
Finding Chimeric Sequences

Erik S. Wright
University of Wisconsin

Madison, WI

October 13, 2014

Contents

1 Introduction 1

2 Chimera Finding Problems 1

3 Getting Started 2

4 Obtaining/Building A Reference Database 2

5 Steps to Find Chimeras 4
5.1 Assigning Sequences To A Reference Group . 4

5.1.1 Classifying Sequences . 4
5.1.2 Determining Reference Groups . 4
5.1.3 Assign to Groups . 4

5.2 Forming the Sequence Database . 5
5.2.1 Importing Sequences . 5
5.2.2 Adding Group Names . 6

5.3 Finding Chimeras . 6

6 Session Information 7

1 Introduction

This document illustrates how to detect chimeric sequences using the DECIPHER package through the use
of the FindChimeras function. The function finds chimeric sequences present in a database (dbFile) of
sequences by making use of a reference database (dbFileReference) of good sequences. The examples in this
document are directed towards finding chimeric 16S rRNA sequences, although a similar strategy could be
used with any type of sequence. For 16S sequences the functionality of FindChimeras is implemented as a
web tool available at http://DECIPHER.cee.wisc.edu.

2 Chimera Finding Problems

Chimeras are a common type of sequence anomaly that result from the use of PCR amplification. Chimeras
masquerade as normal sequences, but actually are made up of several different sequence parts that do not
exist together in reality. Undetected chimeras can have insidious effects, such as causing incorrect assessments
of sequence diversity or primer/probe specificity. Chimeras are very difficult to detect, and several detections

1

http://DECIPHER.cee.wisc.edu

methods have been proposed to varying degrees of success. The basic problem can be described as the search
for one or more regions of a sequence that do not belong with the rest of the sequence.

The FindChimeras algorithm works by finding suspect sequence fragments that are uncommon in the
group where the sequence belongs, but very common in another group where the sequence does not belong.
Each sequence in the dbFile is tiled into short sequence segments called fragments. If the fragments are
infrequent in their respective group in the dbFileReference then they are considered suspect. If enough
suspect fragments from a sequence meet the specified constraints then the sequence is flagged as a chimera.

3 Getting Started

To get started we need to load the DECIPHER package, which automatically loads several other required
packages.

> library(DECIPHER)

Help for any DECIPHER function, such as FindChimeras, can be accessed through

> ? FindChimeras

If this vignette was installed on your system then the code in each example can be obtained by

> browseVignettes("DECIPHER")

4 Obtaining/Building A Reference Database

The first step necessary to use FindChimeras is to obtain a reference database (dbFileReference) of good
sequences. In order for the algorithm to work accurately, it is crucial that the reference database is free
of any chimeras. The examples given in this document use 16S rRNA sequences, and a suitable reference
database can be found at http://DECIPHER.cee.wisc.edu/Download.html. The 16S reference database
must be unzipped after download.
If a reference database is not present then it is feasible to create a one if a significantly large repository of
sequences is available. By using the input database as the reference database it is possible to remove chimeras
from the database. Iteratively repeating the process can eventually result in a clean reference database that
is chimera free.
The reference database is required to have several fields of information that are not found in a newly created
sequence database:

1. bases and nonbases as provided by the function IdLengths.

2. origin as provided by the function FormGroups. The origin column contains the taxonomic rank above
the level shared by the whole group. For example, the origin of the group Nanoarchaeum would be Root;
Archaea; Nanoarchaeota. Without the taxonomic rank it would be possible to substitute numbers. For
example, the rank 3.1.4.2 with a group named 4 that included 4.1 and 4.2 would have origin 3.1. These
numbers could be generated using IdClusters with multiple cutoffs.

Below is an example of building a reference database de novo from a FASTA file of LSU rRNA (23S) sequences
downloaded from SILVA (http://www.arb-silva.de/). Of course, the reference database must match the type
of the query sequences, so in the remainder of this vignette we use a comprehensive SSU rRNA (16S)
database. The information in this section is only given as an example of how to build a reference database
from scratch.

2

http://DECIPHER.cee.wisc.edu/Download.html

> dbConn <- dbConnect(SQLite(), "SILVA-117 23S Reference Database.sqlite")

> Seqs2DB("SILVA 23S RefDB.fasta", "FASTA", dbConn, "")

50675 total sequences in the table DNA.

Time difference of 192.56 secs

[1] 50675

When importing a GenBank file the rank (classification) information is automatically imported from the
ORGANISM field. The classification is simply the levels of taxonomic rank separated by semicolons. In this
case the classification must be parsed from each sequence’s description information following the “>” symbol.

> class <- dbGetQuery(dbConn, "select description from DNA")

> f <- function (x) {paste(x[2:length(x)], collapse="")}

> class <- unlist(lapply(strsplit(class$description, " ", fixed=TRUE), f))

> Add2DB(data.frame(rank=class), dbConn)

Expression: alter table DNA add column rank TEXT

Expression: update or replace DNA set rank = :rank where row_names = :row_names

Added to table DNA: "rank".

Time difference of 0.88 secs

[1] TRUE

We can now screen the reference database for chimeras. This process can be repeated until no new chimeras
can be found in the reference database. After completing this process the reference database will be ready
for checking new sequences.

> lengths <- IdLengths(dbConn, add2tbl=TRUE)

|===| 100%

Lengths counted for 50675 sequences.

Added to DNA: "bases", "nonbases", and "width".

> groups <- FormGroups(dbConn, add2tbl=TRUE)

|===| 100%

Updating column: "id"...

Updating column: "origin"...

Formed 72 distinct groups.

Added to table DNA: "id", "origin".

Time difference of 917.76 secs

> chimeras <- FindChimeras(dbConn, dbFileReference=dbConn, add2tbl=TRUE)

Found 102 possible chimeras.

Added to table DNA: "chimera".

Time difference of 13387.34 secs

> dbDisconnect(dbConn)

3

5 Steps to Find Chimeras

5.1 Assigning Sequences To A Reference Group

5.1.1 Classifying Sequences

In order to assign new sequences to a group in the reference database, it is necessary to first classify the
sequences. There are a wide variety of classification methods that would work for this purpose. Here we make
use of the RDP Multiclassifier available from http://rdp.cme.msu.edu/classifier/. After downloading
the multiclassifier.jar we need to use it to classify our sequences. Be sure to change the path names to those
on your system by replacing all of the text inside quotes labeled “<<path to ...>>” with the actual path on
your system.

> output.file <- tempfile()

> command <- paste("java -Xmx1g -jar '",

"<<path to multiclassifier.jar>>",

"' --hier_outfile=/dev/null --conf=0 --assign_outfile='",

output.file,

"' '",

"<<path to FASTA file>>",

"'",

sep="")

> cat("\n\n", command, "\n\n", sep="")

java -jar ’/multiclassifier.jar’ -hier_outfile=/dev/null -conf=0 -assign_outfile=’/tmp/file1’

’/seqs.fas’

> system(command)

5.1.2 Determining Reference Groups

Next we need to determine which groups are present in the reference database and the number of sequences
present in each group.

> dbRef <- dbConnect(SQLite(), '<<path to reference database>>')

> t <- dbGetQuery(dbRef, "select distinct rank, id from DNA group by rank")

> y <- dbGetQuery(dbRef, paste("select distinct id,

count(*) as count from DNA", "where chimera is null group by id"))

> t$count <- 0

> for (i in 1:dim(t)[1])

t$count[i] <- y$count[which(y$id==t$id[i])]

5.1.3 Assign to Groups

We can now assign each of the classified sequences to a group in the reference database.

> r <- readLines(output.file)

> z <- data.frame(id=I(character(length(r))),

row.names=1:length(r))

> confidence <- .51

> for (i in 1:length(r)) {

u <- unlist(strsplit(r[i], "\t"))

4

http://rdp.cme.msu.edu/classifier/

confidenceLevel <- 0

for (k in seq(5, length(u), 3)) {

if (as.numeric(u[k]) < confidence) {

confidenceLevel <- k

break

}

}

if (confidenceLevel == 0) { # full confidence

r[i] <- paste(u[seq(3, length(u), 3)],

collapse="; ")

} else { # unclassified at some level

r[i] <- paste(u[seq(3, (confidenceLevel - 3), 3)],

collapse="; ")

r[i] <- paste(r[i],

"unclassified",

sep="; ")

}

index <- grep(r[i],

t$rank,

fixed=TRUE)

if (length(index) == 0)

z$id[i] <- "unknown_lineage"

else

z$id[i] <- as.character(t$id[index[1]])

}

At this point we should have the group assignment for each sequence.

> head(z)

id

1 Lysinibacillus

2 Staphylococcus

3 Staphylococcus

4 Carnobacteriaceae

5 Peptococcaceae

6 Erysipelotrichaceae

5.2 Forming the Sequence Database

5.2.1 Importing Sequences

Next, we need to load the sequences into a sequence database (dbFile). This database will be used directly
by the FindChimeras function. Here we can either set dbConn to a file location to write the database, or if
there is enough memory simply create the database in memory.

> # specify a path for where to write the sequence database

> dbConn <- "<<path to write sequence database>>"

> # OR create the sequence database in memory

5

> dbConn <- dbConnect(SQLite(), ":memory:")

> Seqs2DB("<<path to FASTA file>>", "FASTA", dbConn, "unknown")

Reading FASTA file from line 0 to 99999

175 total sequences in database.

Time difference of 0.2 secs

[1] 175

5.2.2 Adding Group Names

At this point we can add the group names that we determined previously to the sequence database we just
created.

> Add2DB(z, dbConn)

5.3 Finding Chimeras

Finally, we can use the FindChimeras function to search for chimeras in our sequences. Two sets of param-
eters are available for 16S sequences. The defaults apply to sequences longer than 1,000 nucleotides, while
the second command applies to sequences that are shorter in length.

> # full-length sequences

> chimeras <- FindChimeras(dbConn, dbFileReference=dbRef, add2tbl=TRUE,

maxGroupSize=1e4)

> # OR for short-length sequences

> chimeras <- FindChimeras(dbConn, dbFileReference=dbRef, minLength=40,

minSuspectFragments=2, add2tbl=TRUE, maxGroupSize=1e4)

Group of Sequence (Number of Sequences):

|===| 100%

Searching Other Groups:

|===| 100%

Found 19 possible chimeras.

Added to table DNA: "chimera".

Time difference of 1665.8 secs

If any chimeras were found then they are stored in the chimeras data.frame. There are several ways to
determine which sequences were found to be chimeric.

> # outputs the number of chimeras that were found

> cat("Number of chimeras =", dim(chimeras)[1])

Number of chimeras = 19

> # get the ordering of chimeric sequences in the set

> row.names(chimeras)

[1] "147" "89" "87" "90" "88" "132" "139" "97" "5" "120" "123" "13"

[13] "118" "114" "173" "174" "175" "18" "124"

6

> # allows viewing the chimera results in a web browser

> BrowseDB(dbConn)

[1] TRUE

> # returns the FASTA description of the chimeric sequences

> dbGetQuery(dbConn, "select description from DNA where chimera is not null")

1 uncultured bacterium; Fin_CL-100633_OTU-22.

2 uncultured bacterium; Fin_CL-030731_OTU-12.

3 uncultured bacterium; Fin_CL-050647_OTU-9.

4 uncultured bacterium; Pro_CL-100643_OTU-10.

5 uncultured bacterium; LO1_CL-100643_OTU-3.

6 uncultured bacterium; LO3_CL-100641_OTU-3.

7 uncultured bacterium; UWH_CL-010711_OTU-13.

8 uncultured bacterium; Chlplus_CL-120529_OTU-35.

9 uncultured bacterium; UWH_CL-110523_OTU-35.

10 uncultured bacterium; UWH_CL-100636_OTU-11.

11 uncultured bacterium; Chlminus_CL-090519_OTU-14.

12 uncultured bacterium; UWL_CL-080514_OTU-34.

13 uncultured bacterium; UWL_CL-080545_OTU-12.

14 uncultured bacterium; Pro_CL-100633_OTU-7.

15 uncultured bacterium; UWL_CL-110645_OTU-15.

16 uncultured bacterium; UWL_CL-09061_OTU-5.

17 uncultured bacterium; Fin_CL-03079_OTU-21.

18 uncultured bacterium; UWL_CL-110518_OTU-11.

19 uncultured bacterium; UWL_CL-110548_OTU-32.

> dbDisconnect(dbRef)

[1] TRUE

> dbDisconnect(dbConn)

[1] TRUE

> unlink(output.file)

6 Session Information

All of the output in this vignette was produced under the following conditions:

� R version 3.1.1 Patched (2014-09-24 r66678), i386-w64-mingw32

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

� Other packages: BiocGenerics 0.12.0, Biostrings 2.34.0, DBI 0.3.1, DECIPHER 1.12.0, IRanges 2.0.0,
RSQLite 0.11.4, S4Vectors 0.4.0, XVector 0.6.0

� Loaded via a namespace (and not attached): KernSmooth 2.23-13, tools 3.1.1, zlibbioc 1.12.0

7

	Introduction
	Chimera Finding Problems
	Getting Started
	Obtaining/Building A Reference Database
	Steps to Find Chimeras
	Assigning Sequences To A Reference Group
	Classifying Sequences
	Determining Reference Groups
	Assign to Groups

	Forming the Sequence Database
	Importing Sequences
	Adding Group Names

	Finding Chimeras

	Session Information

