 Introductory example analysis - Drosophila development

In this section we introduce the main functions of the puma package by repeating some of the analysis from the
PNAS paper [1]1.

3.1 Installing the tigre package

The recommended way to install tigre is to use the biocLite function available from the bioconductor website.
Installing in this way should ensure that all appropriate dependencies are met.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("tigre")

To load the package start R and run

> library(tigre)

3.2 Loading the data

To get started, you need some preprocessed time series expression data. If the data originates from Affymetrix arrays,
we highly recommend processing it with mmgmos from the puma package. This processing extracts error bars on
the expression measurements directly from the array data to allow judging the reliability of individual measurements.
This information is directly utilised by all the models in this package.

1Note that the results reported in the paper were run using an earlier version of this package for MATLAB, so there can be minor
differences.

1

http://bioconductor.org/packages/release/bioc/html/tigre.html
http://bioconductor.org/packages/release/bioc/html/tigre.html
http://bioconductor.org/packages/release/bioc/html/tigre.html
http://bioconductor.org/packages/release/bioc/html/tigre.html
http://bioconductor.org/packages/release/bioc/html/tigre.html
http://bioconductor.org/packages/release/bioc/html/tigre.html


tigre User Guide 2

To start from scratch on Affymetrix data, the .CEL files from ftp://ftp.fruitfly.org/pub/embryo_tc_array_

data/ may be processed using:

> # Names of CEL files

> expfiles <- c(paste("embryo_tc_4_", 1:12, ".CEL", sep=""),

+ paste("embryo_tc_6_", 1:12, ".CEL", sep=""),

+ paste("embryo_tc_8_", 1:12, ".CEL", sep=""))

> # Load the CEL files

> expdata <- ReadAffy(filenames=expfiles,

+ celfile.path="embryo_tc_array_data")

> # Setup experimental data (observation times)

> pData(expdata) <- data.frame("time.h" = rep(1:12, 3),

+ row.names=rownames(pData(expdata)))

> # Run mmgMOS processing (requires several minutes to complete)

> drosophila_mmgmos_exprs <- mmgmos(expdata)

> drosophila_mmgmos_fragment <- drosophila_mmgmos_exprs

This data needs to be further processed to make it suitable for our models. This can be done using

> drosophila_gpsim_fragment <-

+ processData(drosophila_mmgmos_fragment,

+ experiments=rep(1:3, each=12))

Here the last argument specifies that we have three independent time series of measurements.

In order to save time with the demos, a part of the result of this is included in this package and can be loaded using

> data(drosophila_gpsim_fragment)

3.3 Learning individual models

Let us now recreate some the models shown in the plots of the PNAS paper [1]:

> # FBgn names of target genes

> targets <- c('FBgn0003486', 'FBgn0033188', 'FBgn0035257')

> # Load gene annotations

> library(annotate)

> aliasMapping <- getAnnMap("ALIAS2PROBE",

+ annotation(drosophila_gpsim_fragment))

> # Get the probe identifier for TF 'twi'

> twi <- get('twi', env=aliasMapping)

> # Load alternative gene annotations

> fbgnMapping <- getAnnMap("FLYBASE2PROBE",

+ annotation(drosophila_gpsim_fragment))

> # Get the probe identifiers for target genes

> targetProbes <- mget(targets, env=fbgnMapping)

> st_models <- list()

> # Learn single-target models for each gene individually

> for (i in seq(along=targetProbes)) {

+ st_models[[i]] <- GPLearn(drosophila_gpsim_fragment,

+ TF=twi, targets=targetProbes[i],

+ quiet=TRUE)

+ }

> # Learn a joint model for all targets

> mt_model <- GPLearn(drosophila_gpsim_fragment, TF=twi,

+ targets=targetProbes,

+ quiet=TRUE)

> # Display the joint model parameters

> show(mt_model)

ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/
ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/


tigre User Guide 3

Gaussian process driving input single input motif model:

Number of time points:

Driving TF: 143396_at

Target genes (3):

148227_at

152715_at

147995_at

Basal transcription rate:

Gene 1: 23.0628118698704

Gene 2: 0.00777234767448941

Gene 3: 9.61284386889363e-07

Kernel:

Multiple output block kernel:

Block 1

Normalised version of the kernel.

RBF inverse width: 0.7713904 (length scale 1.138578)

RBF variance: 1.756029

Block 2

Normalised version of the kernel

DISIM decay: 0.07312269

DISIM inverse width: 0.7713904 (length scale 1.138578)

DISIM Variance: 1

SIM decay: 1472.725

SIM Variance: 0.002370256

RBF Variance: 1.756029

Block 3

Normalised version of the kernel

DISIM decay: 0.07312269

DISIM inverse width: 0.7713904 (length scale 1.138578)

DISIM Variance: 1

SIM decay: 0.4974917

SIM Variance: 0.03221548

RBF Variance: 1.756029

Block 4

Normalised version of the kernel

DISIM decay: 0.07312269

DISIM inverse width: 0.7713904 (length scale 1.138578)

DISIM Variance: 1

SIM decay: 0.0001589233

SIM Variance: 0.003267953

RBF Variance: 1.756029

Log-likelihood: -31.84627

> # Learn a model without TF mRNA and TF protein translation

> nt_model <- GPLearn(drosophila_gpsim_fragment,

+ targets=c(twi, targetProbes[1:2]), quiet=TRUE)

3.4 Visualising the models

The models can be plotted using commands like

> GPPlot(st_models[[1]], nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))

> GPPlot(mt_model, nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))

> GPPlot(nt_model, nameMapping=getAnnMap("FLYBASE",

+ annotation(drosophila_gpsim_fragment)))



tigre User Guide 4

2 4 6 8 10

0.
00

0
0.

00
8

Time

Inferred TF Protein Concentration

2 4 6 8 10

0
1

2
3

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0
1

2
3

Time

spo (148227_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
00

0
0.

00
8

Time

Inferred TF Protein Concentration

2 4 6 8 10

0
1

2
3

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0
1

2
3

4

Time

spo (148227_at) mRNA

●
●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
00

0
0.

00
6

Time

Inferred TF Protein Concentration

2 4 6 8 10

0.
0

1.
5

3.
0

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10

0.
0

1.
5

3.
0

Time

spo (148227_at) mRNA

●
●

●

●

●

●
● ● ● ● ● ●

Figure 1: Single target models for the gene FBgn0003486. The models for each repeated time series are shown in
different columns.

3.5 Ranking the targets

Bulk ranking of candidate targets can be accomplished using

> ## Rank the targets, filtering weakly expressed genes with average

> ## expression z-score below 1.8

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ testTargets=targetProbes,

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

> scores <- sort(scores, decreasing=TRUE)

> write.scores(scores)

"log-likelihood" "null_log-likelihood"

"147995_at" 6.75316505600457 -487.893231050121

"148227_at" -1.48337994116984 -73.4806804255218

"152715_at" -1.51379773568251 -539.73619673943

To save space, GPRankTargets does not return the models by default. If those are needed later e.g. for plotting,
they can be recreated using the inferred parameters saved together with the ranking using



tigre User Guide 5

2 4 6 8 10 12

0
1

2
3

4

Time

Inferred TF Protein Concentration

2 4 6 8 10 12

0
1

2
3

Time

twi (143396_at) mRNA (input)

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0
1

2
3

Time

spo (148227_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

Drat (152715_at) mRNA

● ● ●
●

●

●

● ● ●

●

●

●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

CG12011 (147995_at) mRNA

● ● ● ● ●

●
●

●
●

●
●

●

Figure 2: Multiple-target model for all the example genes. The call creates independent figures for each repeated
time series.

> topmodel <- generateModels(drosophila_gpsim_fragment,

+ scores[1])

> show(topmodel)

[[1]]

Gaussian process driving input single input motif model:

Number of time points:

Driving TF: 143396_at

Target genes (1):

147995_at

Basal transcription rate:

Gene 1: 0.000141988952743346

Kernel:

Multiple output block kernel:

Block 1

Normalised version of the kernel.

RBF inverse width: 0.7604155 (length scale 1.146765)

RBF variance: 1.808011

Block 2

Normalised version of the kernel

DISIM decay: 0.02024595

DISIM inverse width: 0.7604155 (length scale 1.146765)



tigre User Guide 6

2 4 6 8 10 12

0
1

2
3

Time

Inferred TF Protein Concentration

2 4 6 8 10 12

0
1

2
3

Time

twi (143396_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0
1

2
3

Time

spo (148227_at) mRNA

● ●

●

●

●

● ● ● ● ● ● ●

2 4 6 8 10 12

0.
0

1.
0

2.
0

Time

Drat (152715_at) mRNA

● ● ●
●

●

●

● ● ●

●

●

●

Figure 3: Multiple-target model without TF protein translation for selected example genes without. The call creates
independent figures for each repeated time series.

DISIM Variance: 1

SIM decay: 0.02016988

SIM Variance: 0.002793356

RBF Variance: 1.808011

Log-likelihood: 6.753165

3.6 Ranking using known targets with multiple-target models

Ranking using known targets with multiple-target models can be accomplished simply by adding the knownTargets

argument

> ## Rank the targets, filtering weakly expressed genes with average

> ## expression z-score below 1.8

> scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

+ knownTargets=targetProbes[1],

+ testTargets=targetProbes[2:3],

+ options=list(quiet=TRUE),

+ filterLimit=1.8)

> ## Sort the returned list according to log-likelihood

> scores <- sort(scores, decreasing=TRUE)

> write.scores(scores)



tigre User Guide 7

"log-likelihood" "null_log-likelihood"

"152715_at" -28.0630300387158 -539.73619673943

"147995_at" -240.364785399555 -487.893231050121

3.7 Running ranking in a batch environment

GPRankTargets can be easily run in a batch environment using the argument scoreSaveFile. This indicates a file
to which scores are saved after processing each gene. Thus one could, for example, split the data to, say, 3 separate
blocks according to the reminder after division by 3 and run each of these independently. The first for loop could
then be run in parallel (e.g. as separate jobs on a cluster), as each step is independent of the others. After these
have all completed, the latter loop could be used to gather the results.

> for (i in seq(1, 3)) {

+ targetIndices <- seq(i,

+ length(featureNames(drosophila_gpsim_fragment)), by=3)

+ outfile <- paste('ranking_results_', i, '.Rdata', sep='')

+ scores <- GPrankTargets(preprocData, TF=twi,

+ testTargets=targetIndices,

+ scoreSaveFile=outfile)

+ }

> for (i in seq(1, 3)) {

+ outfile <- paste('ranking_results_', i, '.Rdata', sep='')

+ load(outfile)

+ if (i==1)

+ scores <- scoreList

+ else

+ scores <- c(scores, scoreList)

+ }

> show(scores)

4 Experimental feature: Using non-Affymetrix data

Using non-Affymetrix data, or data without associated uncertainty information for the expression data in general,
requires more because of two reasons

� noise variances need to be estimated together with other model parameters; and
� weakly expressed genes cannot be easily filtered a priori.

The first of these is automatically taken care of by all the above functions, but the latter requires some extra steps
after fitting the models.

In order to get started, you need to create an ExpressionTimeSeries object of your data set. This can be
accomplished with the function

> procData <- processRawData(data, times=c(...),

+ experiments=c(...))

Filtering of weakly expressed genes requires more care and visualising the fitted models is highly recommended to
avoid mistakes.

Based on initial experiments, it seems possible to perform the filtering based on the statistic loglikelihoods(scores)
- baseloglikelihoods(scores), but selection of suitable threshold is highly dataset specific.

5 Exporting results to an SQLite database

The results of the analysis can be stored to an SQLite database. The database can then be browsed and queried
using the tigreBrowser result browser. The data is inserted to the database by using export.scores function.

http://users.ics.tkk.fi/ahonkela/tigre/


tigre User Guide 8

An example of the usage of export.scores is given below

> export.scores(scores, datasetName='Drosophila',

+ experimentSet='GPSIM/GPDISIM',

+ database='database.sqlite',

+ preprocData=drosophila_gpsim_fragment,

+ models=models,

+ aliasTypes=c('SYMBOL', 'GENENAME', 'FLYBASE', 'ENTREZID'))

In this example, scores is the return value of GPRankTargets, ’Drosophila’ is the name of a dataset in database
and ’GPSIM/GPDISIM’ is the name of an experiment set in database. In general, results with the same dataset name
are considered to be part of same dataset. That is, if no results with a given dataset are already in the database,
a new dataset entry is created. On the other hand, if the database already contains results with the same dataset
name, new results will be added to the old dataset.

Also, results from different experiments can be combined into a set of experiments by giving them the same experiment
set name. This is useful as a result browser may display results depending on the experiment set.

database.sqlite is the filename of a database file. The file will be created if it does not exist already.

The function will create model figures and add them to the database if preprocessed data is given. In this example,
models are given to the function as a parameter. This is not necessary, however, as the function can create models
if preprocessed data is supplied. Nevertheless, the function will finish faster if it does not have to (re-)create models.

In addition to log likelihoods and z-scores, this function will also export different gene names and aliases to the
database. By default, the function will read GENENAME, SYMBOL and ENTREZID datas from relevant annotations
and insert those into the database. The function takes also aliasTypes argument which is used to define which
annotation information is inserted. In the example above, FLYBASE gene numbers are also added to the genes in
the database. The insertion of alias annotations and z-scores requires that the preprocessed data is supplied.

6 Session Info

> sessionInfo()

R version 3.1.1 (2014-07-10)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=fi_FI.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8

[5] LC_MONETARY=fi_FI.UTF-8 LC_MESSAGES=en_GB.UTF-8

[7] LC_PAPER=fi_FI.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices

[6] utils datasets methods base

other attached packages:

[1] drosgenome1.db_3.0.0 org.Dm.eg.db_3.0.0

[3] RSQLite_0.11.4 DBI_0.3.1

[5] annotate_1.43.5 XML_3.98-1.1

[7] AnnotationDbi_1.27.16 GenomeInfoDb_1.1.23

[9] IRanges_1.99.28 S4Vectors_0.2.4

[11] tigre_1.19.1 Biobase_2.25.0

[13] BiocGenerics_0.11.5

loaded via a namespace (and not attached):

[1] BiocStyle_1.3.14 bitops_1.0-6 caTools_1.17.1



tigre User Guide 9

[4] gdata_2.13.3 gplots_2.14.2 gtools_3.4.1

[7] KernSmooth_2.23-13 tools_3.1.1 xtable_1.7-4

References

[1] Antti Honkela, Charles Girardot, E. Hilary Gustafson, Ya-Hsin Liu, Eileen E M Furlong, Neil D Lawrence, and
Magnus Rattray. Model-based method for transcription factor target identification with limited data. Proc
Natl Acad Sci U S A, 107(17):7793–7798, Apr 2010. URL: http://dx.doi.org/10.1073/pnas.0914285107,
doi:10.1073/pnas.0914285107.

[2] Pei Gao, Antti Honkela, Magnus Rattray, and Neil D Lawrence. Gaussian process modelling of latent chemical
species: applications to inferring transcription factor activities. Bioinformatics, 24(16):i70–i75, Aug 2008. URL:
http://dx.doi.org/10.1093/bioinformatics/btn278, doi:10.1093/bioinformatics/btn278.

[3] Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional regulation using Gaussian
processes. In B. Schölkopf, J. C. Platt, and T. Hofmann, editors, Advances in Neural Information Processing
Systems, volume 19, pages 785–792. MIT Press, Cambridge, MA, 2007.

[4] Antti Honkela, Pei Gao, Jonatan Ropponen, Magnus Rattray, and Neil D Lawrence. tigre: Transcription factor in-
ference through gaussian process reconstruction of expression for bioconductor. Bioinformatics, 27(7):1026–1027,
Apr 2011. URL: http://dx.doi.org/10.1093/bioinformatics/btr057, doi:10.1093/bioinformatics/
btr057.

http://dx.doi.org/10.1073/pnas.0914285107
http://dx.doi.org/10.1073/pnas.0914285107
http://dx.doi.org/10.1093/bioinformatics/btn278
http://dx.doi.org/10.1093/bioinformatics/btn278
http://dx.doi.org/10.1093/bioinformatics/btr057
http://dx.doi.org/10.1093/bioinformatics/btr057
http://dx.doi.org/10.1093/bioinformatics/btr057

	1 Abstract
	2 Citing tigre
	3 Introductory example analysis - Drosophila development
	3.1 Installing the tigre package
	3.2 Loading the data
	3.3 Learning individual models
	3.4 Visualising the models
	3.5 Ranking the targets
	3.6 Ranking using known targets with multiple-target models
	3.7 Running ranking in a batch environment

	4 Experimental feature: Using non-Affymetrix data
	5 Exporting results to an SQLite database
	6 Session Info

