
Pathview: pathway based data integration and visualization

Weijun Luo (luo weijun AT yahoo.com)

October 13, 2014

Abstract

In this vignette, we demonstrate the pathview package as a tool set for pathway based data integration
and visualization. It maps and renders user data on relevant pathway graphs. All users need is to supply
their gene or compound data and specify the target pathway. Pathview automatically downloads the pathway
graph data, parses the data file, maps user data to the pathway, and renders pathway graph with the mapped
data. Although built as a stand-alone program, pathview may seamlessly integrate with pathway and gene
set (enrichment) analysis tools for a large-scale and fully automated analysis pipeline. In this vignette, we
introduce common and advanced uses of pathview . We also cover package installation, data preparation,
other useful features and common application errors. In gage package, vignette ”RNA-Seq Data Pathway
and Gene-set Analysis Workflows” demonstrates GAGE/Pathview workflows on RNA-seq (and microarray)
pathway analysis.

1 Cite our work

Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration and
visualization. Bioinformatics, 29(14):1830-1831, 2013. doi: 10.1093/bioinformatics/btt285.

2 Quick start with demo data

This is the most basic use of pathview , please check the full description below for details. Here we assume that
the input data are already read in R as in the demo examples. If you are not sure how to do so, you may check
Section Common uses for data visualization or gage secondary vignette, ”Gene set and data preparation”.

> library(pathview)

> data(gse16873.d)

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = "04110",

+ species = "hsa", out.suffix = "gse16873")

3 New features

Pathview (≥ 1.5.4) provides paths.hsa data, the full list of human pathway ID/names from KEGG, as to help
user specify target pathway IDs when calling pathview. Please check Section Common uses for details.

Pathview (≥ 1.5.4) adjust the definitions of 7 arguments for pathview function: discrete, limit, bins,

both.dirs, trans.fun, low, mid, high. These arguments now accept 1- or 2-element vectors beside of 2-
element lists. For example, limit=1 is equivalent to limit=list(gene=1, cpd=1), and bins=c(3, 10) is equivalent
to bins=list(gene=3, cpd=10) etc. This would makes pathview easier to use.

Pathview (≥ 1.1.6) can plot/integrate/compare multiple states or samples in the same graph (Subsection 8.2).

1

mailto:luo_weijun@yahoo.com
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://bioinformatics.oxfordjournals.org/content/29/14/1830.full
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/dataPrep.pdf

Pathview (≥ 1.2.4) work with all KEGG species (about 3000) plus KEGG Orthology (with species="ko")
(Subsection 8.5).

4 Overview

Pathview (Luo and Brouwer, 2013) is a stand-alone software package for pathway based data integration and
visualization. This package can be divided into four functional modules: the Downloader, Parser, Mapper and
Viewer. Mostly importantly, pathview maps and renders user data on relevant pathway graphs.

Pathview generates both native KEGG view (like Figure 1 in PNG format) and Graphviz view (like Figure
2 in PDF format) for pathways (Section 7). KEGG view keeps all the meta-data on pathways, spacial and
temporal information, tissue/cell types, inputs, outputs and connections. This is important for human reading
and interpretation of pathway biology. Graphviz view provides better control of node and edge attributes,
better view of pathway topology, better understanding of the pathway analysis statistics. Currently only KEGG
pathways are implemented. Hopefully, pathways from Reactome, NCI and other databases will be supported
in the future. Notice that KEGG requires subscription for FTP access since May 2011. However, Pathview
downloads individual pathway graphs and data files through API or HTTP access, which is freely available (for
academic and non-commerical uses). Pathview uses KEGGgraph (Zhang and Wiemann, 2009) when parsing
KEGG xml data files.

Pathview provides strong support for data integration (Section 8). It works with: 1) essentially all types of
biological data mappable to pathways, 2) over 10 types of gene or protein IDs, and 20 types of compound or
metabolite IDs, 3) pathways for about 3000 species as well as KEGG orthology, 4) varoius data attributes and
formats, i.e. continuous/discrete data, matrices/vectors, single/multiple samples etc.

Pathview is open source, fully automated and error-resistant. Therefore, it seamlessly integrates with
pathway or gene set (enrichment) analysis tools. In Section 9, we will show an integrated analysis using pathview
with anothr the Bioconductor gage package (Luo et al., 2009), available from the Bioconductor website.

Note that although we use microarray data as example gene data in this vignette, Pathview is equally
applicable to RNA-Seq data and other types of gene/protein centered high throughput data. The secondary
vignette in gage package, ”RNA-Seq Data Pathway and Gene-set Analysis Workflows”, demonstrates such
applications.

This vignette is written by assuming the user has minimal R/Bioconductor knowledge. Some descriptions
and code chunks cover very basic usage of R. The more experienced users may simply omit these parts.

5 Installation

Assume R and Bioconductor have been correctly installed and accessible under current directory. Otherwise,
please contact your system admin or follow the instructions on R website and Bioconductor website. Here I
would strongly recommend users to install or upgrade to the latest verison of R (3.0.2+)/Bioconductor (2.14+)
for simpler installation and better use of Pathview . You may need to update your biocLite too if you upgrade
R/Biocondutor under Windows.

Start R: from Linux/Unix command line, type R (Enter); for Mac or Windows GUI, double click the R
application icon to enter R console.

End R: type in q() when you are finished with the analysis using R, but not now.
Two options:
Simple way: install with Bioconductor installation script biocLite directly (this included all dependencies

automatically too):

> source("http://bioconductor.org/biocLite.R")

> biocLite("pathview")

2

www.bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://www.r-project.org/
http://www.bioconductor.org/install/

Or a bit more complexer: install through R-forge or manually, but require dependence packages to be
installed using Bioconductor first:

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("Rgraphviz", "png", "KEGGgraph", "org.Hs.eg.db"))

Then install pathview through R-forge.

> install.packages("pathview",repos="http://R-Forge.R-project.org")

Or install manually: download pathview package (from R-forge or Bioconductor, make sure with proper
version number and zip format) and save to /your/local/directory/.

> install.packages("/your/local/directory/pathview_1.0.0.tar.gz",

+ repos = NULL, type = "source")

Note that there might be problems when installing Rgraphviz or XML (KEGGgraph dependency) package
with outdated R/Biocondutor. Rgraphviz installation is a bit complicate with R 2.5 (Biocondutor 2.10) or
earlier versions. Please check this Readme file on Rgraphviz . On Windows systems,XML frequently needs to be
installed manually. Its windows binary can be downloaded from CRAN and then:

> install.packages("/your/local/directory/XML_3.95-0.2.zip", repos = NULL)

6 Get Started

Under R, first we load the pathview package:

> library(pathview)

To see a brief overview of the package:

> library(help=pathview)

To get help on any function (say the main function, pathview), use the help command in either one of the
following two forms:

> help(pathview)

> ?pathview

7 Common uses for data visualization

Pathview is primarily used for visualizing data on pathway graphs. pathview generates both native KEGG
view (like Figure 1) and Graphviz view (like Figure 2). The former render user data on native KEGG pathway
graphs, hence is natural and more readable for human. The latter layouts pathway graph using Graphviz engine,
hence provides better control of node or edge attributes and pathway topology.

We load and look at the demo microarray data first. This is a breast cancer dataset. Here we would like to
view the pair-wise gene expression changes between DCIS (disease) and HN (control) samples. Note that the
microarray data are log2 transformed. Hence expression changes are log2 ratios.

> data(gse16873.d)

Here we assume that the input data are already read in R. If not, you may use R functions read.delim,
read.table etc to read in your data. For example, you may read in a truncated version of gse16873 and process
it as below.

3

http://pathview.r-forge.r-project.org/Rgraphviz.README
http://cran.r-project.org/web/packages/XML/index.html

> filename=system.file("extdata/gse16873.demo", package = "pathview")

> gse16873=read.delim(filename, row.names=1)

> gse16873.d=gse16873[,2*(1:6)]-gse16873[,2*(1:6)-1]

We also load the demo pathway related data, which includes 3 pathway ids and related plotting parameters.

> data(demo.paths)

We may also check the full list of KEGG pathway ID/names if needed. We provide human pathway IDs (in
the form of hsa+5 digits) mapping to pathway names. It is almost the same for other species, excpet for the 3
or 4 letter species code. Please check Subsection 8.5 for KEGG species code.

> data(paths.hsa)

> head(paths.hsa,3)

hsa00010 hsa00020

"Glycolysis / Gluconeogenesis" "Citrate cycle (TCA cycle)"

hsa00030

"Pentose phosphate pathway"

First, we view the exprssion changes of a single sample (pair) on a typical signaling pathway, ”Cell Cycle”,
by specifying the gene.data and pathway.id (Figure 1a). The microarray was done on human tissue, hence
species = "hsa". Note that such native KEGG view was outupt as a raster image in a PNG file in your
working directory.

> i <- 1

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873", kegg.native = T)

> list.files(pattern="hsa04110", full.names=T)

[1] "./hsa04110.gse16873.png" "./hsa04110.png"

[3] "./hsa04110.xml"

> str(pv.out)

List of 2

$ plot.data.gene:'data.frame': 92 obs. of 9 variables:

..$ kegg.names: chr [1:92] "1029" "51343" "4171" "4998" ...

..$ labels : chr [1:92] "CDKN2A" "FZR1" "MCM2" "ORC1" ...

..$ type : chr [1:92] "gene" "gene" "gene" "gene" ...

..$ x : num [1:92] 532 919 553 494 919 919 188 432 123 77 ...

..$ y : num [1:92] 124 536 556 556 297 519 519 191 704 687 ...

..$ width : num [1:92] 46 46 46 46 46 46 46 46 46 46 ...

..$ height : num [1:92] 17 17 17 17 17 17 17 17 17 17 ...

..$ mol.data : num [1:92] 0.129 -0.404 -0.42 0.986 1.181 ...

..$ mol.col : Factor w/ 10 levels "#00FF00","#30EF30",..: 5 3 3 9 9 9 9 9 5 6 ...

$ plot.data.cpd : NULL

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

1 1029 CDKN2A gene 532 124 46 17 0.1291987 #BEBEBE

2 51343 FZR1 gene 919 536 46 17 -0.4043256 #5FDF5F

4

3 4171 MCM2 gene 553 556 46 17 -0.4202181 #5FDF5F

4 4998 ORC1 gene 494 556 46 17 0.9864873 #FF0000

5 996 CDC27 gene 919 297 46 17 1.1811525 #FF0000

6 996 CDC27 gene 919 519 46 17 1.1811525 #FF0000

Graph from the first example above has a single layer. Node colors were modified on the original graph
layer, and original KEGG node labels (node names) were kept intact. This way the output file size is as small
as the original KEGG PNG file, but the computing time is relative long. If we want a fast view and do not
mind doubling the output file size, we may do a two-layer graph with same.layer = F (Figure 1b). This way
node colors and labels are added on an extra layer above the original KEGG graph. Notice that the original
KEGG gene labels (or EC numbers) were replaced by official gene symbols.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.2layer", kegg.native = T,

+ same.layer = F)

In the above two examples, we view the data on native KEGG pathway graph. This view we get all notes
and meta-data on the KEGG graphs, hence the data is more readable and interpretable. However, the output
graph is a raster image in PNG format. We may also view the data with a de novo pathway graph layout using
Graphviz engine (Figure 2). The graph has the same set of nodes and edges, but with a different layout. We
get more controls over the nodes and edge attributes and look. Importantly, the graph is a vector image in
PDF format in your working directory.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873", kegg.native = F,

+ sign.pos = demo.paths$spos[i])

> #pv.out remains the same

> dim(pv.out$plot.data.gene)

[1] 92 9

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

1 1029 CDKN2A gene 532 124 46 17 0.1291987 #BEBEBE

2 51343 FZR1 gene 919 536 46 17 -0.4043256 #5FDF5F

3 4171 MCM2 gene 553 556 46 17 -0.4202181 #5FDF5F

4 4998 ORC1 gene 494 556 46 17 0.9864873 #FF0000

5 996 CDC27 gene 919 297 46 17 1.1811525 #FF0000

6 996 CDC27 gene 919 519 46 17 1.1811525 #FF0000

In the example above, both main graph and legend were put in one layer (or page). We just list KEGG edge
types and ignore node types in legend as to save space. If we want the complete legend, we can do a Graphviz
view with two layers (Figure 3): page 1 is the main graph, page 2 is the legend. Note that for Graphviz view
(PDF file), the concept of “layer” is slightly different from native KEGG view (PNG file). In both cases, we set
argument same.layer=F for two-layer graph.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.2layer", kegg.native = F,

+ sign.pos = demo.paths$spos[i], same.layer = F)

5

(a)

(b)

Figure 1: Example native KEGG view on gene data with the (a) default settings; or (b) same.layer=F.

6

+p

+p

+p
+p

−p

+p +p

+p

+p
+p

+p

+p −p

−p
−p

−p

−p

+p

+p

+p
+p

+p

+p

+p

+p
+p

+p

+p

+p

+p

+p

+u

+u+u

+u

+u

SMAD4
SMAD2

CDK2
CCNE1

CDK7
CCNH

CDK2
CCNA2

CDK1
CCNA2

ORC3
ORC5
ORC4
ORC2
ORC1
ORC6

MCM7
MCM6
MCM5
MCM4
MCM3
MCM2

DBF4
CDC7

CDK1
CCNB1

CDK4
CCND1

SKP2
SKP1

SKP2
SKP1

CDC27
CDC20

FZR1
CDC27

BUB1B
MAD2L1

BUB3

SMC1A
SMC3
STAG1
RAD21

TFDP1
E2F4

TFDP1
E2F1

RBL1
E2F4

TFDP1

CDKN2A

PCNA

PLK1

ATM

BUB1

CDC14B

YWHAB

SFN

CHEK1

CDKN1A

PRKDC

MDM2

CREBBP

PKMYT1

WEE1

PTTG1 ESPL1

RB1

GADD45A

RB1

TP53

CDKN1B

CDKN2BTGFB1

CDC25B

CDC45

CDC6

CDC25A

GSK3B

MAD1L1TTK

CDKN2C

CDKN2D

CDKN2A

MYC
ZBTB17 ABL1

HDAC1
RB1

RBL2

−1 0 1

−Data with KEGG pathway−
−Rendered by Pathview−

Edge types

compound

hidden compound

activation

inhibition

expression

repression

indirect effect

state change

binding/association

dissociation

phosphorylation +p

dephosphorylation −p

glycosylation +g

ubiquitination +u

methylation +m

others/unknown ?

Figure 2: Example Graphviz view on gene data with default settings. Note that legend is put on the same page
as main graph.

7

+p

+p

+p
+p

−p

+p +p

+p

+p
+p

+p

+p −p

−p
−p

−p

−p

+p

+p

+p
+p

+p

+p

+p

+p
+p

+p

+p

+p

+p

+p

+u

+u+u

+u

+u

SMAD4
SMAD2

CDK2
CCNE1

CDK7
CCNH

CDK2
CCNA2

CDK1
CCNA2

ORC3
ORC5
ORC4
ORC2
ORC1
ORC6

MCM7
MCM6
MCM5
MCM4
MCM3
MCM2

DBF4
CDC7

CDK1
CCNB1

CDK4
CCND1

SKP2
SKP1

SKP2
SKP1

CDC27
CDC20

FZR1
CDC27

BUB1B
MAD2L1

BUB3

SMC1A
SMC3
STAG1
RAD21

TFDP1
E2F4

TFDP1
E2F1

RBL1
E2F4

TFDP1

CDKN2A

PCNA

PLK1

ATM

BUB1

CDC14B

YWHAB

SFN

CHEK1

CDKN1A

PRKDC

MDM2

CREBBP

PKMYT1

WEE1

PTTG1 ESPL1

RB1

GADD45A

RB1

TP53

CDKN1B

CDKN2BTGFB1

CDC25B

CDC45

CDC6

CDC25A

GSK3B

MAD1L1TTK

CDKN2C

CDKN2D

CDKN2A

MYC
ZBTB17 ABL1

HDAC1
RB1

RBL2

−1 0 1

−Data with KEGG pathway−
−Rendered by Pathview−

(a) page 1

KEGG diagram legend

compound

hidden compound

activation

inhibition

expression

repression

indirect effect

state change

binding/association

dissociation

phosphorylation +p

dephosphorylation −p

glycosylation +g

ubiquitination +u

methylation +m

others/unknown ?

gene
(protein/enzyme)

group
(complex)

compound
(metabolite/glycan)

map
(pathway) Pathway name

Edge Types Node Types

(b) page 2

Figure 3: Example Graphviz view on gene data with same.layer=F. Note that legend is put on a different page
than main graph.

8

+u

+u

+u

+u

+u

+u
+u

+u
+u

+p+p

+p

+p

+p

+p

+p

+p

+p

+p

+p

−p

−p

+p +p

+p

+u

+u

+p

+p
+p

+p

+u
+u

+p

+p

+p

+p

+p

+p

+u

−p

−p

−p
−p

−p

+p

+p

+p

+p
+p

+p

+p

+p

+p

+p

+p

+p

+p

+p

+p

+p

+p
+p

+p

+p

+p

+p

+p

CDKN2A

FZR1

CDC27

CDC27

SKP1

SKP1

ORC6

ORC3

ORC5

ORC4

ORC2

ORC1

MCM7

MCM6

MCM5

MCM4

MCM3

MCM2

CDK1

BUB1B

PCNA

PLK1

ATM

DBF4

MAD2L1

BUB1 BUB3

CDC14B
YWHAB

SFN

CHEK1

CDKN1A

PRKDC

MDM2

CREBBP

SKP2

PKMYT1

WEE1

PTTG1 ESPL1 SMC1A

SKP2

RB1

GADD45A

RB1

TP53

CDKN1B

CDKN2B

TGFB1

SMAD4

SMAD2

CDC7

CDC20

CDC25B

CDC45

CDC6

CDC25A

GSK3B

CDK1

CCNB1

CCNA2

CDK7

CDK2

CDK2

CDK4

CCNH

CCNA2

CCNE1

CCND1

MAD1L1TTK

CDKN2C

CDKN2D

CDKN2A

SMC3

STAG1

RAD21

RBL1

E2F4

MYC ZBTB17

ABL1

TFDP1

E2F1

HDAC1

RB1

RBL2
TFDP1

E2F4

TFDP1

−1 0 1

−Data with KEGG pathway−
−Rendered by Pathview−

Edge types

compound

hidden compound

activation

inhibition

expression

repression

indirect effect

state change

binding/association

dissociation

phosphorylation +p

dephosphorylation −p

glycosylation +g

ubiquitination +u

methylation +m

others/unknown ?

(a)

+u
+u
+u

+u

+u
+u

+u

+u
+u

+u

+u
+u

+u
+u
+u

+u

+u
+u

+u

+u

+u

+u

+u

+u

+u

+u
+u

+u

+u

+u

+u

+u
+u

+u

+u
+u

+u

+u+u

+u

+u

+u +u

+u

+u

+u

+u

+u

+u

+u
+u

+u

+u
+u

+u

+u
+u

+u

+u
+u

+u

+u
+u

+u

+u

+u

+u
+u

+u

+u

+u
+u

+u

+u

+u

+u

+u

+u +u
+u+u

+u

+u

+u
+u

+u

+u

+u

+u

+u
+u

+u
+u

+u

+p

+p

+p+p

+p

+p
+p+p+p
+p+p +p

+p

+p

+p+p+p−p

−p

−p

−p

−p

−p

−p

−p
−p

−p

−p
−p

−p

−p

−p

−p

−p−p

−p

−p

−p

−p
−p
−p−p

−p
+p

+p

+p
+p+p
+p

+p

+p

+u

+u
+u

+u

+u

+u

+p

+p+p

+p
+p

+p

+p+p+p

+u+u

−p−p

−p

−p

−p

−p

+p

+p+p

+p
+p

+p

+p+p
+p
+p

+p +p

+p

+p
+p+p

+p

+p

+p

+p

+p

+p+p

+p+p

+p

+p
+p

+p

+p

+p

+p
+p

+p

+p+p

+p

+p
+p

+p

+p+p
+p

+p

+p

+p

+p

CDKN2A

FZR1

MCM2MCM3MCM4

MCM5

MCM6

MCM7

ORC6

ORC3

ORC1

ORC2

ORC4

ORC5

ANAPC10

CDC26

ANAPC13

ANAPC2

ANAPC4

ANAPC5

ANAPC7

ANAPC11
ANAPC1

CDC23CDC16

CDC27

SKP1

CUL1

RBX1

CDK1

BUB1B

PCNA

PLK1

ATM
ATR

DBF4

MAD2L2

MAD2L1

BUB1BUB3

CDC14B

CDC14A

YWHAQ
YWHABYWHAE
YWHAG

YWHAHYWHAZ

SFN

CHEK1
CHEK2

CDKN1A
PRKDC

MDM2

CREBBPEP300

SKP2

PKMYT1

WEE2WEE1

PTTG2

PTTG1

ESPL1SMC1BSMC1A

RB1

GADD45GGADD45A
GADD45B

TP53

CDKN1B

CDKN1C

CDKN2B

TGFB1TGFB2
TGFB3

SMAD4

SMAD2
SMAD3

CDC7

CDC20

CDC25B

CDC25C

CDC45

CDC6

CDC25A

GSK3B

CCNB3

CCNB1

CCNB2

CCNA2 CCNA1

CDK7

CDK2

CDK4

CDK6

CCNH

CCNE1

CCNE2

CCND1

CCND2

CCND3

MAD1L1TTK

CDKN2C

CDKN2D

SMC3STAG1STAG2

RAD21

RBL1
E2F4

E2F5
MYC

ZBTB17

ABL1

TFDP1

TFDP2

E2F1

E2F2
E2F3

HDAC1
HDAC2

RBL2

−1 0 1

−Data with KEGG pathway−
−Rendered by Pathview−

Edge types

compound

hidden compound

activation

inhibition

expression

repression

indirect effect

state change

binding/association

dissociation

phosphorylation +p

dephosphorylation −p

glycosylation +g

ubiquitination +u

methylation +m

others/unknown ?

(b)

Figure 4: Example Graphviz view on gene data with (a) split.group = T; or (b) expand.node = T.
9

In Graphviz view, we have more control over the graph layout. We may split the node groups into individual
detached nodes (Figure 4a). We may even expand the multiple-gene nodes into individual genes (Figure 4b).
The split nodes or expanded genes may inherit the edges from the unsplit group or unexpanded nodes. This
way we tend to get a gene/protein-gene/protein interaction network. And we may better view the network
characteristics (modularity etc) and gene-wise (instead of node-wise) data. Note in native KEGG view, a gene
node may represent multiple genes/proteins with similar or redundant functional role. The number of member
genes range from 1 up to several tens. They are intentionally put together as a single node on pathway graphs
for better clarity and readability. Therefore, we do not split node and mark each member genes separately
by default. But rather we visualize the node-wise data by summarize gene-wise data, users may specify the
summarization method using node.sum arguement.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.split", kegg.native = F,

+ sign.pos = demo.paths$spos[i], split.group = T)

> dim(pv.out$plot.data.gene)

[1] 92 9

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

1 1029 CDKN2A gene 532 124 46 17 0.1291987 #BEBEBE

2 51343 FZR1 gene 919 536 46 17 -0.4043256 #5FDF5F

3 4171 MCM2 gene 553 556 46 17 -0.4202181 #5FDF5F

4 4998 ORC1 gene 494 556 46 17 0.9864873 #FF0000

5 996 CDC27 gene 919 297 46 17 1.1811525 #FF0000

6 996 CDC27 gene 919 519 46 17 1.1811525 #FF0000

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.split.expanded", kegg.native = F,

+ sign.pos = demo.paths$spos[i], split.group = T, expand.node = T)

> dim(pv.out$plot.data.gene)

[1] 124 9

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

hsa:1029 1029 CDKN2A gene 532 124 46 17 0.12919874 #BEBEBE

hsa:51343 51343 FZR1 gene 919 536 46 17 -0.40432563 #5FDF5F

hsa:4171 4171 MCM2 gene 553 556 46 17 0.17968149 #BEBEBE

hsa:4172 4172 MCM3 gene 553 556 46 17 0.33149955 #CE8F8F

hsa:4173 4173 MCM4 gene 553 556 46 17 0.06996779 #BEBEBE

hsa:4174 4174 MCM5 gene 553 556 46 17 -0.42874682 #5FDF5F

8 Data integration

Pathview provides strong support for data integration. It can be used to integrate, analyze and visualize a wide
variety of biological data (Subsection 8.1): gene expression, protein expression, genetic association, metabolite,
genomic data, literature, and other data types mappable to pathways. Notebaly, it can be directly used for
metagenomic, microbiome or unknown species data when the data are mapped to KEGG ortholog pathways

10

(Subsection 8.5). The integrated Mapper module maps a variety of gene/protein IDs and compound/metabolite
IDs to standard KEGG gene or compound IDs (Subsection 8.4). User data named with any of these different
ID types get accurately mapped to target KEGG pathways. Currently, pathview covers KEGG pathways for
about 3000 species (Subsection 8.5), and species can be specified either as KEGG code, scientific name or
comon name. In addition, pathview works with different data attributes and formats, both continuous and
discrete data (Subsection 8.3), either in matrix or vector format, with single or multiple samples/experiments
etc. Partcullary, Pathview can now integrate and compare multiple samples or states into one graph (Subsection
8.2).

8.1 Compound and gene data

In examples above, we viewed gene data with canonical signaling pathways. We frequently want to look
at metabolic pathways too. Besides gene nodes, these pathways also have compound nodes. Therefore, we
may integrate or visualize both gene data and compound data with metabolic pathways. Here gene data
is a broad concept including genes, transcripts, protein , enzymes and their expression, modifications and
any measurable attributes. Same is compound data, including metabolites, drugs, their measurements and
attributes. Here we still use the breast cancer microarray dataset as gene data. We then generate simulated
compound or metabolomic data, and load proper compound ID types (with sufficient number of unique entries)
for demonstration.

> sim.cpd.data=sim.mol.data(mol.type="cpd", nmol=3000)

> data(cpd.simtypes)

We generate a native KEGG view graph with both gene data and compound data (Figure 5a). Such
metabolic pathway graphs generated by pathview is the same as the original KEGG graphs, except that the
compound nodes are magnified for better view of the colors.

> i <- 3

> print(demo.paths$sel.paths[i])

[1] "00640"

> pv.out <- pathview(gene.data = gse16873.d[, 1], cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.cpd",

+ keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i])

> str(pv.out)

List of 2

$ plot.data.gene:'data.frame': 21 obs. of 9 variables:

..$ kegg.names: chr [1:21] "4329" "31" "23417" "18" ...

..$ labels : chr [1:21] "ALDH6A1" "ACACA" "MLYCD" "ABAT" ...

..$ type : chr [1:21] "gene" "gene" "gene" "gene" ...

..$ x : num [1:21] 202 202 202 319 418 921 857 778 685 801 ...

..$ y : num [1:21] 325 237 196 378 327 390 538 494 390 390 ...

..$ width : num [1:21] 46 46 46 46 46 46 46 46 46 46 ...

..$ height : num [1:21] 17 17 17 17 17 17 17 17 17 17 ...

..$ mol.data : num [1:21] 0.747 -0.483 -0.251 2.785 0.77 ...

..$ mol.col : Factor w/ 8 levels "#30EF30","#5FDF5F",..: 6 2 3 7 6 6 6 8 7 4 ...

$ plot.data.cpd :'data.frame': 44 obs. of 9 variables:

..$ kegg.names: chr [1:44] "C00222" "C00804" "C01013" "C00099" ...

..$ labels : chr [1:44] "C00222" "C00804" "C01013" "C00099" ...

..$ type : chr [1:44] "compound" "compound" "compound" "compound" ...

11

..$ x : num [1:44] 268 265 367 368 265 555 650 775 775 555 ...

..$ y : num [1:44] 327 449 327 388 228 116 91 88 157 63 ...

..$ width : num [1:44] 8 8 8 8 8 8 8 8 8 8 ...

..$ height : num [1:44] 8 8 8 8 8 8 8 8 8 8 ...

..$ mol.data : num [1:44] 0.14 0.143 NA -0.638 1.053 ...

..$ mol.col : Factor w/ 8 levels "#0000FF","#3030EF",..: 5 5 8 2 7 5 7 4 1 8 ...

> head(pv.out$plot.data.cpd)

kegg.names labels type x y width height mol.data mol.col

25 C00222 C00222 compound 268 327 8 8 0.1397585262 #BEBEBE

26 C00804 C00804 compound 265 449 8 8 0.1429100287 #BEBEBE

27 C01013 C01013 compound 367 327 8 8 NA #FFFFFF

28 C00099 C00099 compound 368 388 8 8 -0.6382880325 #3030EF

30 C00083 C00083 compound 265 228 8 8 1.0532858787 #FFFF00

84 C02614 C02614 compound 555 116 8 8 0.0003758095 #BEBEBE

We also generate Graphviz view of the same pathway and data (Figure 5b). Graphviz view better shows
the hierarchical structure. For metabolic pathways, we need to parse the reaction entries from xml files and
convert it to relationships between gene and compound nodes. We use ellipses for compound nodes. The labels
are standard compound names, which are retrieved from CHEMBL database. KEGG does not provide it in
the pathway database files. Chemical names are long strings, we need to do word wrap to fit them to specified
width on the graph.

> pv.out <- pathview(gene.data = gse16873.d[, 1], cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.cpd",

+ keys.align = "y", kegg.native = F, key.pos = demo.paths$kpos2[i],

+ sign.pos = demo.paths$spos[i], cpd.lab.offset = demo.paths$offs[i])

8.2 Multiple states or samples

In all previous examples, we looked at single sample data, which are either vector or single-column matrix.
Pathview also handles multiple sample data, it used to generate graph for each sample. Since version 1.1.6,
Pathview can integrate and plot multiple samples or states into one graph (Figure 6 - 7).

Let’s simulate compound data with multiple replicate samples first.

> set.seed(10)

> sim.cpd.data2 = matrix(sample(sim.cpd.data, 18000,

+ replace = T), ncol = 6)

> rownames(sim.cpd.data2) = names(sim.cpd.data)

> colnames(sim.cpd.data2) = paste("exp", 1:6, sep = "")

> head(sim.cpd.data2, 3)

exp1 exp2 exp3 exp4 exp5 exp6

C02787 0.62355826 -0.1108793 1.069398 -0.9595403 1.653444849 1.360614

C08521 -1.23737070 0.4676360 -2.064253 -0.6593838 0.004274093 0.512765

C01043 -0.01768295 0.5472769 -0.592388 -0.1190882 0.950917578 -1.130288

In the following examples, gene.data has three samples while cpd.data has two. We may include all these
samples in one graph. We can do either native KEGG view (Figure 6) or Graphviz view (Figure 7)on such
multiple-sample data. In these graphs, we see that the gene nodes and compound nodes are sliced into multiple

12

(a)

ACSS3

ACSS2

ACSS3

ACSS2

ALDH6A1

ACACA

MLYCD

ABAT

Pantothenate
and CoA

biosynthesis

HIBCH

ALDH6A1

ALDH6A1

MCEE

PCCA

ECHDC1

LDHB

Valine,
leucine and
isoleucine

degradation

C5−Branched
dibasic acid
metabolism

beta−Alanine
metabolism

ECHS1

Cysteine and
methionine
metabolism

ACADM

MUT

SUCLG2

SUCLG2

3−Chloroacrylic
acid

degradation
ACAT1

Pyruvate
metabolism

Citrate cycle
(TCA cycle)

C00222

Hydracrylic acid

beta−Alanine

Malonyl−CoA

2−Oxobutanoic
acid

Propionic acid

Propenoyl−CoA

Propanoyl−CoA

(S)−2−Methyl−3−\
oxopropanoyl−CoA

3−Hydroxypropio\
nyl−CoA

2−Hydroxybutano\
ic acid

Propionyladenyl\
ate

(R)−2−Methyl−3−\
oxopropanoyl−CoA

Succinyl−CoA

Ethylenesuccinic
acid

Acetyl−CoA

Acetoacetyl−CoA

(S)−Methylmalon\
ate semialdehyde

−1 0 1

−1 0 1

−Data with KEGG pathway−
−Rendered by Pathview−

Node types

gene
(protein/enzyme)

group
(complex)

compound
(metabolite/glycan)

map
(pathway) Pathway name

(b)

Figure 5: Example (a) KEGG view or (b) Graphviz view on both gene data and compound data simultaneously.

13

pieces corresponding to different states or samples. Since the sample sizes are different for gene.data and
cpd.data, we can choose to match the data if samples in the two data types are actually paired, i.e. first
columns of for gene.data and cpd.data come from the same experiment/sample, and so on.

> #KEGG view

> pv.out <- pathview(gene.data = gse16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.cpd.3-2s", keys.align = "y",

+ kegg.native = T, match.data = F, multi.state = T, same.layer = T)

> head(pv.out$plot.data.cpd)

kegg.names labels type x y width height exp1 exp2

25 C00222 C00222 compound 268 327 8 8 -0.1322799 0.1614143

26 C00804 C00804 compound 265 449 8 8 -0.1996916 -1.0967526

27 C01013 C01013 compound 367 327 8 8 NA NA

28 C00099 C00099 compound 368 388 8 8 1.4532987 -0.9155783

30 C00083 C00083 compound 265 228 8 8 0.6580861 -0.3964395

84 C02614 C02614 compound 555 116 8 8 0.5832773 -0.2103209

exp1.col exp2.col

25 #BEBEBE #BEBEBE

26 #BEBEBE #0000FF

27 #FFFFFF #FFFFFF

28 #FFFF00 #0000FF

30 #EFEF30 #8F8FCE

84 #DFDF5F #8F8FCE

> #KEGG view with data match

> pv.out <- pathview(gene.data = gse16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.cpd.3-2s.match",

+ keys.align = "y", kegg.native = T, match.data = T, multi.state = T,

+ same.layer = T)

> #graphviz view

> pv.out <- pathview(gene.data = gse16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.cpd.3-2s", keys.align = "y",

+ kegg.native = F, match.data = F, multi.state = T, same.layer = T,

+ key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i])

Again, we may choose to plot the samples separately, i.e. one sample per graph. Note that in this case, the
samples in gene.data and cpd.data has to be matched as to be assigned to the same graph. Hence, argument
match.data isn’t really effective here.

> #plot samples/states separately

> pv.out <- pathview(gene.data = gse16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.cpd.3-2s", keys.align = "y",

+ kegg.native = T, match.data = F, multi.state = F, same.layer = T)

As described above, KEGG views on the same layer may takes some time. Again, we can choose to do
KEGG view with two layers as to speed up the process if we don’t mind losing the original KEGG gene labels
(or EC numbers).

14

(a)

(b)

Figure 6: Example KEGG view on multiple states of both gene data and compound data simultaneously (a)
without or (b) with matching the samples.

15

ACSS3

ACSS2

ACSS3

ACSS2

ALDH6A1

ACACA

MLYCD

ABAT

Pantothenate
and CoA

biosynthesis

HIBCH

ALDH6A1

ALDH6A1

MCEE

PCCA

ECHDC1

LDHB

Valine,
leucine and
isoleucine

degradation

C5−Branched
dibasic acid
metabolism

beta−Alanine
metabolism

ECHS1

Cysteine and
methionine
metabolism

ACADM

MUT

SUCLG2

SUCLG2

3−Chloroacrylic
acid

degradation
ACAT1

Pyruvate
metabolism

Citrate cycle
(TCA cycle)

C00222

Hydracrylic acid

beta−Alanine

Malonyl−CoA

2−Oxobutanoic
acid

Propionic acid

Propenoyl−CoA

Propanoyl−CoA

(S)−2−Methyl−3−\
oxopropanoyl−CoA

3−Hydroxypropio\
nyl−CoA

2−Hydroxybutano\
ic acid

Propionyladenyl\
ate

(R)−2−Methyl−3−\
oxopropanoyl−CoA

Succinyl−CoA

Ethylenesuccinic
acid

Acetyl−CoA

Acetoacetyl−CoA

(S)−Methylmalon\
ate semialdehyde

−1 0 1

−1 0 1

−Data with KEGG pathway−
−Rendered by Pathview−

Node types

gene
(protein/enzyme)

group
(complex)

compound
(metabolite/glycan)

map
(pathway) Pathway name

Figure 7: Example Graphviz view on multiple states of both gene data and compound data simultaneously.

16

> pv.out <- pathview(gene.data = gse16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.cpd.3-2s.2layer",

+ keys.align = "y", kegg.native = T, match.data = F, multi.state = T,

+ same.layer = F)

8.3 Discrete data

So far, we have been dealing with continuous data. But we often work with discrete data too. For instance,
we select list of signficant genes or compound based on some statistics (p-value, fold change etc). The input
data can be named vector of two levels, either 1 or 0 (signficant or not), or it can be a shorter list of signficant
gene/compound names. In the next two examples, we made both gene.data and cpd.data or gene.data only
(Figure 8) discrete.

> require(org.Hs.eg.db)

> gse16873.t <- apply(gse16873.d, 1, function(x) t.test(x,

+ alternative = "two.sided")$p.value)

> sel.genes <- names(gse16873.t)[gse16873.t < 0.1]

> sel.cpds <- names(sim.cpd.data)[abs(sim.cpd.data) > 0.5]

> pv.out <- pathview(gene.data = sel.genes, cpd.data = sel.cpds,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.sel.cpd",

+ keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i],

+ limit = list(gene = 5, cpd = 2), bins = list(gene = 5, cpd = 2),

+ na.col = "gray", discrete = list(gene = T, cpd = T))

> pv.out <- pathview(gene.data = sel.genes, cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.cpd",

+ keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i],

+ limit = list(gene = 5, cpd = 1), bins = list(gene = 5, cpd = 10),

+ na.col = "gray", discrete = list(gene = T, cpd = F))

8.4 ID mapping

A distinguished feature of pathview is its strong ID mapping capability. The integrated Mapper module maps
over 10 types of gene or protein IDs, and 20 types of compound or metabolite IDs to standard KEGG gene or
compound IDs, and also maps between these external IDs. In other words, user data named with any of these
different ID types get accurately mapped to target KEGG pathways. Pathview applies to pathways for about
3000 species, and species can be specified in multiple formats: KEGG code, scientific name or comon name.

The following example makes use of the integrated mapper to map external ID types to standard KEGG IDs
automatically (Figure 9). We only need to specify the external ID types using gene.idtype and cpd.idtype

arguments. Note that automatic mapping is limited to certain ID types. For details check: gene.idtype.list
and data(rn.list); names(rn.list).

> cpd.cas <- sim.mol.data(mol.type = "cpd", id.type = cpd.simtypes[2],

+ nmol = 10000)

> gene.ensprot <- sim.mol.data(mol.type = "gene", id.type = gene.idtype.list[4],

+ nmol = 50000)

> pv.out <- pathview(gene.data = gene.ensprot, cpd.data = cpd.cas,

+ gene.idtype = gene.idtype.list[4], cpd.idtype = cpd.simtypes[2],

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T,

+ out.suffix = "gene.ensprot.cpd.cas", keys.align = "y", kegg.native = T,

17

Figure 8: Example native KEGG view on discrete gene data and continuous compound data simultaneously.

Figure 9: Example native KEGG view on gene data and compound data with other ID types.

+ key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i],

+ limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))

18

For external IDs not in the auto-mapping lists, we may make use of the mol.sum function (also part of the
Mapper module) to do the ID and data mapping explicitly. Here we need to provide id.map, the mapping matrix
between external ID and KEGG standard ID. We use ID mapping functions including id2eg and cpdidmap

etc to get id.map matrix. Note that these ID mapping functions can be used independent of pathview main
function. The following example use this route with the simulated gene.ensprot and cpd.kc data above, and
we get the same results (Figure not shown).

> id.map.cas <- cpdidmap(in.ids = names(cpd.cas), in.type = cpd.simtypes[2],

+ out.type = "KEGG COMPOUND accession")

> cpd.kc <- mol.sum(mol.data = cpd.cas, id.map = id.map.cas)

> id.map.ensprot <- id2eg(ids = names(gene.ensprot),

+ category = gene.idtype.list[4], org = "Hs")

> gene.entrez <- mol.sum(mol.data = gene.ensprot, id.map = id.map.ensprot)

> pv.out <- pathview(gene.data = gene.entrez, cpd.data = cpd.kc,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T,

+ out.suffix = "gene.entrez.cpd.kc", keys.align = "y", kegg.native = T,

+ key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i],

+ limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))

8.5 Working with species

Species is a tricky yet important issue when working with KEGG. KEGG has its own dedicated nomenclature
and database for species, which includes about 3000 organisms with complete genomes. In other words, gene
data for any of these organisms can be mapped, visualized and analyzed using pathview . This comprehensive
species coverage is a prominent feature of pathview ’s data integration capacity. However, KEGG does not treat
all of these organisms/genomes the same way. KEGG use NCBI GeneID (or Entrez Gene) as the default ID for
the most common model animals, including human, mouse, rat etc and a few crops, e.g. soybean, wine grape
and maize. On the other hand, KEGG uses Locus tag and other IDs for all others organisms, including animals,
plants, fungi, protists, as well as bacteria and archaea.

Pathview carries a data matrix korg, which includes a complete list of supported KEGG species and default
gene IDs. Let’s explore korg data matrix as to have some idea on KEGG species and its Gene ID usage.

> data(korg)

> head(korg)

kegg.code scientific.name common.name

[1,] "hsa" "Homo sapiens" "human"

[2,] "ptr" "Pan troglodytes" "chimpanzee"

[3,] "pps" "Pan paniscus" "bonobo"

[4,] "ggo" "Gorilla gorilla gorilla" "western lowland gorilla"

[5,] "pon" "Pongo abelii" "Sumatran orangutan"

[6,] "mcc" "Macaca mulatta" "rhesus monkey"

entrez.gnodes kegg.geneid ncbi.geneid

[1,] "1" "100" "100"

[2,] "1" "100533953" "100533953"

[3,] "1" "100967419" "100967419"

[4,] "1" "101123859" "101123859"

[5,] "1" "100169736" "100169736"

[6,] "1" "100301991" "100301991"

> #number of species which use Entrez Gene as the default ID

> sum(korg[,"entrez.gnodes"]=="1",na.rm=T)

19

[1] 81

> #number of species which use other ID types or none as the default ID

> sum(korg[,"entrez.gnodes"]=="0",na.rm=T)

[1] 2969

> #species which do not have Entrez Gene annotation at all

> na.idx=is.na(korg[,"ncbi.geneid"])

> korg[na.idx,]

kegg.code scientific.name

[1,] "dosa" "Oryza sativa japonica"

[2,] "pfh" "Plasmodium falciparum HB3"

[3,] "pfd" "Plasmodium falciparum Dd2"

[4,] "send" "Salmonella enterica subsp. enterica serovar Typhimurium DT104"

[5,] "sens" "Salmonella enterica subsp. enterica serovar Agona 24249"

[6,] "senb" "Salmonella enterica subsp. enterica serovar Bovismorbificans"

[7,] "kpr" "Klebsiella pneumoniae subsp. rhinoscleromatis SB3432"

common.name entrez.gnodes kegg.geneid ncbi.geneid

[1,] "Japanese rice" "0" "Os01t0183400-00" NA

[2,] "" "0" "PFHG_00076" NA

[3,] "" "0" "PFDG_00003" NA

[4,] "" "0" "DT104_00921" NA

[5,] "" "0" "Q786_00430" NA

[6,] "" "0" "BN855_10520" NA

[7,] "" "0" "KPR_0002" NA

From the exploration of korg above, we see that out of the 3000 KEGG species, only a few don’t have
NCBI (Entrez) Gene ID or any gene ID (annotation) at all. Almost all of them have both default KEGG
gene ID (often Locus tag) and Entrez Gene ID annotation. Therefore, pathview accepts gene.idtype="kegg"
or "Entrez" (case insensitive) for all these species. The users need to make sure the right gene.idtype is
specified because KEGG and Entrez Gene IDs are not the same except for 35 common species. For 19 species,
Bioconductor provides gene annotation packages. The users have the freedom to input gene.data with other
gene.idtype’s. For a list of these Bioconductor annotated species and extra Gene ID types allowed:

> data(bods)

> bods

package species kegg code id.type

[1,] "org.Ag.eg.db" "Anopheles" "aga" "eg"

[2,] "org.At.tair.db" "Arabidopsis" "ath" "tair"

[3,] "org.Bt.eg.db" "Bovine" "bta" "eg"

[4,] "org.Ce.eg.db" "Worm" "cel" "eg"

[5,] "org.Cf.eg.db" "Canine" "cfa" "eg"

[6,] "org.Dm.eg.db" "Fly" "dme" "eg"

[7,] "org.Dr.eg.db" "Zebrafish" "dre" "eg"

[8,] "org.EcK12.eg.db" "E coli strain K12" "eco" "eg"

[9,] "org.EcSakai.eg.db" "E coli strain Sakai" "ecs" "eg"

[10,] "org.Gg.eg.db" "Chicken" "gga" "eg"

[11,] "org.Hs.eg.db" "Human" "hsa" "eg"

20

[12,] "org.Mm.eg.db" "Mouse" "mmu" "eg"

[13,] "org.Mmu.eg.db" "Rhesus" "mcc" "eg"

[14,] "org.Pf.plasmo.db" "Malaria" "pfa" "orf"

[15,] "org.Pt.eg.db" "Chimp" "ptr" "eg"

[16,] "org.Rn.eg.db" "Rat" "rno" "eg"

[17,] "org.Sc.sgd.db" "Yeast" "sce" "orf"

[18,] "org.Ss.eg.db" "Pig" "ssc" "eg"

[19,] "org.Xl.eg.db" "Xenopus" "xla" "eg"

> data(gene.idtype.list)

> gene.idtype.list

[1] "SYMBOL" "GENENAME" "ENSEMBL" "ENSEMBLPROT" "PROSITE"

[6] "UNIGENE" "UNIPROT" "ACCNUM" "ENSEMBLTRANS" "REFSEQ"

All previous examples show human data, where Entrez Gene is KEGG’s default gene ID. Pathview now
(since version 1.1.5) explicitly handles species which use Locus tag or other gene IDs as the KEGG default ID.
Below are an couple of examples with E coli strain K12 data. First, we work on gene data with the default
KEGG ID (Locus tag) for E coli K12.

> eco.dat.kegg <- sim.mol.data(mol.type="gene",id.type="kegg",species="eco",nmol=3000)

> head(eco.dat.kegg)

b1447 b1206 b2579 b0264 b2197 b2267

-1.15259948 0.46416071 0.72893247 0.41061745 -1.46114720 -0.01890809

> pv.out <- pathview(gene.data = eco.dat.kegg, gene.idtype="kegg",

+ pathway.id = "00640", species = "eco", out.suffix = "eco.kegg",

+ kegg.native = T, same.layer=T)

We may also work on gene data with Entrez Gene ID for E coli K12 the same way as for human.

> eco.dat.entrez <- sim.mol.data(mol.type="gene",id.type="entrez",species="eco",nmol=3000)

> head(eco.dat.entrez)

946008 945770 947068 947698 946697 946750

-1.15259948 0.46416071 0.72893247 0.41061745 -1.46114720 -0.01890809

> pv.out <- pathview(gene.data = eco.dat.entrez, gene.idtype="entrez",

+ pathway.id = "00640", species = "eco", out.suffix = "eco.entrez",

+ kegg.native = T, same.layer=T)

Based on the bods data described above, E coli K12 is an Bioconductor annotated species. Hence we may
further work on its gene data with other ID types, for example, official gene symbols. When calling pathview,
such data need to be mapped to Entrez Gene ID first (if not yet), then to default KEGG ID (Locus tag).
Therefore, it takes longer time than the last example.

> egid.eco=eg2id(names(eco.dat.entrez), category="symbol", pkg="org.EcK12.eg.db")

> eco.dat.symbol <- eco.dat.entrez

> names(eco.dat.symbol) <- egid.eco[,2]

> head(eco.dat.kegg)

> pv.out <- pathview(gene.data = eco.dat.symbol, gene.idtype="symbol",

+ pathway.id = "00640", species = "eco", out.suffix = "eco.symbol.2layer",

+ kegg.native = T, same.layer=F)

21

Importantly, pathview can be directly used for metagenomic or microbiome data when the data are mapped
to KEGG ortholog pathways. And data from any new species that has not been annotated and included
in KEGG (non-KEGG species) can also been analyzed and visualized using pathview by mapping to KEGG
ortholog pathways the same way. In the next example, we simulate the mapped KEGG ortholog gene data first.
Then the data is input as gene.data with species="ko". Check pathview function for details.

> ko.data=sim.mol.data(mol.type="gene.ko", nmol=5000)

> pv.out <- pathview(gene.data = ko.data, pathway.id = "04112",

+ species = "ko", out.suffix = "ko.data", kegg.native = T)

9 Integrated workflow with pathway analysis

Although built as a stand alone program, Pathview may seamlessly integrate with pathway and functional
analysis tools for large-scale and fully automated analysis pipeline. The next example shows how to connect
common pathway analysis to results rendering with pathview . The pathway analysis was done using another
Bioconductor package gage (Luo et al., 2009), and the selected signficant pathways plus the expression data were
then piped to pathview for auomated results visualization (Figure not shown). In gage package, vignette ”RNA-
Seq Data Pathway and Gene-set Analysis Workflows” demonstrates GAGE/Pathview workflows on RNA-seq
(and microarray) pathway analysis.

> library(gage)

> data(gse16873)

> cn <- colnames(gse16873)

> hn <- grep('HN',cn, ignore.case =TRUE)

> dcis <- grep('DCIS',cn, ignore.case =TRUE)

> data(kegg.gs)

> #pathway analysis using gage

> gse16873.kegg.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis)

> #prepare the differential expression data

> gse16873.d <- gagePrep(gse16873, ref = hn, samp = dcis)

> #equivalently, you can do simple subtraction for paired samples

> gse16873.d <- gse16873[,dcis]-gse16873[,hn]

> #select significant pathways and extract their IDs

> sel <- gse16873.kegg.p$greater[, "q.val"] < 0.1 & !is.na(gse16873.kegg.p$greater[,

+ "q.val"])

> path.ids <- rownames(gse16873.kegg.p$greater)[sel]

> path.ids2 <- substr(path.ids[c(1, 2, 7)], 1, 8)

> #pathview visualization

> pv.out.list <- sapply(path.ids2, function(pid) pathview(gene.data = gse16873.d[,

+ 1:2], pathway.id = pid, species = "hsa"))

10 Common Errors

• mismatch between the IDs for gene.data (or cpd.data) and gene.idtype (or cpd.idtype). For example,
gene.data or cpd.data uses some extern ID types, while gene.idtype = "entrez" and cpd.idtype =

"kegg" (default).

• mismatch between gene.data (or cpd.data) and species. For example, gene.data come from ”mouse”,
while species="hsa".

22

http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf

• pathway.id wrong or wrong format, right format should be a five digit number, like 04110, 00620 etc.

• any of limit, bins, both.dir, trans.fun, discrete, low, mid, high arguments is specified as a
vector of length 1 or 2, instead of a list of 2 elements. Correct format should be like limit = list(gene

= 1, cpd = 1).

• key.pos or sign.pos not good, hence the color key or signature overlaps with pathway main graph.

• Special Note: some KEGG xml data files are incomplete, inconsistent with corresponding png image or
inaccurate/incorrect on some parts. These issues may cause inaccuracy, incosistency, or error messages
although pathview tries the best to accommodate them. For instance, we may see inconistence between
KEGG view and Graphviz view. As in the latter case, the pathway layout is generated based on data
from xml file.

References

Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration
and visualization. Bioinformatics, 29(14):1830–1831, 2013. doi: 10.1093/bioinformatics/btt285. URL http:

//bioinformatics.oxfordjournals.org/content/29/14/1830.full.

Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter Woolf. GAGE: generally ap-
plicable gene set enrichment for pathway analysis. BMC Bioinformatics, 10(1):161, 2009. URL http:

//www.biomedcentral.com/1471-2105/10/161.

Jitao David Zhang and Stefan Wiemann. KEGGgraph: a graph approach to KEGG PATHWAY in R and
Bioconductor. Bioinformatics, 25(11):1470–1471, 2009.

23

http://bioinformatics.oxfordjournals.org/content/29/14/1830.full
http://bioinformatics.oxfordjournals.org/content/29/14/1830.full
http://www.biomedcentral.com/1471-2105/10/161
http://www.biomedcentral.com/1471-2105/10/161

	Cite our work
	Quick start with demo data
	New features
	Overview
	Installation
	Get Started
	Common uses for data visualization
	Data integration
	Compound and gene data
	Multiple states or samples
	Discrete data
	ID mapping
	Working with species

	Integrated workflow with pathway analysis
	Common Errors

