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Abstract

A basic task in the analysis of count data from RNA-Seq is the detection of differentially
expressed genes. The count data are presented as a table which reports, for each sample, the
number of sequence fragments that have been assigned to each gene. Analogous data also arise
for other assay types, including comparative ChIP-Seq, HiC, shRNA screening, mass spectrom-
etry. An important analysis question is the quantification and statistical inference of systematic
changes between conditions, as compared to within-condition variability. The package DESeq2
provides methods to test for differential expression by use of negative binomial generalized linear
models; the estimates of dispersion and logarithmic fold changes incorporate data-driven prior
distributions1. This vignette explains the use of the package and demonstrates typical workflows.
An RNA-Seq workflow on the Bioconductor website: http://www.bioconductor.org/help/

workflows/rnaseqGene/ (formerly the Beginner’s Guide PDF), covers similar material to this
vignette but at a slower pace, including the generation of count matrices from FASTQ files.

DESeq2 version: 1.6.3

If you use DESeq2 in published research, please cite:

M. I. Love, W. Huber, S. Anders: Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2.
Genome Biology 2014, 15:550.
http://dx.doi.org/10.1186/s13059-014-0550-8

1Other Bioconductor packages with similar aims are edgeR, baySeq, DSS and limma.
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1 Standard workflow

1.1 Quick start

Here we show the most basic steps for a differential expression analysis. These steps imply you have a
SummarizedExperiment object se with a column condition in colData(se).

dds <- DESeqDataSet(se = se, design = ~ condition)

dds <- DESeq(dds)

res <- results(dds)

1.2 Input data

1.2.1 Why raw counts?

As input, the DESeq2 package expects count data as obtained, e. g., from RNA-Seq or another high-
throughput sequencing experiment, in the form of a matrix of integer values. The value in the i-th
row and the j-th column of the matrix tells how many reads have been mapped to gene i in sample j.
Analogously, for other types of assays, the rows of the matrix might correspond e. g. to binding regions
(with ChIP-Seq) or peptide sequences (with quantitative mass spectrometry).

The count values must be raw counts of sequencing reads. This is important for DESeq2 ’s statistical
model [1] to hold, as only the actual counts allow assessing the measurement precision correctly. Hence,
please do not supply other quantities, such as (rounded) normalized counts, or counts of covered base
pairs – this will only lead to nonsensical results.

1.2.2 SummarizedExperiment input

The class used by the DESeq2 package to store the read counts is DESeqDataSet which extends the
SummarizedExperiment class of the GenomicRanges package. This facilitates preparation steps and also
downstream exploration of results. For counting aligned reads in genes, the summarizeOverlaps func-
tion of GenomicAlignments with mode="Union" is encouraged, resulting in a SummarizedExperiment
object.

An example of the steps to produce a SummarizedExperiment can be found in an RNA-Seq workflow on
the Bioconductor website: http://www.bioconductor.org/help/workflows/rnaseqGene/ and in
the vignette for the data package airway . Here we load the SummarizedExperiment from that package
in order to build a DESeqDataSet.

library("airway")

data("airway")

se <- airway

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://www.bioconductor.org/help/workflows/rnaseqGene/
http://bioconductor.org/packages/release/data/experiment/html/airway.html
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A DESeqDataSet object must have an associated design formula. The design formula expresses the
variables which will be used in modeling. The formula should be a tilde (∼) followed by the variables with
plus signs between them (it will be coerced into an formula if it is not already). An intercept is included,
representing the base mean of counts. The design can be changed later, however then all differential
analysis steps should be repeated, as the design formula is used to estimate the dispersions and to
estimate the log2 fold changes of the model. The constructor function below shows the generation of
a DESeqDataSet from a SummarizedExperiment se.

Note: In order to benefit from the default settings of the package, you should put the variable of interest
at the end of the formula and make sure the control level is the first level.

library("DESeq2")

ddsSE <- DESeqDataSet(se, design = ~ cell + dex)

ddsSE

## class: DESeqDataSet

## dim: 64102 8

## exptData(1): ''

## assays(1): counts

## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99

## rowData metadata column names(0):

## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521

## colData names(9): SampleName cell ... Sample BioSample

1.2.3 Count matrix input

Alternatively, the function DESeqDataSetFromMatrix can be used if you already have a matrix of read
counts prepared. For this function you should provide the counts matrix, the column information as a
DataFrame or data.frame and the design formula. First, we load the pasillaGenes data object, in
order to extract a count matrix and phenotypic data.

library("pasilla")

library("Biobase")

data("pasillaGenes")

countData <- counts(pasillaGenes)

colData <- pData(pasillaGenes)[,c("condition","type")]

Now that we have a matrix of counts and the column information, we can construct a DESeqDataSet:

dds <- DESeqDataSetFromMatrix(countData = countData,

colData = colData,

design = ~ condition)

dds

## class: DESeqDataSet

## dim: 14470 7

## exptData(0):
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## assays(1): counts

## rownames(14470): FBgn0000003 FBgn0000008 ... FBgn0261574 FBgn0261575

## rowData metadata column names(0):

## colnames(7): treated1fb treated2fb ... untreated3fb untreated4fb

## colData names(2): condition type

If you have additional feature data, it can be added to the DESeqDataSet by adding to the metadata
columns of a newly constructed object. (Here we add redundant data for demonstration, as the gene
names are already the rownames of the dds.)

featureData <- data.frame(gene=rownames(pasillaGenes))

(mcols(dds) <- DataFrame(mcols(dds), featureData))

## DataFrame with 14470 rows and 1 column

## gene

## <factor>

## 1 FBgn0000003

## 2 FBgn0000008

## 3 FBgn0000014

## 4 FBgn0000015

## 5 FBgn0000017

## ... ...

## 14466 FBgn0261571

## 14467 FBgn0261572

## 14468 FBgn0261573

## 14469 FBgn0261574

## 14470 FBgn0261575

1.2.4 HTSeq input

You can use the function DESeqDataSetFromHTSeqCount if you have htseq-count from the HTSeq
python package2. For an example of using the python scripts, see the pasilla data package. First you
will want to specify a variable which points to the directory in which the HTSeq output files are located.

directory <- "/path/to/your/files/"

However, for demonstration purposes only, the following line of code points to the directory for the
demo HTSeq output files packages for the pasilla package.

directory <- system.file("extdata", package="pasilla", mustWork=TRUE)

We specify which files to read in using list.files, and select those files which contain the string
"treated" using grep. The sub function is used to chop up the sample filename to obtain the
condition status, or you might alternatively read in a phenotypic table using read.table.

2available from http://www-huber.embl.de/users/anders/HTSeq, described in [2]

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://www-huber.embl.de/users/anders/HTSeq
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sampleFiles <- grep("treated",list.files(directory),value=TRUE)

sampleCondition <- sub("(.*treated).*","\\1",sampleFiles)
sampleTable <- data.frame(sampleName = sampleFiles,

fileName = sampleFiles,

condition = sampleCondition)

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,

directory = directory,

design= ~ condition)

ddsHTSeq

## class: DESeqDataSet

## dim: 70463 7

## exptData(0):

## assays(1): counts

## rownames(70463): FBgn0000003:001 FBgn0000008:001 ... FBgn0261575:001

## FBgn0261575:002

## rowData metadata column names(0):

## colnames(7): treated1fb.txt treated2fb.txt ... untreated3fb.txt

## untreated4fb.txt

## colData names(1): condition

1.2.5 Note on factor levels

In the three examples above, we applied the function factor to the column of interest in colData,
supplying a character vector of levels. It is important to supply levels (otherwise the levels are chosen in
alphabetical order) and to put the “control” or “untreated” level as the first element (”base level”), so
that the log2 fold changes produced by default will be the expected comparison against the base level.
An R function for easily changing the base level is relevel. An example of setting the base level of a
factor with relevel is:

dds$condition <- relevel(dds$condition, "untreated")

In addition, when subsetting the columns of a DESeqDataSet, i.e., when removing certain samples from
the analysis, it is possible that all the samples for one or more levels of a variable in the design formula
are removed. In this case, the droplevels function can be used to remove those levels which do not
have samples in the current DESeqDataSet:

dds$condition <- droplevels(dds$condition)

1.2.6 Collapsing technical replicates

DESeq2 provides a function collapseReplicates which can assist in combining the counts from tech-
nical replicates into single columns. See the manual page for an example of the use of collapseReplicates.
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1.2.7 About the pasilla dataset

We continue with the pasilla data constructed from the count matrix method above. This data set
is from an experiment on Drosophila melanogaster cell cultures and investigated the effect of RNAi
knock-down of the splicing factor pasilla [3]. The detailed transcript of the production of the pasilla
data is provided in the vignette of the data package pasilla.

1.3 Differential expression analysis

The standard differential expression analysis steps are wrapped into a single function, DESeq. The
steps of this function are described in Section 4.1 and in the manual page for ?DESeq. The individual
sub-functions which are called by DESeq are still available, described in Section 3.1.

Results tables are generated using the function results, which extracts a results table with log2 fold
changes, p values and adjusted p values. With no arguments to results, the results will be for the
last variable in the design formula, and if this is a factor, the comparison will be the last level of this
variable over the first level.

dds <- DESeq(dds)

res <- results(dds)

These steps should take less than 30 seconds for most analyses. For experiments with many samples
(e.g. 100 samples), one can take advantage of parallelized computation. Both of the above functions
have an argument parallel which if set to TRUE can be used to distribute computation across cores
specified by the register function of BiocParallel . For example, the following chunk (not evaluated
here), would register 4 cores, and then the two functions above, with parallel=TRUE, would split
computation over these cores.

library("BiocParallel")

register(MulticoreParam(4))

We can order our results table by the smallest adjusted p value:

resOrdered <- res[order(res$padj),]

head(resOrdered)

## log2 fold change (MAP): condition treated vs untreated

## Wald test p-value: condition treated vs untreated

## DataFrame with 6 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue padj

## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

## FBgn0039155 453 -3.71 0.160 -23.2 4.01e-119 3.09e-115

## FBgn0029167 2165 -2.08 0.104 -20.1 6.68e-90 2.57e-86

## FBgn0035085 367 -2.23 0.137 -16.3 1.89e-59 4.85e-56

## FBgn0029896 258 -2.21 0.159 -13.9 5.85e-44 1.13e-40

## FBgn0034736 118 -2.57 0.185 -13.9 8.07e-44 1.24e-40

## FBgn0040091 611 -1.43 0.120 -11.9 1.11e-32 1.43e-29

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/bioc/html/BiocParallel.html
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We can summarize some basic tallies using the summary function.

summary(res)

##

## out of 11836 with nonzero total read count

## adjusted p-value < 0.1

## LFC > 0 (up) : 390, 3.3%

## LFC < 0 (down) : 408, 3.4%

## outliers [1] : 57, 0.48%

## low counts [2] : 4081, 34%

## (mean count < 9.2)

## [1] see 'cooksCutoff' argument of ?results

## [2] see 'independentFiltering' argument of ?results

The results function contains a number of arguments to customize the results table which is generated.
Note that the results function automatically performs independent filtering based on the mean of
counts for each gene, optimizing the number of genes which will have an adjusted p value below a given
threshold. This will be discussed further in Section 3.8.

If a multi-factor design is used, or if the variable in the design formula has more than two levels, the
contrast argument of results can be used to extract different comparisons from the DESeqDataSet
returned by DESeq. Multi-factor designs are discussed further in Section 1.5, and the use of the
contrast argument is dicussed in Section 3.2.

For advanced users, note that all the values calculated by the DESeq2 package are stored in the
DESeqDataSet object, and access to these values is discussed in Section 3.10.

1.4 Exploring and exporting results

1.4.1 MA-plot

In DESeq2 , the function plotMA shows the log2 fold changes attributable to a given variable over the
mean of normalized counts. Points will be colored red if the adjusted p value is less than 0.1. Points
which fall out of the window are plotted as open triangles pointing either up or down.

plotMA(res, main="DESeq2", ylim=c(-2,2))

The MA-plot of log2 fold changes returned by DESeq2 allows us to see how the shrinkage of fold changes
works for genes with low counts. You can still obtain results tables which include the “unshrunken”
log2 fold changes (for a simple comparison, the ratio of the mean normalized counts in the two groups).
A column lfcMLE with the unshrunken maximum likelihood estimate (MLE) for the log2 fold change
will be added with an additional argument to results:

resMLE <- results(dds, addMLE=TRUE)

head(resMLE, 4)

## log2 fold change (MAP): condition treated vs untreated



Differential analysis of count data – the DESeq2 package 10

Figure 1: MA-plot. These plots show the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factors. The left plot shows the
“unshrunken” log2 fold changes, while the right plot, produced by the code above, shows the shrinkage
of log2 fold changes resulting from the incorporation of zero-centered normal prior. The shrinkage is
greater for the log2 fold change estimates from genes with low counts and high dispersion, as can be
seen by the narrowing of spread of leftmost points in the right plot.

## Wald test p-value: condition treated vs untreated

## DataFrame with 4 rows and 7 columns

## baseMean log2FoldChange lfcMLE lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

## FBgn0000003 0.159 0.0346 3.2929 0.0461 0.7487 0.454

## FBgn0000008 52.226 0.0197 0.0281 0.2093 0.0942 0.925

## FBgn0000014 0.390 0.0118 0.6239 0.0622 0.1901 0.849

## FBgn0000015 0.905 -0.0429 -0.8135 0.1054 -0.4076 0.684

## padj

## <numeric>

## FBgn0000003 NA

## FBgn0000008 0.988

## FBgn0000014 NA

## FBgn0000015 NA

After calling plotMA, one can use the function identify to interactively detect the row number of
individual genes by clicking on the plot.

identify(res$baseMean, res$log2FoldChange)
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Figure 2: Plot of counts for one gene. The plot of normalized counts (plus a pseudocount of
1
2
) either made using the plotCounts function (left) or using another plotting library (right, using

ggplot2).

1.4.2 Plot counts

It can also be useful to examine the counts of reads for a single gene across the groups. A simple
function for making this plot is plotCounts, which normalizes counts by sequencing depth and adds a
pseudocount of 1

2
to allow for log scale plotting. The counts are grouped by the variables in intgroup,

where more than one variable can be specified. Here we specify the gene which had the smallest p value
from the results table created above. You can select the gene to plot by rowname or by numeric index.

plotCounts(dds, gene=which.min(res$padj), intgroup="condition")

For customized plotting, an argument returnData specifies that the function should only return a
data.frame for plotting with ggplot.

d <- plotCounts(dds, gene=which.min(res$padj), intgroup="condition",

returnData=TRUE)

library("ggplot2")

ggplot(d, aes(x=condition, y=count)) +

geom_point(position=position_jitter(w=0.1,h=0)) +

scale_y_log10(breaks=c(25,100,400))

http://cran.fhcrc.org/web/packages/ggplot2/index.html
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1.4.3 More information on results columns

Information about which variables and tests were used can be found by calling the function mcols on
the results object.

mcols(res)$description

## [1] "mean of normalized counts for all samples"

## [2] "log2 fold change (MAP): condition treated vs untreated"

## [3] "standard error: condition treated vs untreated"

## [4] "Wald statistic: condition treated vs untreated"

## [5] "Wald test p-value: condition treated vs untreated"

## [6] "BH adjusted p-values"

For a particular gene, a log2 fold change of −1 for condition treated vs untreated means that
the treatment induces a change in observed expression level of 2−1 = 0.5 compared to the untreated
condition. If the variable of interest is continuous-valued, then the reported log2 fold change is per unit
of change of that variable.

Note: some values in the results table can be set to NA, for either one of the following reasons:

1. If within a row, all samples have zero counts, the baseMean column will be zero, and the log2
fold change estimates, p value and adjusted p value will all be set to NA.

2. If a row contains a sample with an extreme count outlier then the p value and adjusted p value
are set to NA. These outlier counts are detected by Cook’s distance. Customization of this outlier
filtering and description of functionality for replacement of outlier counts and refitting is described
in Section 3.6,

3. If a row is filtered by automatic independent filtering, based on low mean normalized count, then
only the adjusted p value is set to NA. Description and customization of independent filtering is
described in Section 3.8.

The column of log2FoldChange for the default workflow will contain shrunken estimates of fold change
as mentioned above. It is possible to add a column to the results table – without rerunning the analysis
– which contains the unshrunken, or maximum likelihood estimates (MLE), log2 fold changes. This will
add the column lfcMLE directly after log2FoldChange.

head(results(dds, addMLE=TRUE),4)

## log2 fold change (MAP): condition treated vs untreated

## Wald test p-value: condition treated vs untreated

## DataFrame with 4 rows and 7 columns

## baseMean log2FoldChange lfcMLE lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

## FBgn0000003 0.159 0.0346 3.2929 0.0461 0.7487 0.454

## FBgn0000008 52.226 0.0197 0.0281 0.2093 0.0942 0.925

## FBgn0000014 0.390 0.0118 0.6239 0.0622 0.1901 0.849

## FBgn0000015 0.905 -0.0429 -0.8135 0.1054 -0.4076 0.684

## padj
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## <numeric>

## FBgn0000003 NA

## FBgn0000008 0.988

## FBgn0000014 NA

## FBgn0000015 NA

1.4.4 Exporting results to HTML or CSV files

An HTML report of the results with plots and sortable/filterable columns can be exported using the
ReportingTools package on a DESeqDataSet that has been processed by the DESeq function. For a
code example, see the “RNA-seq differential expression” vignette at the ReportingTools page, or the
manual page for the publish method for the DESeqDataSet class.

A plain-text file of the results can be exported using the base R functions write.csv or write.delim.
We suggest using a descriptive file name indicating the variable and levels which were tested.

write.csv(as.data.frame(resOrdered),

file="condition_treated_results.csv")

Exporting only the results which pass an adjusted p value threshold can be accomplished with the
subset function, followed by the write.csv function.

resSig <- subset(resOrdered, padj < 0.1)

resSig

## log2 fold change (MAP): condition treated vs untreated

## Wald test p-value: condition treated vs untreated

## DataFrame with 798 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue padj

## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

## FBgn0039155 453 -3.71 0.160 -23.2 4.01e-119 3.09e-115

## FBgn0029167 2165 -2.08 0.104 -20.1 6.68e-90 2.57e-86

## FBgn0035085 367 -2.23 0.137 -16.3 1.89e-59 4.85e-56

## FBgn0029896 258 -2.21 0.159 -13.9 5.85e-44 1.13e-40

## FBgn0034736 118 -2.57 0.185 -13.9 8.07e-44 1.24e-40

## ... ... ... ... ... ... ...

## FBgn0000633 14.6 0.587 0.229 2.57 0.0103 0.0994

## FBgn0003862 2076.3 -0.400 0.156 -2.56 0.0103 0.0997

## FBgn0028694 960.2 0.313 0.122 2.57 0.0103 0.0997

## FBgn0038349 1275.4 -0.311 0.121 -2.56 0.0103 0.0997

## FBgn0243512 1135.0 -0.384 0.150 -2.56 0.0103 0.0997

http://bioconductor.org/packages/release/bioc/html/ReportingTools.html
http://bioconductor.org/packages/release/bioc/html/ReportingTools.html
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1.5 Multi-factor designs

Experiments with more than one factor influencing the counts can be analyzed using model formula
including the additional variables. The data in the pasilla package have a condition of interest (the
column condition), as well as information on the type of sequencing which was performed (the column
type), as we can see below:

colData(dds)

## DataFrame with 7 rows and 3 columns

## condition type sizeFactor

## <factor> <factor> <numeric>

## treated1fb treated single-read 1.512

## treated2fb treated paired-end 0.784

## treated3fb treated paired-end 0.896

## untreated1fb untreated single-read 1.050

## untreated2fb untreated single-read 1.659

## untreated3fb untreated paired-end 0.712

## untreated4fb untreated paired-end 0.784

We create a copy of the DESeqDataSet, so that we can rerun the analysis using a multi-factor design.

ddsMF <- dds

We can account for the different types of sequencing, and get a clearer picture of the differences
attributable to the treatment. As condition is the variable of interest, we put it at the end of the
formula. Thus the results function will by default pull the condition results unless contrast or
name arguments are specified. Then we can re-run DESeq:

design(ddsMF) <- formula(~ type + condition)

ddsMF <- DESeq(ddsMF)

Again, we access the results using the results function.

resMF <- results(ddsMF)

head(resMF)

## log2 fold change (MAP): condition treated vs untreated

## Wald test p-value: condition treated vs untreated

## DataFrame with 6 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue padj

## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

## FBgn0000003 0.159 0.03270 0.0437 0.7478 0.4546 NA

## FBgn0000008 52.226 0.01219 0.2078 0.0587 0.9532 0.988

## FBgn0000014 0.390 0.00971 0.0563 0.1724 0.8631 NA

## FBgn0000015 0.905 -0.03567 0.0932 -0.3828 0.7019 NA

## FBgn0000017 2358.243 -0.25675 0.1100 -2.3331 0.0196 0.134

## FBgn0000018 221.242 -0.06669 0.1417 -0.4706 0.6380 0.884

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
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It is also possible to retrieve the log2 fold changes, p values and adjusted p values of the type variable.
The contrast argument of the function results takes a character vector of length three: the name
of the variable, the name of the factor level for the numerator of the log2 ratio, and the name of the
factor level for the denominator. The contrast argument can also take other forms, as described in
the help page for results and in Section 3.2.

resMFType <- results(ddsMF, contrast=c("type","single-read","paired-end"))

head(resMFType)

## log2 fold change (MAP): type single-read vs paired-end

## Wald test p-value: type single-read vs paired-end

## DataFrame with 6 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue padj

## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>

## FBgn0000003 0.159 -0.02392 0.0381 -0.6280 0.5300 NA

## FBgn0000008 52.226 -0.06233 0.1974 -0.3158 0.7521 0.885

## FBgn0000014 0.390 0.00570 0.0490 0.1163 0.9074 NA

## FBgn0000015 0.905 -0.05581 0.0815 -0.6845 0.4937 NA

## FBgn0000017 2358.243 0.00938 0.1088 0.0862 0.9313 0.973

## FBgn0000018 221.242 0.26861 0.1383 1.9420 0.0521 0.210

If the variable is continuous or an interaction term (see Section 3.3) then the results can be extracted us-
ing the name argument to results, where the name is one of elements returned by resultsNames(dds).
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2 Data transformations and visualization

2.1 Count data transformations

In order to test for differential expression, we operate on raw counts and use discrete distributions as
described in the previous Section 1.3. However for other downstream analyses – e.g. for visualization
or clustering – it might be useful to work with transformed versions of the count data.

Maybe the most obvious choice of transformation is the logarithm. Since count values for a gene can
be zero in some conditions (and non-zero in others), some advocate the use of pseudocounts, i. e.
transformations of the form

y = log2(n+ 1) or more generally, y = log2(n+ n0), (1)

where n represents the count values and n0 is a positive constant.

In this section, we discuss two alternative approaches that offer more theoretical justification and a
rational way of choosing the parameter equivalent to n0 above. The regularized logarithm or rlog
incorporates a prior on the sample differences [1], and the other uses the concept of variance stabilizing
transformations (VST) [4, 5, 6]. Both transformations produce transformed data on the log2 scale
which has been normalized with respect to library size.

The point of these two transformations, the rlog and the VST, is to remove the dependence of the
variance on the mean, particularly the high variance of the logarithm of count data when the mean is
low. Both rlog and VST use the experiment-wide trend of variance over mean, in order to transform
the data to remove the experiment-wide trend. Note that we do not require or desire that all the genes
have exactly the same variance after transformation. Indeed, in Figure 4 below, you will see that after
the transformations the genes with the same mean do not have exactly the same standard deviations,
but that the experiment-wide trend has flattened. It is those genes with row variance above the trend
which will allow us to cluster samples into interesting groups.

2.1.1 Blind dispersion estimation

The two functions, rlog and varianceStabilizingTransformation, have an argument blind, for
whether the transformation should be blind to the sample information specified by the design formula.
When blind equals TRUE (the default), the functions will re-estimate the dispersions using only an
intercept (design formula ∼ 1). This setting should be used in order to compare samples in a manner
wholly unbiased by the information about experimental groups, for example to perform sample QA
(quality assurance) as demonstrated below.

However, blind dispersion estimation is not the appropriate choice if one expects that many or the
majority of genes (rows) will have large differences in counts which are explanable by the experimental
design, and one wishes to tranform the data for downstream analysis. In this case, using blind dispersion
estimation will lead to large estimates of dispersion, as it attributes differences due to experimental
design as unwanted “noise”, and shrinks the tranformed values towards each other. By setting blind
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to FALSE, the dispersions already estimated will be used to perform transformations, or if not present,
they will be estimated using the current design formula. Note that only the fitted dispersion estimates
from mean-dispersion trend line is used in the transformation. So setting blind to FALSE is still mostly
unbiased by the information about the samples.

2.1.2 Extracting transformed values

The two functions return SummarizedExperiment objects, as the data are no longer counts. The assay

function is used to extract the matrix of normalized values:

rld <- rlog(dds)

vsd <- varianceStabilizingTransformation(dds)

rlogMat <- assay(rld)

vstMat <- assay(vsd)

Note that if you have many samples, and the rlog function is taking too long, there is an argument
fast=TRUE, which will perform an approximation of the rlog: instead of shrinking the samples inde-
pendently, the function will find the optimal amount of shrinkage for each gene given the mean counts.
The optimization is performed on the same likelihood of the data as the original rlog. The speed-up
for a dataset with 100 samples is around 15x.

2.1.3 Regularized log transformation

The function rlog, stands for regularized log, transforming the original count data to the log2 scale
by fitting a model with a term for each sample and a prior distribution on the coefficients which is
estimated from the data. This is the same kind of shrinkage (sometimes referred to as regularization,
or moderation) of log fold changes used by the DESeq and nbinomWaldTest, as seen in Figure 1. The
resulting data contains elements defined as:

log2(qij) = βi0 + βij

where qij is a parameter proportional to the expected true concentration of fragments for gene i and
sample j (see Section 4.1), βi0 is an intercept which does not undergo shrinkage, and βij is the sample-
specific effect which is shrunk toward zero based on the dispersion-mean trend over the entire dataset.
The trend typically captures high dispersions for low counts, and therefore these genes exhibit higher
shrinkage from therlog.

Note that, as qij represents the part of the mean value µij after the size factor sj has been divided
out, it is clear that the rlog transformation inherently accounts for differences in sequencing depth.
Without priors, this design matrix would lead to a non-unique solution, however the addition of a prior
on non-intercept betas allows for a unique solution to be found. The regularized log transformation is
preferable to the variance stabilizing transformation if the size factors vary widely.



Differential analysis of count data – the DESeq2 package 18

Figure 3: VST and log2. Graphs of the variance stabilizing transformation for sample 1, in blue, and
of the transformation f(n) = log2(n/s1), in black. n are the counts and s1 is the size factor for the
first sample.

2.1.4 Variance stabilizing transformation

Above, we used a parametric fit for the dispersion. In this case, the closed-form expression for the
variance stabilizing transformation is used by varianceStabilizingTransformation, which is derived
in the file vst.pdf, that is distributed in the package alongside this vignette. If a local fit is used (option
fitType="locfit" to estimateDispersions) a numerical integration is used instead.

The resulting variance stabilizing transformation is shown in Figure 3. The code that produces the
figure is hidden from this vignette for the sake of brevity, but can be seen in the .Rnw or .R source file.
Note that the vertical axis in such plots is the square root of the variance over all samples, so including
the variance due to the experimental conditions. While a flat curve of the square root of variance over
the mean may seem like the goal of such transformations, this may be unreasonable in the case of
datasets with many true differences due to the experimental conditions.

2.1.5 Effects of transformations on the variance

Figure 4 plots the standard deviation of the transformed data, across samples, against the mean, using
the shifted logarithm transformation (1), the regularized log transformation and the variance stabilizing
transformation. The shifted logarithm has elevated standard deviation in the lower count range, and
the regularized log to a lesser extent, while for the variance stabilized data the standard deviation is
roughly constant along the whole dynamic range.
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Figure 4: Standard deviation over mean. Per-gene standard deviation (taken across samples),
against the rank of the mean, for the shifted logarithm log2(n+ 1) (left), the regularized log transfor-
mation (center) and the variance stabilizing transformation (right).

library("vsn")

par(mfrow=c(1,3))

notAllZero <- (rowSums(counts(dds))>0)

meanSdPlot(log2(counts(dds,normalized=TRUE)[notAllZero,] + 1))

meanSdPlot(assay(rld[notAllZero,]))

meanSdPlot(assay(vsd[notAllZero,]))

2.2 Data quality assessment by sample clustering and visualization

Data quality assessment and quality control (i. e. the removal of insufficiently good data) are essential
steps of any data analysis. These steps should typically be performed very early in the analysis of a new
data set, preceding or in parallel to the differential expression testing.

We define the term quality as fitness for purpose3. Our purpose is the detection of differentially
expressed genes, and we are looking in particular for samples whose experimental treatment suffered
from an anormality that renders the data points obtained from these particular samples detrimental to
our purpose.

2.2.1 Heatmap of the count matrix

To explore a count matrix, it is often instructive to look at it as a heatmap. Below we show how to
produce such a heatmap from the raw and transformed data.

3http://en.wikipedia.org/wiki/Quality_%28business%29

http://en.wikipedia.org/wiki/Quality_%28business%29
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Figure 5: Heatmaps showing the expression data of the 30 most highly expressed genes. The data is
of raw counts (left), from regularized log transformation (center) and from variance stabilizing trans-
formation (right).

library("RColorBrewer")

library("gplots")

select <- order(rowMeans(counts(dds,normalized=TRUE)),decreasing=TRUE)[1:30]

hmcol <- colorRampPalette(brewer.pal(9, "GnBu"))(100)

heatmap.2(counts(dds,normalized=TRUE)[select,], col = hmcol,

Rowv = FALSE, Colv = FALSE, scale="none",

dendrogram="none", trace="none", margin=c(10,6))

heatmap.2(assay(rld)[select,], col = hmcol,

Rowv = FALSE, Colv = FALSE, scale="none",

dendrogram="none", trace="none", margin=c(10, 6))

heatmap.2(assay(vsd)[select,], col = hmcol,

Rowv = FALSE, Colv = FALSE, scale="none",

dendrogram="none", trace="none", margin=c(10, 6))

2.2.2 Heatmap of the sample-to-sample distances

Another use of the transformed data is sample clustering. Here, we apply the dist function to the
transpose of the transformed count matrix to get sample-to-sample distances. We could alternatively
use the variance stabilized transformation here.
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Figure 6: Sample-to-sample distances. Heatmap showing the Euclidean distances between the
samples as calculated from the regularized log transformation.

distsRL <- dist(t(assay(rld)))

A heatmap of this distance matrix gives us an overview over similarities and dissimilarities between
samples (Figure 6): We have to provide a hierarchical clustering hc to the heatmap.2 function based
on the sample distances, or else the heatmap.2 function would calculate a clustering based on the
distances between the rows/columns of the distance matrix.

mat <- as.matrix(distsRL)

rownames(mat) <- colnames(mat) <- with(colData(dds),

paste(condition, type, sep=" : "))

hc <- hclust(distsRL)

heatmap.2(mat, Rowv=as.dendrogram(hc),

symm=TRUE, trace="none",

col = rev(hmcol), margin=c(13, 13))

2.2.3 Principal component plot of the samples

Related to the distance matrix of Section 2.2.2 is the PCA plot of the samples, which we obtain as
follows (Figure 7).
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Figure 7: PCA plot. PCA plot. The 7 samples shown in the 2D plane spanned by their first
two principal components. This type of plot is useful for visualizing the overall effect of experimental
covariates and batch effects.

plotPCA(rld, intgroup=c("condition", "type"))

It is also possible to customize the PCA plot using the ggplot function.

data <- plotPCA(rld, intgroup=c("condition", "type"), returnData=TRUE)

percentVar <- round(100 * attr(data, "percentVar"))

ggplot(data, aes(PC1, PC2, color=condition, shape=type)) +

geom_point(size=3) +

xlab(paste0("PC1: ",percentVar[1],"% variance")) +

ylab(paste0("PC2: ",percentVar[2],"% variance"))
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Figure 8: PCA plot. PCA plot customized using the ggplot2 library.

3 Variations to the standard workflow

3.1 Wald test individual steps

The function DESeq runs the following functions in order:

dds <- estimateSizeFactors(dds)

dds <- estimateDispersions(dds)

dds <- nbinomWaldTest(dds)

3.2 Contrasts

A contrast is a linear combination of estimated log2 fold changes, which can be used to test if differences
between groups are equal to zero. The simplest use case for contrasts is an experimental design
containing a factor with three levels, say A, B and C. Contrasts enable the user to generate results for
all 3 possible differences: log2 fold change of B vs A, of C vs A, and of C vs B (the other three possible
pairs will simply have −1× the log2 fold changes of these three).

In order to fit models with “shrunken” log2 fold changes in a manner which is independent to the
choice of base level, DESeq2 uses “expanded model matrices”, described further in Section 4.5. The
expanded model matrices include a coefficient for each level of the factors in addition to an intercept.
The contrast argument of results function is again used to extract test results of log2 fold changes
of interest.

Log2 fold changes can also be added and subtracted by providing a list to the contrast argument
with two elements: the names of the log2 fold changes to add, and the names of the log2 fold changes
to subtract. Alternatively, a numeric vector of the length of resultsNames(dds) can be provided, for

http://cran.fhcrc.org/web/packages/ggplot2/index.html
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manually specifying the linear combination of terms. Demonstrations of the use of contrasts for various
designs can be found in the examples section of the help page for the results function. The formula
that is used to generate the contrasts can be found in Section 4.4.

3.3 Interactions

Interaction terms can be added to the design formula, in order to test, for example, if the log2 fold
change attributable to a given condition is different based on a second variable, for example if the
treatment effect of a drug is differs based on another grouping variable like sex or species. Interactions
are specified in R formula using a colon, :, between the two variables names. Demonstrations of
extracting results from an interaction model are shown in the examples section of the help page for
results.

3.4 Time-series experiments

There are a number of ways to analyze time-series experiments, depending on the biological question of
interest. In order to test for any differences over multiple time points, once can use a design including
the time factor, and then test using the likelihood ratio test as described in Section 3.5, where the
time factor is removed in the reduced formula. For a control and treatment time series, one can use
a design formula containing the condition factor, the time factor, and the interaction of the two. In
this case, using the likelihood ratio test with a reduced model which does not contain the interaction
terms will test whether the condition induces a change in gene expression at any time point after the
base-level time point (time 0). An example of the later analysis is provided in an RNA-Seq workflow
on the Bioconductor website: http://www.bioconductor.org/help/workflows/rnaseqGene/.

3.5 Likelihood ratio test

DESeq2 offers two kinds of hypothesis tests: the Wald test, where we use the estimated standard error
of a log2 fold change to test if it is equal to zero, and the likelihood ratio test (LRT). The LRT examines
two models for the counts, a full model with a certain number of terms and a reduced model, in which
some of the terms of the full model are removed. The test determines if the increased likelihood of the
data using the extra terms in the full model is more than expected if those extra terms are truly zero.

The LRT is therefore useful for testing multiple terms at once, for example testing 3 or more levels
of a factor at once, or all interactions between two variables. The LRT for count data is conceptually
similar to an analysis of variance (ANOVA) calculation in linear regression, except that in the case of
the Negative Binomial GLM, we use an analysis of deviance (ANODEV), where the deviance captures
the difference in likelihood between a full and a reduced model.

The likelihood ratio test can be specified using the test argument to DESeq, which substitutes
nbinomWaldTest with nbinomLRT. In this case, the user needs to provide a reduced formula, e.g.
one in which a number of terms from design(dds) are removed. The degrees of freedom for the test
is obtained from the difference between the number of parameters in the two models.

http://www.bioconductor.org/help/workflows/rnaseqGene/
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3.6 Approach to count outliers

RNA-Seq data sometimes contain isolated instances of very large counts that are apparently unrelated
to the experimental or study design, and which may be considered outliers. There are many reasons why
outliers can arise, including rare technical or experimental artifacts, read mapping problems in the case
of genetically differing samples, and genuine, but rare biological events. In many cases, users appear
primarily interested in genes that show a consistent behavior, and this is the reason why by default,
genes that are affected by such outliers are set aside by DESeq2 , or if there are sufficient samples,
outlier counts are replaced for model fitting. These two behaviors are described below.

The DESeq function (and nbinomWaldTest/nbinomLRT functions) calculates, for every gene and for
every sample, a diagnostic test for outliers called Cook’s distance. Cook’s distance is a measure of
how much a single sample is influencing the fitted coefficients for a gene, and a large value of Cook’s
distance is intended to indicate an outlier count. The Cook’s distances are stored as a matrix available
in assays(dds)[["cooks"]].

The results function automatically flags genes which contain a Cook’s distance above a cutoff for
samples which have 3 or more replicates. The p values and adjusted p values for these genes are set to
NA. At least 3 replicates are required for flagging, as it is difficult to judge which sample might be an
outlier with only 2 replicates.

With many degrees of freedom – i. e., many more samples than number of parameters to be estimated –
it is undesirable to remove entire genes from the analysis just because their data include a single count
outlier. When there are 7 or more replicates for a given sample, the DESeq function will automatically
replace counts with large Cook’s distance with the trimmed mean over all samples, scaled up by the
size factor or normalization factor for that sample. This approach is conservative, it will not lead to
false positives, as it replaces the outlier value with the value predicted by the null hypothesis.

The default Cook’s distance cutoff for the two behaviors described above depends on the sample size and
number of parameters to be estimated. The default is to use the 99% quantile of the F (p,m−p) distri-
bution (with p the number of parameters including the intercept and m number of samples). The default
for gene flagging can be modified using the cooksCutoff argument to the results function. The
gene flagging functionality can be disabled by setting cooksCutoff to FALSE or Inf. The automatic
outlier replacement performed by DESeq can be disabled by setting the minReplicatesForReplace

argument to Inf.

DESeq automatically replaces outliers if there are sufficient replicates and a row contains a count with
very high Cook’s distance. DESeq preserves the original counts in counts(dds) saving the replacement
counts as a matrix named replaceCounts in assays(dds).

3.7 Dispersion plot and fitting alternatives

Plotting the dispersion estimates is a useful diagnostic. The dispersion plot in Figure 9 is typical, with
the final estimates shrunk from the gene-wise estimates towards the fitted estimates. Some gene-wise
estimates are flagged as outliers and not shrunk towards the fitted value, (this outlier detection is
described in the man page for estimateDispersionsMAP). The amount of shrinkage can be more or
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Figure 9: Dispersion plot. The dispersion estimate plot shows the gene-wise estimates (black), the
fitted values (red), and the final maximum a posteriori estimates used in testing (blue).

less than seen here, depending on the sample size, the number of coefficients, the row mean and the
variability of the gene-wise estimates.

plotDispEsts(dds)

3.7.1 Local or mean dispersion fit

A local smoothed dispersion fit is automatically substitited in the case that the parametric curve doesn’t
fit the observed dispersion mean relationship. This can be prespecified by providing the argument
fitType="local" to either DESeq or estimateDispersions. Additionally, using the mean of gene-
wise disperion estimates as the fitted value can be specified by providing the argument fitType="mean".

3.7.2 Supply a custom dispersion fit

Any fitted values can be provided during dispersion estimation, using the lower-level functions described
in the manual page for estimateDispersionsGeneEst. In the code chunk below, we store the gene-
wise estimates which were already calculated and saved in the metadata column dispGeneEst. Then
we calculate the median value of the dispersion estimates above a threshold, and save these values
as the fitted dispersions, using the replacement function for dispersionFunction. In the last line,
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the function estimateDispersionsMAP, uses the fitted dispersions to generate maximum a posteriori
(MAP) estimates of dispersion.

ddsCustom <- dds

useForMedian <- mcols(ddsCustom)$dispGeneEst > 1e-7

medianDisp <- median(mcols(ddsCustom)$dispGeneEst[useForMedian],na.rm=TRUE)

dispersionFunction(ddsCustom) <- function(mu) medianDisp

ddsCustom <- estimateDispersionsMAP(ddsCustom)

3.8 Independent filtering of results

The results function of the DESeq2 package performs independent filtering by default using the mean
of normalized counts as a filter statistic. A threshold on the filter statistic is found which optimizes
the number of adjusted p values lower than a significance level alpha (we use the standard variable
name for significance level, though it is unrelated to the dispersion parameter α). The theory behind
independent filtering is discussed in greater detail in Section 4.6. The adjusted p values for the genes
which do not pass the filter threshold are set to NA.

The independent filtering is performed using the filtered p function of the genefilter package, and all
of the arguments of filtered p can be passed to the results function. The filter threshold value and
the number of rejections at each quantile of the filter statistic are available as attributes of the object
returned by results. For example, we can visualize the optimization by plotting the filterNumRej

attribute of the results object, as seen in Figure 10. Note that if the maximum number of rejections is
very small such that the line of rejections over filter threshold appears noisy, the expected false discovery
rate might not be held exactly for this small set.

attr(res,"filterThreshold")

## 46.5%

## 9.2

plot(attr(res,"filterNumRej"),type="b",

ylab="number of rejections")

Independent filtering can be turned off by setting independentFiltering to FALSE.

resNoFilt <- results(dds, independentFiltering=FALSE)

addmargins(table(filtering=(res$padj < .1), noFiltering=(resNoFilt$padj < .1)))

## noFiltering

## filtering FALSE TRUE Sum

## FALSE 6900 0 6900

## TRUE 108 690 798

## Sum 7008 690 7698

http://bioconductor.org/packages/release/bioc/html/genefilter.html
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Figure 10: Independent filtering. The results function maximizes the number of rejections
(adjusted p value less than a significance level), over theta, the quantiles of a filtering statistic (in this
case, the mean of normalized counts).

3.9 Tests of log2 fold change above or below a threshold

It is also possible to provide thresholds for constructing Wald tests of significance. Two arguments to
the results function allow for threshold-based Wald tests: lfcThreshold, which takes a numeric
of a non-negative threshold value, and altHypothesis, which specifies the kind of test. Note that
the alternative hypothesis is specified by the user, i.e. those genes which the user is interested in
finding, and the test provides p values for the null hypothesis, the complement of the set defined by the
alternative. The altHypothesis argument can take one of the following four values, where β is the
log2 fold change specified by the name argument:

� greaterAbs - |β| > lfcThreshold - tests are two-tailed
� lessAbs - |β| < lfcThreshold - p values are the maximum of the upper and lower tests
� greater - β > lfcThreshold
� less - β < −lfcThreshold

The test altHypothesis="lessAbs" requires that the user have run DESeq with the argument
betaPrior=FALSE. To understand the reason for this requirement, consider that during hypothesis
testing, the null hypothesis is favored unless the data provide strong evidence to reject the null. For this
test, including a zero-centered prior on log fold change would favor the alternative hypothesis, shrinking
log fold changes toward zero. Removing the prior on log fold changes for tests of small log fold change
allows for detection of only those genes where the data alone provides evidence against the null.
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The four possible values of altHypothesis are demonstrated in the following code and visually by
MA-plots in Figure 11. First we run DESeq and specify betaPrior=FALSE in order to demonstrate
altHypothesis="lessAbs".

ddsNoPrior <- DESeq(dds, betaPrior=FALSE)

In order to produce results tables for the following tests, the same arguments (except ylim) would be
provided to the results function.

par(mfrow=c(2,2),mar=c(2,2,1,1))

yl <- c(-2.5,2.5)

resGA <- results(dds, lfcThreshold=.5, altHypothesis="greaterAbs")

resLA <- results(ddsNoPrior, lfcThreshold=.5, altHypothesis="lessAbs")

resG <- results(dds, lfcThreshold=.5, altHypothesis="greater")

resL <- results(dds, lfcThreshold=.5, altHypothesis="less")

plotMA(resGA, ylim=yl)

abline(h=c(-.5,.5),col="dodgerblue",lwd=2)

plotMA(resLA, ylim=yl)

abline(h=c(-.5,.5),col="dodgerblue",lwd=2)

plotMA(resG, ylim=yl)

abline(h=.5,col="dodgerblue",lwd=2)

plotMA(resL, ylim=yl)

abline(h=-.5,col="dodgerblue",lwd=2)

3.10 Access to all calculated values

All row-wise calculated values (intermediate dispersion calculations, coefficients, standard errors, etc.)
are stored in the DESeqDataSet object, e.g. dds in this vignette. These values are accessible by calling
mcols on dds. Descriptions of the columns are accessible by two calls to mcols.

mcols(dds,use.names=TRUE)[1:4,1:4]

## DataFrame with 4 rows and 4 columns

## gene baseMean baseVar allZero

## <factor> <numeric> <numeric> <logical>

## FBgn0000003 FBgn0000003 0.159 0.178 FALSE

## FBgn0000008 FBgn0000008 52.226 154.611 FALSE

## FBgn0000014 FBgn0000014 0.390 0.444 FALSE

## FBgn0000015 FBgn0000015 0.905 0.799 FALSE

# here using substr() only for display purposes

substr(names(mcols(dds)),1,10)

## [1] "gene" "baseMean" "baseVar" "allZero" "dispGeneEs"

## [6] "dispFit" "dispersion" "dispIter" "dispOutlie" "dispMAP"
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Figure 11: MA-plots of tests of log2 fold change with respect to a threshold value. Going
left to right across rows, the tests are for altHypothesis = "greaterAbs", "lessAbs", "greater",
and "less".

## [11] "Intercept" "conditionu" "conditiont" "SE_Interce" "SE_conditi"

## [16] "SE_conditi" "MLE_Interc" "MLE_condit" "WaldStatis" "WaldStatis"

## [21] "WaldStatis" "WaldPvalue" "WaldPvalue" "WaldPvalue" "betaConv"

## [26] "betaIter" "deviance" "maxCooks"

mcols(mcols(dds), use.names=TRUE)[1:4,]

## DataFrame with 4 rows and 2 columns

## type description

## <character> <character>

## gene input

## baseMean intermediate mean of normalized counts for all samples

## baseVar intermediate variance of normalized counts for all samples

## allZero intermediate all counts for a gene are zero

The mean values µij = sjqij and the Cook’s distances for each gene and sample are stored as matrices
in the assays slot:

head(assays(dds)[["mu"]])

## treated1fb treated2fb treated3fb untreated1fb untreated2fb

## FBgn0000003 0.232 0.121 0.138 0.158 0.249
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## FBgn0000008 79.292 41.141 46.989 54.328 85.815

## FBgn0000014 0.593 0.308 0.352 0.409 0.646

## FBgn0000015 1.287 0.668 0.762 0.921 1.454

## FBgn0000017 3208.117 1664.554 1901.137 2659.781 4201.345

## FBgn0000018 322.080 167.113 190.865 240.407 379.743

## untreated3fb untreated4fb

## FBgn0000003 0.107 0.118

## FBgn0000008 36.828 40.552

## FBgn0000014 0.277 0.305

## FBgn0000015 0.624 0.687

## FBgn0000017 1803.025 1985.333

## FBgn0000018 162.968 179.446

head(assays(dds)[["cooks"]])

## treated1fb treated2fb treated3fb untreated1fb untreated2fb

## FBgn0000003 0.101997 0.040425 1.93004 0.0350 0.055309

## FBgn0000008 0.001619 0.052975 0.03061 0.0522 0.005116

## FBgn0000014 1.496984 0.101639 0.12473 0.0947 0.186488

## FBgn0000015 0.026910 0.168946 0.02097 0.1773 0.031421

## FBgn0000017 0.000591 0.000259 0.00645 0.0516 0.078397

## FBgn0000018 0.366428 0.130161 0.08158 0.3468 0.000767

## untreated3fb untreated4fb

## FBgn0000003 0.0237 0.02614

## FBgn0000008 0.4135 0.25905

## FBgn0000014 0.3463 0.05955

## FBgn0000015 0.0362 0.42199

## FBgn0000017 0.1600 0.14812

## FBgn0000018 0.2148 0.00708

The dispersions αi can be accessed with the dispersions function.

head(dispersions(dds))

## [1] 10.0000 0.0538 6.3982 1.7320 0.0133 0.0220

# which is the same as

head(mcols(dds)$dispersion)

## [1] 10.0000 0.0538 6.3982 1.7320 0.0133 0.0220

The size factors sj are accessible via sizeFactors:

sizeFactors(dds)

## treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb

## 1.512 0.784 0.896 1.050 1.659 0.712

## untreated4fb

## 0.784
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For advanced users, we also include a convenience function coef for extracting the matrix of coefficients
[βir] for all genes i and parameters r, as in the formula in Section 4.1. This function can also return a
matrix of standard errors, see ?coef. The columns of this matrix correspond to the effects returned by
resultsNames. Note that the results function is best for building results tables with p values and
adjusted p values.

head(coef(dds))

## Intercept conditionuntreated conditiontreated

## FBgn0000003 -2.719 -0.01728 0.01727

## FBgn0000008 5.703 -0.00986 0.00986

## FBgn0000014 -1.355 -0.00591 0.00591

## FBgn0000015 -0.211 0.02147 -0.02147

## FBgn0000017 11.179 0.12768 -0.12768

## FBgn0000018 7.787 0.05192 -0.05192

The beta prior variance σ2
r is stored as an attribute of the DESeqDataSet:

attr(dds, "betaPriorVar")

## Intercept conditionuntreated conditiontreated

## 1.00e+06 1.05e-01 1.05e-01

The dispersion prior variance σ2
d is stored as an attribute of the dispersion function:

dispersionFunction(dds)

## function (q)

## coefs[1] + coefs[2]/q

## <environment: 0x0911ae1c>

## attr(,"coefficients")

## asymptDisp extraPois

## 0.0154 2.5652

## attr(,"fitType")

## [1] "parametric"

## attr(,"varLogDispEsts")

## [1] 0.961

## attr(,"dispPriorVar")

## [1] 0.47

attr(dispersionFunction(dds), "dispPriorVar")

## [1] 0.47

3.11 Sample-/gene-dependent normalization factors

In some experiments, there might be gene-dependent dependencies which vary across samples. For
instance, GC-content bias or length bias might vary across samples coming from different labs or
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processed at different times. We use the terms “normalization factors” for a gene × sample matrix,
and “size factors” for a single number per sample. Incorporating normalization factors, the mean
parameter µij from Section 4.1 becomes:

µij = NFijqij

with normalization factor matrix NF having the same dimensions as the counts matrix K. This matrix
can be incorporated as shown below. We recommend providing a matrix with row-wise geometric means
of 1, so that the mean of normalized counts for a gene is close to the mean of the unnormalized counts.
This can be accomplished by dividing out the current row geometric means.

normFactors <- normFactors / exp(rowMeans(log(normFactors)))

normalizationFactors(dds) <- normFactors

These steps then replace estimateSizeFactors in the steps described in Section 3.1. Normalization
factors, if present, will always be used in the place of size factors.

The methods provided by the cqn or EDASeq packages can help correct for GC or length biases. They
both describe in their vignettes how to create matrices which can be used by DESeq2 . From the
formula above, we see that normalization factors should be on the scale of the counts, like size factors,
and unlike offsets which are typically on the scale of the predictors (i.e. the logarithmic scale for the
negative binomial GLM). At the time of writing, the transformation from the matrices provided by these
packages should be:

cqnOffset <- cqnObject$glm.offset

cqnNormFactors <- exp(cqnOffset)

EDASeqNormFactors <- exp(-1 * EDASeqOffset)

http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
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4 Theory behind DESeq2

4.1 The DESeq2 model

The DESeq2 model and all the steps taken in the software are described in detail in our pre-print [1],
and we include the formula and descriptions in this section as well. The differential expression analysis
in DESeq2 uses a generalized linear model of the form:

Kij ∼ NB(µij, αi)

µij = sjqij

log2(qij) = xj.βi

where counts Kij for gene i, sample j are modeled using a negative binomial distribution with fitted
mean µij and a gene-specific dispersion parameter αi. The fitted mean is composed of a sample-specific
size factor sj

4 and a parameter qij proportional to the expected true concentration of fragments for
sample j. The coefficients βi give the log2 fold changes for gene i for each column of the model matrix
X.

By default these log2 fold changes are the maximum a priori estimates after incorporating a zero-
centered Normal prior – in the software referrred to as a β-prior – hence DESeq2 provides “moderated”
log2 fold change estimates. Dispersions are estimated using expected mean values from the maximum
likelihood estimate of log2 fold changes, and optimizing the Cox-Reid adjusted profile likelihood, as
first implemented for RNA-Seq data in edgeR [7, 8]. The steps performed by the DESeq function are
documented in its manual page; briefly, they are:

1. estimation of size factors sj by estimateSizeFactors

2. estimation of dispersion αi by estimateDispersions

3. negative binomial GLM fitting for βi and Wald statistics by nbinomWaldTest

For access to all the values calculated during these steps, see Section 3.10

4.2 Changes compared to the DESeq package

The main changes in the package DESeq2 , compared to the (older) version DESeq, are as follows:

� SummarizedExperiment is used as the superclass for storage of input data, intermediate calcula-
tions and results.

� Maximum a posteriori estimation of GLM coefficients incorporating a zero-centered Normal prior
with variance estimated from data (equivalent to Tikhonov/ridge regularization). This adjustment
has little effect on genes with high counts, yet it helps to moderate the otherwise large variance
in log2 fold change estimates for genes with low counts or highly variable counts.

4The model can be generalized to use sample- and gene-dependent normalization factors, see Appendix 3.11.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
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� Maximum a posteriori estimation of dispersion replaces the sharingMode options fit-only or
maximum of the previous version of the package. This is similar to the dispersion estimation
methods of DSS [9].

� All estimation and inference is based on the generalized linear model, which includes the two
condition case (previously the exact test was used).

� The Wald test for significance of GLM coefficients is provided as the default inference method,
with the likelihood ratio test of the previous version still available.

� It is possible to provide a matrix of sample-/gene-dependent normalization factors (Section 3.11).
� Automatic independent filtering on the mean of normalized counts (Section 4.6).
� Automatic outlier detection and handling (Section 4.3).

4.3 Count outlier detection

DESeq2 relies on the negative binomial distribution to make estimates and perform statistical inference
on differences. While the negative binomial is versatile in having a mean and dispersion parameter,
extreme counts in individual samples might not fit well to the negative binomial. For this reason, we
perform automatic detection of count outliers. We use Cook’s distance, which is a measure of how
much the fitted coefficients would change if an individual sample were removed [10]. For more on the
implementation of Cook’s distance see Section 3.6 and the manual page for the results function.
Below we plot the maximum value of Cook’s distance for each row over the rank of the test statistic
to justify its use as a filtering criterion.

W <- res$stat

maxCooks <- apply(assays(dds)[["cooks"]],1,max)

idx <- !is.na(W)

plot(rank(W[idx]), maxCooks[idx], xlab="rank of Wald statistic",

ylab="maximum Cook's distance per gene",

ylim=c(0,5), cex=.4, col=rgb(0,0,0,.3))

m <- ncol(dds)

p <- 3

abline(h=qf(.99, p, m - p))

4.4 Contrasts

Contrasts can be calculated for a DESeqDataSet object for which the GLM coefficients have already
been fit using the Wald test steps (DESeq with test="Wald" or using nbinomWaldTest). The vector
of coefficients β is left multiplied by the contrast vector c to form the numerator of the test statistic.
The denominator is formed by multiplying the covariance matrix Σ for the coefficients on either side
by the contrast vector c. The square root of this product is an estimate of the standard error for the
contrast. The contrast statistic is then compared to a normal distribution as are the Wald statistics for
the DESeq2 package.
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Figure 12: Cook’s distance. Plot of the maximum Cook’s distance per gene over the rank of the
Wald statistics for the condition. The two regions with small Cook’s distances are genes with a single
count in one sample. The horizontal line is the default cutoff used for 7 samples and 3 estimated
parameters.

W =
ctβ√
ctΣc

4.5 Expanded model matrices

As mentioned in Section 3.2, DESeq2 uses “expanded model matrices” with the log2 fold change prior,
in order to produce log2 fold change estimates and test results which are independent of the choice
of base level. These model matrices differ from the standard model matrices, in that they have an
indicator column (and therefore a coefficient) for each level of factors in the design formula in addition
to an intercept. Expanded model matrices are not used without the log2 fold change prior or in the
case of designs with 2 level factors and an interaction term.

These matrices are therefore not full rank, but a coefficient vector βi can still be found due to the zero-
centered prior on non-intercept coefficients. The prior variance for the log2 fold changes is calculated
by first generating maximum likelihood estimates for a standard model matrix. The prior variance for
each level of a factor is then set as the average of the mean squared maximum likelihood estimates for
each level and every possible contrast, such that that this prior value will be base level independent.
The contrast argument of the results function is again used in order to generate comparisons of
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interest.

4.6 Independent filtering and multiple testing

4.6.1 Filtering criteria

The goal of independent filtering is to filter out those tests from the procedure that have no, or little
chance of showing significant evidence, without even looking at their test statistic. Typically, this results
in increased detection power at the same experiment-wide type I error. Here, we measure experiment-
wide type I error in terms of the false discovery rate.

A good choice for a filtering criterion is one that

1. is statistically independent from the test statistic under the null hypothesis,
2. is correlated with the test statistic under the alternative, and
3. does not notably change the dependence structure –if there is any– between the tests that pass

the filter, compared to the dependence structure between the tests before filtering.

The benefit from filtering relies on property 2, and we will explore it further in Section 4.6.2. Its
statistical validity relies on property 1 – which is simple to formally prove for many combinations of
filter criteria with test statistics– and 3, which is less easy to theoretically imply from first principles,
but rarely a problem in practice. We refer to [11] for further discussion of this topic.

A simple filtering criterion readily available in the results object is the mean of normalized counts
irrespective of biological condition (Figure 13). Genes with very low counts are not likely to see
significant differences typically due to high dispersion. For example, we can plot the − log10 p values
from all genes over the normalized mean counts.

plot(res$baseMean+1, -log10(res$pvalue),

log="x", xlab="mean of normalized counts",

ylab=expression(-log[10](pvalue)),

ylim=c(0,30),

cex=.4, col=rgb(0,0,0,.3))

4.6.2 Why does it work?

Consider the p value histogram in Figure 14. It shows how the filtering ameliorates the multiple testing
problem – and thus the severity of a multiple testing adjustment – by removing a background set of
hypotheses whose p values are distributed more or less uniformly in [0, 1].

use <- res$baseMean > attr(res,"filterThreshold")

table(use)

## use

## FALSE TRUE

## 6728 7742
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Figure 13: Mean counts as a filter statistic. The mean of normalized counts provides an indepen-
dent statistic for filtering the tests. It is independent because the information about the variables in the
design formula is not used. By filtering out genes which fall on the left side of the plot, the majority of
the low p values are kept.

h1 <- hist(res$pvalue[!use], breaks=0:50/50, plot=FALSE)

h2 <- hist(res$pvalue[use], breaks=0:50/50, plot=FALSE)

colori <- c(`do not pass`="khaki", `pass`="powderblue")

barplot(height = rbind(h1$counts, h2$counts), beside = FALSE,

col = colori, space = 0, main = "", ylab="frequency")

text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)),

adj = c(0.5,1.7), xpd=NA)

legend("topright", fill=rev(colori), legend=rev(names(colori)))

4.6.3 Diagnostic plots for multiple testing

The Benjamini-Hochberg multiple testing adjustment procedure [12] has a simple graphical illustration,
which we produce in the following code chunk. Its result is shown in the left panel of Figure 15.

resFilt <- res[use & !is.na(res$pvalue),]

orderInPlot <- order(resFilt$pvalue)

showInPlot <- (resFilt$pvalue[orderInPlot] <= 0.08)



Differential analysis of count data – the DESeq2 package 39

Figure 14: Histogram of p values for all tests. The area shaded in blue indicates the subset of
those that pass the filtering, the area in khaki those that do not pass.

alpha <- 0.1

plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot],

pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i]))

abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2)

Schweder and Spjøtvoll [13] suggested a diagnostic plot of the observed p-values which permits estima-
tion of the fraction of true null hypotheses. For a series of hypothesis tests H1, . . . , Hm with p-values
pi, they suggested plotting

(1− pi, N(pi)) for i ∈ 1, . . . ,m, (2)

where N(p) is the number of p-values greater than p. An application of this diagnostic plot to
resFilt$pvalue is shown in the right panel of Figure 15. When all null hypotheses are true, the
p-values are each uniformly distributed in [0, 1], Consequently, the cumulative distribution function
of (p1, . . . , pm) is expected to be close to the line F (t) = t. By symmetry, the same applies to
(1 − p1, . . . , 1 − pm). When (without loss of generality) the first m0 null hypotheses are true and the
other m−m0 are false, the cumulative distribution function of (1− p1, . . . , 1− pm0) is again expected
to be close to the line F0(t) = t. The cumulative distribution function of (1− pm0+1, . . . , 1− pm), on
the other hand, is expected to be close to a function F1(t) which stays below F0 but shows a steep
increase towards 1 as t approaches 1. In practice, we do not know which of the null hypotheses are
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true, so we can only observe a mixture whose cumulative distribution function is expected to be close
to

F (t) =
m0

m
F0(t) +

m−m0

m
F1(t). (3)

Such a situation is shown in the right panel of Figure 15. If F1(t)/F0(t) is small for small t, then the
mixture fraction m0

m
can be estimated by fitting a line to the left-hand portion of the plot, and then

noting its height on the right. Such a fit is shown by the red line in the right panel of Figure 15.

plot(1-resFilt$pvalue[orderInPlot],

(length(resFilt$pvalue)-1):0, pch=".",

xlab=expression(1-p[i]), ylab=expression(N(p[i])))

abline(a=0, slope, col="red3", lwd=2)

Figure 15: Left: illustration of the Benjamini-Hochberg multiple testing adjustment procedure [12].
The black line shows the p-values (y-axis) versus their rank (x-axis), starting with the smallest p-value
from the left, then the second smallest, and so on. Only the first 1587 p-values are shown. The red line
is a straight line with slope α/n, where n = 7698 is the number of tests, and α = 0.1 is a target false
discovery rate (FDR). FDR is controlled at the value α if the genes are selected that lie to the left of the
rightmost intersection between the red and black lines: here, this results in 798 genes. Right: Schweder
and Spjøtvoll plot, as described in the text. For both of these plots, the p-values resFilt$pvalues

from Section 4.6.1 were used as a starting point. Analogously, one can produce these types of plots for
any set of p-values, for instance those from the previous sections.
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5 Frequently asked questions

5.1 How can I get support for DESeq2?

We welcome questions about our software, and want to ensure that we eliminate issues if and when
they appear. We have a few requests to optimize the process:

� all questions should take place on the Bioconductor support site: https://support.bioconductor.
org, which serves as a repository of questions and answers. This helps to save the developers’
time in responding to similar questions. Make sure to tag your post with “deseq2”. It is often
very helpful in addition to describe the aim of your experiment.

� before posting, first search the Bioconductor support site mentioned above for past threads which
might have answered your question.

� if you have a question about the behavior of a function, read the sections of the manual page for
this function by typing a question mark and the function name, e.g. ?results. We spend a lot
of time documenting individual functions and the exact steps that the software is performing.

� include all of your R code, especially the creation of the DESeqDataSet and the design formula.
Include complete warning or error messages, and conclude your message with the full output of
sessionInfo().

� if possible, include the output of as.data.frame(colData(dds)), so that we can have a sense
of the experimental setup. If this contains confidential information, you can replace the levels of
those factors using levels().

5.2 Why are some p values set to NA?

See the details in Section 1.4.3.

5.3 How can I get unfiltered DESeq results?

Users can obtain unfiltered GLM results, i.e. without outlier removal or independent filtering with the
following call:

dds <- DESeq(dds, minReplicatesForReplace=Inf)

res <- results(dds, cooksCutoff=FALSE, independentFiltering=FALSE)

In this case, the only p values set to NA are those from genes with all counts equal to zero.

5.4 How do I use the variance stabilized or rlog transformed data for dif-
ferential testing?

The variance stabilizing and rlog transformations are provided for applications other than differential
testing, for example clustering of samples or other machine learning applications. For differential testing

https://support.bioconductor.org
https://support.bioconductor.org
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we recommend the DESeq function applied to raw counts as outlined in Section 1.3.

5.5 Can I use DESeq2 to analyze paired samples?

Yes, you should use a multi-factor design which includes the sample information as a term in the design
formula. This will account for differences between the samples while estimating the effect due to the
condition. The condition of interest should go at the end of the design formula. See Section 1.5.

5.6 Can I run DESeq2 to contrast the levels of 100 groups?

DESeq2 will work with any kind of design specified using the R formula. We enourage users to consider
exploratory data analysis such as principal components analysis as described in Section 2.2.3, rather
than performing statistical testing of all combinations of dozens of groups.

As a speed concern with fitting very large models, note that each additional level of a factor in the
design formula adds another parameter to the GLM which is fit by DESeq2. Users might consider first
removing genes with very few reads, e.g. genes with row sum of 1, as this will speed up the fitting
procedure.

5.7 Can I use DESeq2 to analyze a dataset without replicates?

If a DESeqDataSet is provided with an experimental design without replicates, a message is printed,
that the samples are treated as replicates for estimation of dispersion. More details can be found in the
manual page for ?DESeq.

5.8 How can I include a continuous covariate in the design formula?

Continuous covariates can be included in the design formula in the same manner as factorial covariates.
Continuous covariates might make sense in certain experiments, where a constant fold change might
be expected for each unit of the covariate. However, in many cases, more meaningful results can be
obtained by cutting continuous covariates into a factor defined over a small number of bins (e.g. 3-5).
In this way, the average effect of each group is controlled for, regardless of the trend over the continuous
covariates. In R, numeric vectors can be converted into factors using the function cut.

5.9 What are the exact steps performed by DESeq()?

See the manual page for DESeq, which links to the subfunctions which are called in order, where
complete details are listed.
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7 Session Info

� R version 3.1.2 (2014-10-31), i386-w64-mingw32
� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils
� Other packages: Biobase 2.26.0, BiocGenerics 0.12.1, DESeq2 1.6.3, GenomeInfoDb 1.2.3,

GenomicRanges 1.18.3, IRanges 2.0.1, RColorBrewer 1.1-2, Rcpp 0.11.3,
RcppArmadillo 0.4.550.1.0, S4Vectors 0.4.0, airway 1.0.0, ggplot2 1.0.0, gplots 2.15.0,
knitr 1.8, pasilla 0.5.1, vsn 3.34.0

� Loaded via a namespace (and not attached): AnnotationDbi 1.28.1, BBmisc 1.8,
BatchJobs 1.5, BiocInstaller 1.16.1, BiocParallel 1.0.0, BiocStyle 1.4.1, DBI 0.3.1,
DESeq 1.18.0, Formula 1.1-2, Hmisc 3.14-6, KernSmooth 2.23-13, MASS 7.3-35,
RSQLite 1.0.0, XML 3.98-1.1, XVector 0.6.0, acepack 1.3-3.3, affy 1.44.0, affyio 1.34.0,
annotate 1.44.0, base64enc 0.1-2, bitops 1.0-6, brew 1.0-6, caTools 1.17.1, checkmate 1.5.1,
cluster 1.15.3, codetools 0.2-9, colorspace 1.2-4, digest 0.6.6, evaluate 0.5.5, fail 1.2,
foreach 1.4.2, foreign 0.8-61, formatR 1.0, gdata 2.13.3, genefilter 1.48.1, geneplotter 1.44.0,
grid 3.1.2, gtable 0.1.2, gtools 3.4.1, highr 0.4, iterators 1.0.7, labeling 0.3, lattice 0.20-29,
latticeExtra 0.6-26, limma 3.22.1, locfit 1.5-9.1, munsell 0.4.2, nnet 7.3-8, plyr 1.8.1,
preprocessCore 1.28.0, proto 0.3-10, reshape2 1.4.1, rpart 4.1-8, scales 0.2.4, sendmailR 1.2-1,
splines 3.1.2, stringr 0.6.2, survival 2.37-7, tools 3.1.2, xtable 1.7-4, zlibbioc 1.12.0
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