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1 Introduction

1.1 The origin and purpose of GOexpress

The idea leading to the GOexpress R package emerged from a set of plotting
functions I regularly copy-pasted across various complex multifactorial tran-
scriptomics studies from both microarray and RNA-seq platforms. Those func-
tions were repeatedly used to visualise the expression profile of genes across
groups of samples, to annotate technical gene identifiers from both microarray
and RNA-seq platforms (i.e. probesets, Ensembl gene identifiers) with their
associated gene name, and to evaluate the clustering of samples based on genes
participating in a common cellular function or location (i.e. gene ontology).
While developing the GOexpress package and discussing its features with col-
leagues and potential users, a few more features were added, to enhance and
complement the initial functions, leading to the present version of the package.

Complex multifactorial experiments have become the norm in many research
fields, thanks to the decrease in cost of high-throughput transcriptomics plat-
forms and the barcoding/multiplexing of samples on the RNA-seq platform.
While much effort has been (correctly!) spent on the development of adequate
statistical frameworks for the processing of raw expression data, much of the
genewise visualisation is left to the end-user. However, data summarisation and
visualisation can be a daunting task in multifactorial experiments, or require
large amounts of copy-pasting to investigate the expression profile of a handful
or genes and cellular pathways.

Tested on multiple RNA-seq and microarray datasets, GOexpress offers an
extendable set of data-driven plotting functions readily applicable to the output
of widely used analytic packages estimating (differential) gene expression. Once
the initial analysis and filtering of GOexpress results is complete — literaly
two command lines —, each gene and gene ontology is accessible by a single
line of code to produce high-quality graphics. In short, the GOexpress package
is a software package developed based on real experimental datasets to ease
the visualisation and interpretation of multifactorial transcriptomics data by
bioinformaticians and biologists, while striving to keep it a simple, fast, and
intuitive toolkit.

Notably, the use of the biomaRt package enables GOexpress to support and
annotate gene expression matrix from any species and any microarray platform
present in the Ensembl BioMart:

http://www.ensembl.org/biomart/martview.
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1.2 Purpose of this document

This User’s Guide was intended as a helpful description of the main features
implemented in the GOexpress package, as well as a tutorial taking the user
through a typical analysis pipeline that GOexpress was designed for. While
an example usage will be provided for each function of the package, the many
arguments of each function cannot realistically be demonstrated in this Guide,
and we kindly ask users to also read the individual R vignettes accompanying
the corresponding package functions for further details.

2 Before you start

2.1 Installation

Installing GOexpress should be as easy as running the two lines below:

> source("http://bioconductor.org/biocLite.R")

> biocLite("GOexpress")

Installation issues should be reported to the Bioconductor mailing list.

2.2 Getting help

The GOexpress package is still at an early stage of development and may require
some fine-tuning or yet undetected bug fixes. Please contact the maintainer with
a copy of the error message and the command run.

Despite our efforts to repeatedly test the GOexpress package on in-house
datasets of both microarray and RNA-seq platforms, and of human and bovine
origin, many of the species and microarrays present in the Ensembl BioMart
have not been tested yet. Do contact the package maintainer if you feel that
the error is on our part:

> maintainer("GOexpress")

[1] "Kevin Rue-Albrecht <kevin.rue@ucdconnect.ie>"

Interesting suggestions for additional package functions, or improvement of
existing ones are most welcome and may be implemented when time allows. Al-
ternatively, we also encourage users to fork the GitHub repository of the project,
develop and test their own feature(s), and finally generate a pull request to inte-
grate it to the original repository (https://github.com/kevinrue/GOexpress).

As for all Bioconductor packages, the Bioconductor support site is the best
place to seek advice with a large and active community of Bioconductor users.
More detailed information is available at http://www.bioconductor.org/help/support.

2.3 Citing GOexpress

The work underlying GOexpress has not been formally published yet. A manuscript
is in preparation and will be submitted to a bioinformatics journal in due course.
In the meantime, users of the package are encouraged to cite the GOexpress

package using the citation method of the utils package, as follows:
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> citation(package="GOexpress")

To cite package ‘GOexpress’ in publications use:

Kevin Rue-Albrecht (2014). GOexpress: Visualise microarray and RNAseq

data using gene ontology annotations. R package version 1.0.1.

https://github.com/kevinrue/GOexpress-release

A BibTeX entry for LaTeX users is

@Manual{,

title = {GOexpress: Visualise microarray and RNAseq data using gene ontology annotations},

author = {Kevin Rue-Albrecht},

year = {2014},

note = {R package version 1.0.1},

url = {https://github.com/kevinrue/GOexpress-release},

}

3 Quick start

3.1 Input data

Despite their different underlying technologies, microarray and RNA-seq ana-
lytic pipelines typically yield a matrix measuring the expression level of each
gene in each sample. Commonly, this expression matrix will be filtered to retain
only genes qualified as “informative” (e.g. > 1 cpm in at least N replicates;
N being the number of replicates for a given set of experimental conditions);
genes lowly expressed are removed to limit the False Discovery Rate (FDR) of
differentially expressed genes induced by the larger variability of expression at
the lower end of the dynamic range.

GOexpress requires this prefiltered normalised expression matrix to be ac-
companied by an AnnotatedDataFrame object of the Biobase package provid-
ing phenotypic information for each of those samples (e.g. unique identifier,
treatment, time-point). GOexpress expects those two variables in an Expres-

sionSet container of the Biobase package, both simplifying the manipulation
of the data and, most importantly, ensuring interoperatibility with other pack-
ages that handle Bioconductor ExpressionSet objects. The other fields of the
ExpressionSet container may be left empty as GOexpress does not currently
access them.

To use the analytic part of the GOexpress package, the phenotypic data-
frame — phenodata slot of the ExpressionSet — must contain at least one
column containing an experimental factor made of two or more levels in the
strict meaning of “factor” and “levels” in the R programming language. The
above ExpressionSet and the name of the column containing such a factor are
the minimal two input variables required for the GO_analyse method to work.
Additional arguments may be required, in particular for microarray datasets,
but those are discussed later in section 3.2.

In the examples below, we will use the sample dataset AlvMac provided with
the package and made of a subset of 100 bovine Ensembl gene identifiers (rows)
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measured in 117 samples (columns). This sample data includes a data-frame
detailing a number of phenotypic information fields describing each sample.

Let us load those two variables in the workspace, and load the GOexpress

packge as well:

> data(AlvMac) # import the training dataset

> library(GOexpress) # load the GOexpress package

Now, the expression matrix and phenotypic data of the ExpressionSet con-
tainer can be accessed using dedicated methods from the Biobase package:

> exprs(AlvMac)[1:5,1:5] # Subset of the expression data

N1178_CN_24H N1178_CN_2H N1178_CN_48H N1178_CN_6H

ENSBTAG00000020733 1.575566 1.72415180 0.9304433 1.7318466

ENSBTAG00000006240 7.328855 7.05983676 7.5340557 6.8728357

ENSBTAG00000007616 0.317048 0.12274232 -0.4276224 -0.3592233

ENSBTAG00000002921 3.911831 4.31849784 4.3629270 4.3152549

ENSBTAG00000023938 1.307170 -0.08024698 0.9304433 0.6832164

N1178_MB_24H

ENSBTAG00000020733 1.8419688

ENSBTAG00000006240 7.5894739

ENSBTAG00000007616 -0.3215346

ENSBTAG00000002921 3.9548748

ENSBTAG00000023938 1.4408185

> head(pData(AlvMac)) # Subset of the phenotypic information

File Sample Animal Treatment Time Group Timepoint

N1178_CN_24H N1178_CN_24H N1178_CN_24H N1178 CN 24H CN_24H 24

N1178_CN_2H N1178_CN_2H N1178_CN_2H N1178 CN 2H CN_2H 2

N1178_CN_48H N1178_CN_48H N1178_CN_48H N1178 CN 48H CN_48H 48

N1178_CN_6H N1178_CN_6H N1178_CN_6H N1178 CN 6H CN_6H 6

N1178_MB_24H N1178_MB_24H N1178_MB_24H N1178 MB 24H MB_24H 24

N1178_MB_2H N1178_MB_2H N1178_MB_2H N1178 MB 2H MB_2H 2

An advantage of the ExpressionSet container is that it takes care of the
compatibility between the expression matrix and the phenotypic information
data-frame. For instance, it will check that samples names do not differ between
expression matrix and phenotypic information.

However, importantly , it will not check one key requirement of GOexpress,
namely that the expression matrix must have row names made of unique and
supported feature identifiers (i.e. microarray probeset or Ensembl gene identi-
fier) which will be later queried against the Ensembl BioMart server to fetch
gene and gene ontology annotations. Users can visually inspect that adequate
row names are used in the expression matrix:

> head(rownames(exprs(AlvMac))) # Subset of gene identifiers

[1] "ENSBTAG00000020733" "ENSBTAG00000006240" "ENSBTAG00000007616"

[4] "ENSBTAG00000002921" "ENSBTAG00000023938" "ENSBTAG00000011304"
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Note that in the training dataset, the Time column of pData(targets) is an
R factor while the Timepoint column is a numeric vector. The fomer is useful
for grouping the samples for the analysis, while the latter is better suited to
plot gene expression profiles while respecting the relative distance between the
time-points. See section 3.7.1 for examples using of a numeric value or a factor
as the variable of the X-axis.

3.2 Main analysis

In this example, we search for GO terms enriched in genes that cluster best the
samples according their Treatment level. But first, let us make sure that the
Treatment column of pData(targets) is indeed an R factor:

> is.factor(AlvMac$Treatment) # assertion test

[1] TRUE

> AlvMac$Treatment # visual inspection

[1] CN CN CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN

[26] CN CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN CN

[51] CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN CN CN

[76] MB MB MB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB CN CN CN CN MB MB MB

[101] MB TB TB TB TB CN CN CN CN MB MB MB MB TB TB TB TB

Levels: CN MB TB

In this case, it is already a properly formatted factor. If that was not the
case, the following line of code would convert the column to an R factor and
allow to continue the analysis (note that in some cases, it may be preferrable to
order the different levels of a factor, for an example see factor Time):

> AlvMac$Treatment <- factor(AlvMac$Treatment)

Now, we use the random forest statistical framework to score each gene on its
ability to cluster samples from different treatments separately. Then the method
will score each GO term by aggregating the average rank of its associated genes:

> AlvMac_results <- GO_analyse(eSet = AlvMac, f = "Treatment")

First feature identifier in dataset: ENSBTAG00000020733

Looks like Ensembl gene identifier.

Loading detected dataset btaurus_gene_ensembl ...

Object of class 'Mart':

Using the ensembl BioMart database

Using the btaurus_gene_ensembl dataset

Fetching ensembl_gene_id/go_id mappings from BioMart ...

Fetching GO_terms description from BioMart ...

Analysis using method randomForest on factor Treatment for 100

genes. This may take a few minutes ...

ntree OOB 1 2 3

100: 55.56% 30.77% 61.54% 74.36%

200: 54.70% 35.90% 51.28% 76.92%
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300: 54.70% 30.77% 61.54% 71.79%

400: 53.85% 30.77% 61.54% 69.23%

500: 57.26% 33.33% 66.67% 71.79%

600: 58.97% 33.33% 69.23% 74.36%

700: 57.26% 30.77% 66.67% 74.36%

800: 57.26% 30.77% 64.10% 76.92%

900: 58.12% 30.77% 66.67% 76.92%

1000: 57.26% 30.77% 66.67% 74.36%

Fetching gene description from BioMart ...

Merging score into result table ...

At this stage, it is a good idea to save the result variable into an R data-file
using the save function. Firstly, because the stochastic aspect of the sampling
approach implemented by the randomForest package may return slightly dif-
ferent scores in each run (as opposed to the ANOVA scores). Secondly, because
the BioMart web service may occasionally be temporarily down, disabling this
essential step of the analysis.

Note that the above command does not specify which species the data orig-
inated from. As mentioned in the output messages, the first feature identifier
in the expression matrix was used to determine the corresponding species and
type of data. This is a fairly straightforward process for Ensembl gene identifiers
(e.g. in the prefix ‘ENSBTA’, ‘BT’ indicates Bos taurus).

However, it can be more difficult to identify the microarray used to obtain
a certain dataset, as many Affymetrix chips contain probesets named with the
pattern ‘AFFX.*’. In cases where the microarray platform cannot be detected
automatically, we recommend users to use the microarray argument of the
GO_analyse method. The list of valid values for the microarray argument is
available in the microarray2dataset data frame which can be loaded in the
workspace using:

> data(microarray2dataset)

This step is the longest step in the pipeline, but merely takes a couple of
minutes to analyse approximately 12,000 genes in 117 samples with default
parameters of 1,000 trees build using approximately 220 random predictor genes
per iteration on a standard Ubuntu 12.04 server.

The output variable of the analysis summarises the parameters of the analysis
and can easily be browsed with standard R methods:

> names(AlvMac_results) # Data slot names

[1] "GO" "mapping" "genes" "factor" "method" "subset" "ntree"

[8] "mtry"

> str(AlvMac_results) # Details of data slots

List of 8

$ GO :'data.frame': 13044 obs. of 7 variables:

..$ go_id : chr [1:13044] "GO:0070427" "GO:0033091" "GO:0070673" "GO:0004534" ...

..$ ave_rank : num [1:13044] 4.5 7 7 8 22 26 29 29 33 33 ...

..$ ave_score : num [1:13044] 2.928 2.028 2.028 1.843 0.816 ...
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..$ total_count : num [1:13044] 2 1 1 1 1 1 1 1 1 1 ...

..$ data_count : num [1:13044] 2 1 1 1 1 1 1 1 1 1 ...

..$ name_1006 : chr [1:13044] "nucleotide-binding oligomerization domain containing 1 signaling pathway" "positive regulation of immature T cell proliferation" "response to interleukin-18" "5'-3' exoribonuclease activity" ...

..$ namespace_1003: chr [1:13044] "biological_process" "biological_process" "biological_process" "molecular_function" ...

$ mapping:'data.frame': 188237 obs. of 2 variables:

..$ gene_id: chr [1:188237] "ENSBTAG00000020495" "ENSBTAG00000020495" "ENSBTAG00000020495" "ENSBTAG00000020495" ...

..$ go_id : chr [1:188237] "GO:0005515" "GO:0006661" "GO:1900027" "GO:0032587" ...

$ genes :'data.frame': 100 obs. of 4 variables:

..$ Score : num [1:100] 4.54 3.83 2.57 2.3 2.28 ...

..$ Rank : int [1:100] 1 2 3 4 5 6 7 8 9 10 ...

..$ external_gene_name: chr [1:100] "TNIP3" "BIKBA" "PIK3AP1" "IL17" ...

..$ description : chr [1:100] "TNFAIP3 interacting protein 3 [Source:HGNC Symbol;Acc:HGNC:19315]" "Bos taurus nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (NFKBIA), mRNA. [Source:RefSeq m"| __truncated__ "phosphoinositide-3-kinase adaptor protein 1 [Source:HGNC Symbol;Acc:HGNC:30034]" "Bos taurus interleukin 17A (IL17A), mRNA. [Source:RefSeq mRNA;Acc:NM_001008412]" ...

$ factor : chr "Treatment"

$ method : chr "randomForest"

$ subset : NULL

$ ntree : num 1000

$ mtry : Named num 20

..- attr(*, "names")= chr "Features"

> head(AlvMac_results$GO, n=5) # Ranked table of GO terms (subset)

go_id ave_rank ave_score total_count data_count

11021 GO:0070427 4.5 2.9277736 2 2

6491 GO:0033091 7.0 2.0280641 1 1

11109 GO:0070673 7.0 2.0280641 1 1

1506 GO:0004534 8.0 1.8425142 1 1

8453 GO:0045204 22.0 0.8162243 1 1

name_1006

11021 nucleotide-binding oligomerization domain containing 1 signaling pathway

6491 positive regulation of immature T cell proliferation

11109 response to interleukin-18

1506 5'-3' exoribonuclease activity

8453 MAPK export from nucleus

namespace_1003

11021 biological_process

6491 biological_process

11109 biological_process

1506 molecular_function

8453 biological_process

> head(AlvMac_results$genes, n=5) # Ranked table of genes (subset)

Score Rank external_gene_name

ENSBTAG00000047107 4.540125 1 TNIP3

ENSBTAG00000016683 3.827483 2 BIKBA

ENSBTAG00000019872 2.573853 3 PIK3AP1

ENSBTAG00000002150 2.298417 4 IL17

ENSBTAG00000022227 2.275521 5 PLSCR2

description

ENSBTAG00000047107 TNFAIP3 interacting protein 3 [Source:HGNC Symbol;Acc:HGNC:19315]

ENSBTAG00000016683 Bos taurus nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (NFKBIA), mRNA. [Source:RefSeq mRNA;Acc:NM_001045868]
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ENSBTAG00000019872 phosphoinositide-3-kinase adaptor protein 1 [Source:HGNC Symbol;Acc:HGNC:30034]

ENSBTAG00000002150 Bos taurus interleukin 17A (IL17A), mRNA. [Source:RefSeq mRNA;Acc:NM_001008412]

ENSBTAG00000022227 Bos taurus phospholipid scramblase 1 (PLSCR1), mRNA. [Source:RefSeq mRNA;Acc:NM_001034436]

> head(AlvMac_results$mapping) # Gene to gene ontology mapping table (subset)

gene_id go_id

1 ENSBTAG00000020495 GO:0005515

2 ENSBTAG00000020495 GO:0006661

3 ENSBTAG00000020495 GO:1900027

4 ENSBTAG00000020495 GO:0032587

5 ENSBTAG00000020495 GO:0019902

6 ENSBTAG00000020495 GO:0035091

3.3 Filtering of results

In the above raw results of the analysis, all three types (i.e. namespaces) of GO
terms are merged in a single ranked table. It is however possible to extract the
GO terms corresponding to a single namespace.

> BP <- subset_scores(result = AlvMac_results,

+ namespace = "biological_process")

> MF <- subset_scores(result = AlvMac_results,

+ namespace = "MF") # alias for "molecular_function"

> CC <- subset_scores(result = AlvMac_results,

+ namespace = "CC") # cellular_component

Importantly, an early-identified bias of the scoring function is that GO terms
associated with fewer genes are favored at the top of the ranking table. This
is due to the fact that it is much easier for a group of 5 genes (e.g. “B cell

apoptotic process”) to have an high average rank than it is for a group of
6,000 genes (e.g. “protein binding”). Indeed, the highest possible average
rank of 5 genes is 3 while it is 3,000 for a group of 6,000 genes.

However, in our experience, this bias has some advantages. First, it im-
plicitely favors specific and well-defined GO terms (e.g. “negative regulation

of T cell apoptotic process”) as opposed to vague and uninformative GO
terms (e.g. “cytoplasm”). Secondly, we observed many top-ranking GO terms
associated with a single gene. Those GO terms are consequently susceptible
to single-gene events and artefacts in the expression data, as opposed to GO
terms with a reasonable number of associated genes. Using the above filtering
function, it is straightforward to filter out those GO terms with only a handful
of associated genes:

> BP.5 <- subset_scores(result = AlvMac_results,

+ namespace = "biological_process",

+ total = 5) # requires 5 or more associated genes

> MF.10 <- subset_scores(result = AlvMac_results,

+ namespace = "molecular_function",

+ total = 10)

> CC.15 <- subset_scores(result = AlvMac_results,

+ namespace = "cellular_component",

+ total = 15)
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On the other hand, GO terms associated with thousands of genes have a very
limited sensitivity, as they require a proportionally large number of associated
genes to cluster the sample groups in order to emerge among the top ranking
scores.

Furthermore, the inherent hierarchical structure and “granularity” of gene
ontology terms can easily be browsed by using increasingly large values of the
total filter. Note that this filter retains only GO terms associated with a
minimal given count of genes in the Ensembl BioMart. It is also possible to
use the data argument to filter for GO terms associated with a certain count of
genes in the given expression dataset, although this approach is obviously more
data-dependent and less robust.

3.4 Details of the top-ranking GO terms

Once the GO terms are scored and ranked (and filtered), the top-ranking GO
terms in the filtered object are those most enriched in genes with expression
levels that best cluster the predefined groups of samples based on the levels of
the factor considered (raw_results$factor).

In this example, we list the top-10 filtered “Biological Process” GO terms
extracted above and their statistics (automatically ranked by increasing average
rank of their associated genes):

> head(BP.5$GO, n=10)

go_id ave_rank ave_score total_count data_count

6715 GO:0034142 36.37500 1.8205545 8 7

6709 GO:0034134 61.00000 0.9940402 5 3

11025 GO:0070431 62.40000 1.1711095 5 2

11267 GO:0071223 73.33333 0.4526529 6 2

3797 GO:0010745 81.20000 0.7654966 5 1

3881 GO:0010888 81.20000 0.7654966 5 1

6330 GO:0032747 81.60000 0.4596834 5 1

580 GO:0001961 82.20000 0.4056128 5 1

6353 GO:0032790 82.60000 0.3425448 5 1

8145 GO:0043551 83.40000 0.2467040 5 1

name_1006

6715 toll-like receptor 4 signaling pathway

6709 toll-like receptor 2 signaling pathway

11025 nucleotide-binding oligomerization domain containing 2 signaling pathway

11267 cellular response to lipoteichoic acid

3797 negative regulation of macrophage derived foam cell differentiation

3881 negative regulation of lipid storage

6330 positive regulation of interleukin-23 production

580 positive regulation of cytokine-mediated signaling pathway

6353 ribosome disassembly

8145 regulation of phosphatidylinositol 3-kinase activity

namespace_1003

6715 biological_process

6709 biological_process

11025 biological_process
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11267 biological_process

3797 biological_process

3881 biological_process

6330 biological_process

580 biological_process

6353 biological_process

8145 biological_process

3.5 Hierarchical clustering of samples based on gene ex-
pression associated with a GO term

In the previous section, we identified the GO terms most enriched for genes clus-
tering samples according to their treatment. We will now generate for the top-
ranked GO term (“toll-like receptor 4 signaling pathway”) a heatmap
to visualise simulatenously the clustering of samples and the expression level of
each gene in each sample:

> heatmap_GO(go_id = "GO:0034142", result = BP.5, eSet=AlvMac, cexRow=0.4,

+ cexCol=1, cex.main=1, main.Lsplit=30)
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Importantly, users should be aware that the highest ranked GO term may
not cluster samples at all; all GO terms are scored in the process, and even
if none of them return a suitable clustering, there will still be a higest score.
In this example, we can observe a group of “Control” (i.e. untreated; green
color) samples clustering together at the bottom of the heatmap. Re-labelling
of samples by Group (i.e. combination of treatment and time-point) reveals that
those samples are mainly 24 and 48 hours-post-infection control samples:

> heatmap_GO(go_id = "GO:0034142", result = BP.5, eSet=AlvMac, f="Group",

+ cexCol=1, cex.main=1, main.Lsplit=30)
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Alternatively, it is possible to focus only on the hirearchical clustering of
samples. The following code will build a dendrogram clustering samples us-
ing the expression data of the subset of genes associated with the “toll-like
receptor 4 signaling pathway” gene ontology:

> cluster_GO(go_id = "GO:0034142", result = BP.5, eSet=AlvMac,

+ cex.main=1, cex=0.4, main.Lsplit=30)
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Similarly to the heatmap_GO method above, among the various arguments of
the cluster_GO function, the argument f can be used to specify an alternative
column present in pData(targets) to label the samples in the dendrogram
according to that phenotypic information. Obviously, if the same set of genes is
being used, the clustering of samples will remain the same no matter the column
chosen; however, the alternative labelling of samples may reveal relevant sub-
clustering of samples.

> cluster_GO(go_id = "GO:0034142", result = BP.5, eSet=AlvMac, f = "Time",

+ cex.main=1, cex=0.4, main.Lsplit=30)
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3.6 Details of genes associated with a GO term

Following the identification of relevant GO terms in the above sections, users
may want to have a closer look at the individual genes associated with a given
GO term:

> table_genes(go_id = "GO:0034142", result = BP.5)

Score Rank external_gene_name

ENSBTAG00000047107 4.5401250 1 TNIP3

ENSBTAG00000016683 3.8274832 2 BIKBA

ENSBTAG00000016085 0.3682841 93 IRAK1

ENSBTAG00000021377 0.5387735 55 S100A14

ENSBTAG00000019872 2.5738527 3 PIK3AP1

ENSBTAG00000006240 0.6878533 29 TLR4

ENSBTAG00000015271 2.0280641 7 RIPK2

ENSBTAG00000024340 NA NA <NA>

description

ENSBTAG00000047107 TNFAIP3 interacting protein 3 [Source:HGNC Symbol;Acc:HGNC:19315]

ENSBTAG00000016683 Bos taurus nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (NFKBIA), mRNA. [Source:RefSeq mRNA;Acc:NM_001045868]
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ENSBTAG00000016085 Bos taurus interleukin-1 receptor-associated kinase 1 (IRAK1), mRNA. [Source:RefSeq mRNA;Acc:NM_001040555]

ENSBTAG00000021377 Bos taurus S100 calcium binding protein A14 (S100A14), mRNA. [Source:RefSeq mRNA;Acc:NM_001079634]

ENSBTAG00000019872 phosphoinositide-3-kinase adaptor protein 1 [Source:HGNC Symbol;Acc:HGNC:30034]

ENSBTAG00000006240 Bos taurus toll-like receptor 4 (TLR4), mRNA. [Source:RefSeq mRNA;Acc:NM_174198]

ENSBTAG00000015271 Bos taurus receptor-interacting serine-threonine kinase 2 (RIPK2), mRNA. [Source:RefSeq mRNA;Acc:NM_001034610]

ENSBTAG00000024340 <NA>

Note that the default behaviour of the above function is to return a table of
all the genes associated with the GO term based on the annotations retrieved
from the Ensembl BioMart. For obvious reasons, genes present in the BioMart
but absent from the expression dataset will be absent from the score table and
consequently lack annotations. It is possible to restrict the above table to only
genes present in the expression dataset using the data.only argument.

If only the feature identifiers associated with a given GO identifier are
needed, users may use the function below:

> list_genes(go_id = "GO:0034142", result = BP.5)

[1] "ENSBTAG00000047107" "ENSBTAG00000016683" "ENSBTAG00000016085"

[4] "ENSBTAG00000021377" "ENSBTAG00000019872" "ENSBTAG00000006240"

[7] "ENSBTAG00000015271"

3.7 Expression profile of a gene by group

3.7.1 Using the unique feature identifier

In the above section, we listed the genes associated with a particular gene on-
tology. In our example, the respective score and rank of each gene estimates the
capacity of the gene to cluster the samples according to the treatment factor.
The genes that best cluster the samples will have the highest scores and the
lowest ranks. Those genes will likely produce the expression profiles with the
most consistent differential expression between the treatment groups over time.
Here is one example:

> expression_plot(gene_id = "ENSBTAG00000047107", result = BP.5, eSet=AlvMac,

+ x_var = "Timepoint", title.size=1.5,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15)
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Note that ”Timepoint” is another column of pData(targets). That column
does not encode a factor, but a numeric vector. This difference enables the
plotting function to respect the relative distance between the time-points for an
output more representative of the actual time-scale.

To investigate the impact of other factors on the expression level of the same
gene, users are encouraged to use the f and x_var arguments to specify alternate
grouping factor and X variable, respectively. Note that the geom_smooth of the
ggplot2 package may fail if a minimal number of replicates is not available to
calculate proper confidence intervals. Here is another valid example separating
samples by animal on the X axis.

> expression_plot(gene_id = "ENSBTAG00000047107", result = BP.5, eSet=AlvMac,

+ x_var = "Animal", title.size=1.5, axis.text.angle=90,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15)
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3.7.2 Using the associated gene name

It is also possible to visualise the expression profile of genes from their associ-
ated gene names if any. This is a more human-friendly version of the function
presented in the previous subsection:

> expression_plot_symbol(gene_symbol = "BIKBA", result = BP.5, eSet=AlvMac,

+ x_var = "Timepoint", title.size=1.5,

+ legend.title.size=10, legend.text.size=10, legend.key.size=15)

Fetching feature identifier(s) annotated to BIKBA ...

Unique gene id found for BIKBA

Plotting ENSBTAG00000016683
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However, the benefits of this feature are balanced by the fact that genes
lacking an associated gene name cannot be visualised in this manner, and that
some gene symbols are associated with multiple Ensembl gene identifiers and
probesets (e.g. ‘RPL36A’). In the latter case, we turned the ambiguity into an
additional useful feature: a lattice is created, and each of the multiple features
associated with the given gene symbol are plotted simultaneously in the lattice.
Subsequently, each of the sub-figures plotted may be re-plotted by itself using
the index argument as indicated in the accompanying message printed in the
R console.

3.8 Expression profile of a gene by individual sample se-
ries

3.8.1 Using the unique feature identifier

It may be useful to track and visualise the expression profile of genes in each
individual sample series, rather than their average. This could help identify
outliers within sample groups, or visually compare paired samples, for instance.

In the AlvMac dataset, samples from each of the animals were subjected to
all three treatments in parallel (i.e. paired samples). In the figure below, a
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sample series is defined by a given Animal and a given Treatment. Each sample
series is then tracked over time, and coloured according to the Treatment factor
(default, factor stored in raw_results$factor):

> AlvMac$Animal.Treatment <- paste(AlvMac$Animal, AlvMac$Treatment, sep="_")

> expression_profiles(gene_id = "ENSBTAG00000047107", result = AlvMac_results,

+ eSet=AlvMac, x_var = "Timepoint", line.size=1,

+ seriesF="Animal.Treatment", linetypeF="Animal",

+ legend.title.size=10, legend.text.size=10,

+ legend.key.size=15)
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In the figure above, the linetypeF helps to highlight samples from an animal
which start at unusually high expression values, while those samples progres-
sively return to expression values similar to other samples in their respective
treatment groups.

If omitted, the linetypeF argument will mirror the colourF, which can be
useful for colour-blind people. Alternatively, a single line-type can be applied
to all groups using the argument as follows:

> expression_profiles(gene_id = "ENSBTAG00000047107", result = AlvMac_results,

+ eSet=AlvMac, x_var = "Timepoint", lty=rep(1,10),
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+ # use line-type 1 for all 10 groups

+ seriesF="Animal.Treatment", linetypeF="Animal",

+ legend.title.size=10, legend.text.size=10,

+ legend.key.size=15, line.size=1)
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3.8.2 Using the associated gene name

Similarly to the expression_plot method, an alternative was implemented to
use gene names instead of Ensembl gene identifiers. An example:

> expression_profiles_symbol(gene_symbol="TNIP3", result = AlvMac_results,

+ x_var = "Timepoint", linetypeF="Animal", line.size=1,

+ eSet=AlvMac, lty=rep(1,10), seriesF="Animal.Treatment",

+ title.size=1.5, legend.title.size=10, legend.text.size=10,

+ legend.key.size=15)

Fetching feature identifier(s) annotated to TNIP3 ...

Unique gene id found for TNIP3

Plotting ENSBTAG00000047107
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3.9 Comparison of univariate effects on gene expression

While the analysis is restricted to the evaluation of a single factor, it can be
helpful to compare the relative impact of all known factors present in the the
accompanying phenoData on the gene expression in the different groups of sam-
ples.

In other words, given a GO term identifier this feature will generate a plot
for each associated gene, where the mean (default; can be changed) expression
level will be computed for each level of each factor and compared to one another:

> plot_design(go_id = "GO:0034134", result = BP.5, eSet=AlvMac,

+ ask = FALSE, factors = c("Animal", "Treatment", "Time", "Group"),

+ main.Lsplit=30)
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4 Additional controls and advanced functions

4.1 Subsetting an ExpressionSet to specific sample groups

It is straightforward to subset an ExpressionSet by extracting given columns
(i.e. samples) and rows (i.e. gene features). Nevertheless, the randomForest

package is quite sensitive to the definition of R factors; for instance, the ran-

domForest package will crash if a factor is declared to have 3 levels (e.g. ”A”,
”B”, and ”C”), while the ExpressionSet only contains samples for two of them
(e.g. ”A” and ”B”). A simple fix is to update the known levels of the factor after
having subsetted the ExpressionSet:

> AlvMac$Time <- factor(AlvMac$Time)

Note that this operation preservers the order of ordered factors.
However, subsetting an ExpressionSet by rows and columns does not au-

tomatically update the known levels of each factor to the remaining levels. For
this task, the method subEset takes a named list, where item names must be
column names from the phenoData slots and item values must be present in the
corresponding columns, to return a subset of the original ExpressionSet and
return only the samples which match those values:
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> subEset(eSet=AlvMac, subset=list(Time=c("2H","6H","24H"),

+ Treatment=c("CN","MB")))

ExpressionSet (storageMode: lockedEnvironment)

assayData: 100 features, 60 samples

element names: exprs

protocolData: none

phenoData

sampleNames: N1178_CN_24H N1178_CN_2H ... N98_MB_6H (60 total)

varLabels: File Sample ... Animal.Treatment (8 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

4.2 Overlapping genes between GO terms

Often, the top-ranked cellular functions identified by pathway analysis and gene-
set enrichment analysis tools may significantly overlap each other in terms of
genes, which limits the number of genes identified by those approaches and
blurrs the precise cellular function represented by the core gene-set among a list
of closely related yet different functions.

Typically, overlapping sets are representated as Venn diagrams. The example
below will produce a Venn diagram of the gene-sets associated with the five top-
ranked “Biological Process” ontologies, and display it on screen, as the filename
argument is left to the default NULL value (if a filename is given, the diagram
will be printed to a TIFF file , no matter the extension specified):

> overlap_GO(go_ids = head(BP.5$GO$go_id, n=5), result = BP.5, filename=NULL)
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This method calls the venn.diagram method of the VennDiagram package,
offering a high level of control on the resulting Venn diagram. A detailed de-
scription of the available arguments are accessible in the corresponding R doc-
umentation file.

4.3 Distribution of scores

Users might be interested in the general distribution of score and rank statistics
produced by GOexpress. The distribution of scores may be represented as a
histogram:

> hist_scores(result = BP.5, labels = TRUE)
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Alternatively, quantile values can be returned for default or customised per-
centiles:

> quantiles_scores(result = BP.5)

90% 95% 99% 99.9% 99.99%

0.00000000 0.03320762 0.14694481 0.76709644 1.62617558

4.4 Reordering by score

While scores are more prone to extreme outlier values and may slightly fluctuate
between multiple runs of the random forest algorithm; ranks of genes and sub-
sequently average ranks of GO terms are less prone to such variations and may
be more reliable estimators of the importance of genes and cellular functions.
Therefore, the default behaviour of GOexpress is to use the rank and average
rank metrics to order genes and GO terms, respectively, in the returned score
tables.

It is however possible to re-order the tables in the output variable according
to the score metric (or revert back to the original one) as in the example below:

> BP.5.byScore <- rerank(result = BP.5, rank.by = "score")
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5 Statistics

5.1 Overview

GOexpress was initially created from a set of gene-based, and later ontology-
based, visualisation functions. Following the integration of those various plot-
ting functions at the core of the GOexpress package, the need for a ranking of
genes and GO terms soon became apparent in order to rapidly identify those
that best cluster the samples according to the experimental factor studied, re-
sulting in the clearest dendrograms and heatmaps. A two-fold procedure was
implemented:

1. Using the available expression data, each gene present in the dataset is
scored, evaluating its ability to cluster the predefined groups of samples.
Genes are ranked according to their respective score; ties are resolved by
assigning the lowest rank R to all G genes, giving the rank G+n to the next
gene(s). The genewise scoring functions implemented are described in the
following subsections, and all were validated on in-house datasets cross-
checked with widely validated analytic pipelines (e.g. Ingenuity®Pathway
Analysis, SIGORA)

2. Using the above ranks and scores, each GO term in the Ensembl BioMart
is assigned the mean score and the mean rank of all the genes associated
with it in the BioMart. Genes present in the BioMart but absent from the
given dataset are assigned a score of 0 (minimum valid score; indicates no
power to discriminates the predefined groups of sample) and a rank equal
to the number of genes present in the entire dataset plus one (worst rank,
while preserving discrete continuity of the ranking).

Importantly, the statistics performed to rank GO terms and genes do not
influence the behaviour of the subsequent plotting functions; heatmaps, den-
drograms and gene expression profiles are purely driven by the expression data,
sample phenotype annotations provided and GO terms ontologies imported from
the Ensembl BioMart server, without any transformation applied to the data.
Therefore, users are encouraged to use and suggest alternative relevant scoring
and ranking strategies, which could prioritise GO terms and genes in different
ways. A current acknowledged bias is the higher scoring of GO terms associated
with fewer genes, which shows some advantages as discussed in section 3.3.

5.2 Random Forest

We implemented the Random Forest framework to answer the question: “How
well does each gene in the dataset cluster predefined groups of samples?”. The
random forest consists of multiple decision trees. Each tree is built based on
a bootstrap sample (sample with replacement) of observations and a random
sample of variables. The randomForest package first calculates the Gini index
(Breiman et al, 1984) for each node in each tree. The Gini index is a measure of
homogeneity from 0 (homogeneous) to 1 (heterogeneous). The decrease in the
Gini index resulting from a split on a variable is then calculated for each node
and averaged for each variable over all the trees in the model. The variable
with the biggest mean decrease in the Gini index is then considered the most
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important. Technically, GOexpress extracts the MeanDecreaseGini value from
the importance slot of the randomForest output and uses this value as the
score for each gene.

A key feature of the Random Forest framework is the implicit handling of
interactions between genes, given a sufficient number of trees generated and
genes sampled. Indeed, at each node in the decision tree, genes are sampled
from the expression data and tested for their individual capacity to improve the
partitioning reached in the previous node. The larger the number of trees and
genes sampled, the more complete the coverage of interactions will be.

5.3 One-way Analysis of Variance (ANOVA)

We implemented the ANOVA statistical framework to answer the question:
”How different is the expression level of each gene in the dataset in the different
groups of samples?”. Given the expression level of a gene in all the samples,
the one-way ANOVA determines the ratio of the variance between the groups
compared to the variance within the groups, summarised as an F statistic that
GOexpress uses as a score for each gene. Simply put, if samples from the same
groups show gene expression values similar to each other while samples from
different groups show different levels of expression, those genes will produce a
higher score. This score cannot be less than 0 (variance between groups insignif-
icant to variance within groups), while very large ratios can easily be reached
for genes markedly different between groups.

Contrary to the random forest framework, the Analysis of Variance makes
important assumptions on the data: namely, the independence of observations,
the normality of residuals, and the equality of variances in all groups. While the
former two are the responsibility of the user to verify, the latter is taken care of
by GOexpress. Indeed, the oneway.test method of the package stats is used
with parameter var.equal set to to FALSE. While this reduces the sensitivity of
the test, all genes are affected by this correction based on the relative amount of
variance in the different predefined groups of samples. Finally, it is once again
important to note that the ANOVA only evaluates univariate changes, while the
random forest framework implicitely allows for interactions between genes.

6 Notes
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