
An introduction to gaucho

Alex Murison
Alexander.Murison@icr.ac.uk

Christopher P Wardell
Christopher.Wardell@icr.ac.uk

October 13, 2014

This vignette serves as an introduction to the R package gaucho. It covers the basic use cases
and usage of the package, explaining the input and output and contains several worked examples.
If you use this package, please cite it[1] and/or a recent paper where it was used[2]. A BibTeX
entry for LaTeX users is:

@Manual{gauchoR,

title = {GAUCHO: Genetic Algorithms for Understanding Clonal Heterogeneity and Ordering},

author = {A. Murison and C. P. Wardell},

note = {R package},

}

Installation: The latest stable version can be installed from Bioconductor like so:

Install

source("http://bioconductor.org/biocLite.R")

biocLite("gaucho")

Load

library(gaucho)

The latest development version can be cloned from GitHub but must be built from source:

https://github.com/MurisonWardell/gaucho

Dependencies: Please note that gaucho depends on the following packages which are either
available from CRAN or part of base R, but these should be automatically downloaded when Gau-
cho is installed using biocLite(): GA[3], compiler[4], heatmap.plus[5], png[6], as well as graph[7].

1

Contents

1 Overview 3
1.1 Introduction . 3
1.2 Genetic algorithms . 3
1.3 gaucho input . 3
1.4 How gaucho encodes individuals and solutions . 4
1.5 gaucho mutation function . 4
1.6 gaucho output . 5

2 Worked examples 5
2.1 Example 1 - simple synthetic data . 5
2.2 Example 2 - synthetic data containing a hidden clone 9
2.3 Example 3 - complex synthetic data and noisy synthetic data 13
2.4 Example 4 - real experimental data with contamination 14
2.5 Advanced gaucho usage and best practices . 15

2.5.1 Finding an initial estimate of the number of clones 15
2.5.2 Executing gaucho multiple times . 17

3 Session Info 18

References 18

2

1 Overview

1.1 Introduction

We work extensively with sequencing data, particularly next-generation sequencing data from
tumour-normal pairs. The tumour genome contains many single nucleotide variants (SNVs) which
are single-base differences between the tumour sample and the reference genome. These can be
separated into two groups:

1. SNVs shared between tumour and normal samples. These are germline variants and were
present before the tumour

2. SNVs only present in the tumour sample. These are somatic mutations

Tumours are known to be heterogeneous populations of related cells and in any given tumour
sample there may be differing proportions of cells that contain certain SNVs. These proportions
can be calculated for each SNV in turn using the number of supporting reads, the read depth and
the copy number of that region. These proportions are termed the cancer cell fraction (CCF) and
range between 0 (no cells contain the SNV in that sample) to 1 (all cells contain the SNV in that
sample).

The SNV CCF values can be explained as a mixture of a number of related clones. We know
that SNVs are heritable characteristics between clones and that new clones arise and go extinct
over time.

As these mixtures are the product of evolutionary processes it seemed appropriate to use
genetic algorithms to infer their ancestry and composition.

1.2 Genetic algorithms

Genetic algorithms (GAs) are stochastic heuristic optimisation algorithms. A population of poten-
tial solutions is generated and using a scoring function is compared to the observed data. Solutions
that best explain the observed data are allowed to reproduce with one another. Reproduction al-
lows both the recombination of solutions from different individuals and also the possibility of
mutations.

GAs are particularly useful when a brute-force approach is undesirable or impractical, for
example when the search space is very large. An important consideration is that the search space
may contain multiple solutions that exist as local minima and these may be difficult to escape,
even with a high mutation rate. It is therefore imperative to run gaucho multiple times
and select the best-scoring solution. Further details are discussed in the Advanced gaucho
usage and best practices section of the worked examples.

1.3 gaucho input

The main gaucho function (gaucho()) requires a data frame of observations as input. Each row
represents a feature and each column represents a discrete sample separated by time or space.
Every value must be a value between 0 and 1 and represents the proportion of individuals that
contain that feature.

An example of such data would be single nucleotide variants (SNVs) detected using DNA
sequencing in multiple tumour samples. Given the number of reference and non-reference reads
as well as the copy number at the site, it is possible to infer the proportion of cells containing the
SNV using the following equation:

p = min

(
r.CN

(r + R)

)
(1)

3

Where:
p = proportion of cells containing the SNV
CN = copy number at the site
r = number of non-reference reads
R = number of reference reads

If a site were sequenced to 100x depth, with 25 non-reference reads, 75 reference reads and
diploid copy number, the result would be min(1,25*2/(25+75)) = 0.5. Therefore, 50% of the cells
in the sample contain the SNV.

1.4 How gaucho encodes individuals and solutions

Every individual in the population is encoded as a character string. Consider the following solution
to an included data set. It contains three clones and three SNVs. The solution encodes a phylogeny,
the proportion of each clone in each sample and the clone in which each SNV first occurred. Let
there be s samples and k clones.
0 1 2 5 0 0 3 7 0 0 1 4 1 2 3

0 1 2 : The first k characters encode the position in the phylogeny of each clone. In this example,
the first element is the root (hence 0), the second is descended from the first and third is descended
from the second. If the second and third clones were both descended from the first clone, the
phylogeny would be 0 1 1.
5 0 0 3 7 0 0 1 4 : The next k*s characters encode the proportions. Each block of k characters
encodes the proportions of each clone for the sth sample. Proportions are generated by dividing
the numbers in the block by their sum. This example is explained below:

First sample is reprented by first block of three digits

First sample is 100% clone 1, 0% clone 2, 0% clone 3

c(5,0,0)/sum(c(5,0,0))

[1] 1 0 0

Second sample is reprented by second block of three digits

Second sample is 30% clone 1, 70% clone 2, 0% clone 3

c(3,7,0)/sum(c(3,7,0))

[1] 0.3 0.7 0.0

Third sample is reprented by third block of three digits

Third sample is 0% clone 1, 20% clone 2, 80% clone 3

c(0,1,4)/sum(c(0,1,4))

[1] 0.0 0.2 0.8

1 2 3 : The final k characters encodes the mutation matrix and the order of SNVs. In this
example the first SNV occurred in clone 1 (and is inherited by its descendants), the second SNV
occurred in clone 2 (and is inherited by its descendent) and SNV 3 occurred in clone 3. If all SNVs
occurred in clone 1, this string would be 1 1 1.

1.5 gaucho mutation function

The mutation function has been heavily modified in gaucho relative to the original in GA. If an
individual in the population undergoes mutation there is an equal chance of it occurring in the
phylogeny, proportion of clones or mutation matrix sections of the solution.

A mutation in the phylogeny section results in a new phylogeny being randomly assigned to
the individual. A mutation in the proportion section results in between 1 to k increments or

4

decrements to the assigned values. This enhanced level of mutation is required to help individuals
escape from local minima. A mutation in the mutation matrix section results in a single value
being randomly assigned to a new clone.

Also, note that crosses between parents are not permitted in the phylogeny section of the
solution.

1.6 gaucho output

The gaucho() function returns an object of class ga. Although this object can be interrogated
manually, the easiest way to look at the results is to use the gauchoReport() function. The default
output will produce the following files in the current working directory (where k=number of clones,
i=number of solution and n=total number of top-scoring solutions):

1. png image: kclones.solutioniofn.phylogeny.png: the inferred phylogeny of the solution

2. png image: kclones.solutioniofn.heatmap.png: a heatmap of the solution

3. png image: kclones.solutioniofn.proportions.png: a stacked barplot of the proportion of each
clone that composes each sample

4. png image: kclones.fitnessconvergence.png: the fitness convergence plot. This can be used
to ensure that gaucho is reaching convergence and being run for an appropriate number of
generations

5. text file: kclones.complete.solutioniofn.txt: the solution encoded as a string

6. text file: kclones.phylogeny.solution.iofn.txt: the phylogeny of the solution encoded as a
matrix. Note that these matrices are not directly compatible with the graph R package

7. text file: kclones.mutation.matrix.iofn.txt: a binary matrix showing the presence or absence
of each SNV in each clone

8. text file: kclones.proportions.solution.iofn.txt: the proportion of each clone that composes
each sample

Note that in the event of multiple solutions scoring equally well, files for up to the top five
solutions will be produced.

Write results to files

gauchoReport(gaucho_input_dataframe,gaucho_output_object)

2 Worked examples

A number of sample data sets are distributed with the gaucho package and are discussed in order
of increasing complexity.

2.1 Example 1 - simple synthetic data

A very small and simple synthetic data set is included. To demonstrate that your gaucho instal-
lation is working, you can execute the following commands.

Load library

library(gaucho)

5

Loading required package: compiler

Loading required package: GA

Package ’GA’ version 2.1

Type ’citation("GA")’ for citing this R package in publications.

Loading required package: graph

Loading required package: heatmap.plus

Loading required package: png

Loading required package: Rgraphviz

Loading required package: grid

Load simple data set

gaucho_simple_data = read.table(file.path(system.file("extdata",package="gaucho"),"gaucho_simple_data.txt"),header=TRUE,row.names=1)

There are three columns (time points T0, T1 and T2)

and three rows (mutations M1, M2, M3)

gaucho_simple_data

T0 T1 T2

M1 1 1.0 1.0

M2 0 0.7 1.0

M3 0 0.0 0.8

As we know the true number and relationship between the clones, we specify these and run
the algorithm. It should converge at the minimum score of zero quite quickly and exit after 200
generations of coverging at the highest fitness value.

Execute gaucho() function on the simple data set

simpleDataSolution=gaucho(gaucho_simple_data, number_of_clones=3, nroot=1,iterations=1000)

We can view the highest scoring solution(s) by accessing the appropriate slot in the returned
object. For example:

Access solution slot in returned object to show highest scoring solution(s)

simpleDataSolution@solution

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

[1,] 0 1 2 5 0 0 3 7 0 0 1 4 1 2 3

[2,] 0 1 2 7 0 0 3 7 0 0 1 4 1 2 3

[3,] 0 1 2 1 0 0 3 7 0 0 1 4 1 2 3

[4,] 0 1 2 6 0 0 3 7 0 0 1 4 1 2 3

[5,] 0 1 2 3 0 0 3 7 0 0 1 4 1 2 3

[6,] 0 1 2 11 0 0 3 7 0 0 1 4 1 2 3

[7,] 0 1 2 12 0 0 3 7 0 0 1 4 1 2 3

Note that it’s possible for multiple solutions to have equally good fitness scores which may
encode different phylogenies, mutation distributions or proportions. However, in this case all of
the solutions are numerically identical and exist because of the degeneracy in the way that the
clonal proportions are encoded.

We can now examine the best solution(s) using the gauchoReport() function.

Produce plots for the phylogeny, heatmap and proportions in turn

gauchoReport(gaucho_simple_data,simpleDataSolution,outType="phylogeny")

gauchoReport(gaucho_simple_data,simpleDataSolution,outType="heatmap")

6

gauchoReport(gaucho_simple_data,simpleDataSolution,outType="proportion")

Create output files representing the solution(s) in the current working directory

gauchoReport(gaucho_simple_data,simpleDataSolution,outType="complete")

In case you want to know the current working directory, it can be reported using this function:

getwd()

You should see images like those below. The colours used for clones are consistent between the
phylogeny, the sidebar of the heatmap and the proportion barplot.

Figure 1: The phylogeny of the optimum solution to the simple data set. There is a single root
(clone A) which gives rise to clone B which gives rise to clone C.

7

Figure 2: The input data has been clustered using the heatmap.plus package. The colour scale
goes from blue (low values) through yellow to red (high values). The coloured sidebar shows
which clones contain which mutations. For example, M1 is contained by all clones, whereas M3 is
contained only by clone C.

8

Figure 3: The proportions of each clone in each sample of the simple data set. Sample T0 is
composed entirely of clone A, whereas sample T1 is an unequal mixture of clones A and B, while
sample T2 is an unequal mixture of clones B and C.

2.2 Example 2 - synthetic data containing a hidden clone

The second synthetic data set demonstrates the ability of gaucho to infer intermediate clones that
are not explicitly detected in the input data and therefore ”hidden”.

Load library

library(gaucho)

Load hidden data set

gaucho_hidden_data = read.table(file.path(system.file("extdata",package="gaucho"),"gaucho_hidden_data.txt"),header=TRUE,row.names=1)

There are three columns (time points T0, T1 and T2)

and five rows (mutations M1, M2, M3, M4 and M5)

gaucho_hidden_data

T0 T1 T2

M1 1 1.0 1.0

M2 0 0.5 1.0

M3 0 0.3 0.7

M4 0 0.2 0.3

M5 0 0.0 0.6

9

Execute gaucho() function on the hidden data set

hiddenDataSolution=gaucho(gaucho_hidden_data, number_of_clones=5,

nroot=1,iterations=3000)

Access solution slot in returned object to show highest scoring solution(s)

This solution's score is -0.02500000

hiddenDataSolution@solution

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21

[1,] 0 1 2 2 4 29 0 0 0 0 8 0 3 5 0 0 0 6 2 12 1

x22 x23 x24 x25

[1,] 2 4 3 5

Produce plots for the phylogeny, heatmap and proportions in turn

gauchoReport(gaucho_hidden_data,hiddenDataSolution,outType="phylogeny")

gauchoReport(gaucho_hidden_data,hiddenDataSolution,outType="heatmap")

gauchoReport(gaucho_hidden_data,hiddenDataSolution,outType="proportion")

Create output files representing the solution(s) in the current working directory

gauchoReport(gaucho_simple_data,simpleDataSolution,outType="complete")

10

Figure 4: The phylogeny of the optimum solution to the hidden data set. Clone B is both the
child of clone A and the parent of all other clones.

11

Figure 5: Heatmap of the hidden data showing the mutation content of the clones.

12

Figure 6: The proportions of each clone in each sample of the hidden data set. Although clone B
is not present in any of the samples its existance and ancestry have been correctly inferred.

2.3 Example 3 - complex synthetic data and noisy synthetic data

These synthetic data are close to the sort of observations produced by a typical tumour-normal
paired exome sequencing experiment. There are four time points (T0 to T3) and 90 mutations
(gene1 to gene90). Each of the values represents the proportion of cells that contain that mutation
at that time point - the cancer cell fraction (CCF). We also include a synthetic data set with noise
added, as real-world data is never perfect.

Note that this example considers a single run of the algorithm, but real use requires multiple
runs. See the Advanced gaucho usage and best practices section for details and sample code.

Load library

library(gaucho)

Load synthetic data set and the same data with added jitter

gaucho_synth_data = read.table(file.path(system.file("extdata",package="gaucho"),"gaucho_synth_data.txt"),header=TRUE,row.names=1)

gaucho_synth_data_jittered = read.table(file.path(system.file("extdata",package="gaucho"),"gaucho_synth_data_jittered.txt"),header=TRUE,row.names=1)

Execute gaucho() function on the synthetic data set - we know that

13

there are 6 clones

s=gaucho(gaucho_synth_data,number_of_clones=6,iterations=3000)

Access solution slot in returned object to show highest scoring solution(s)

The optimum solution's score is -2.22E-15, which is a rounding error from zero

s@solution

Create output files representing the solution(s)

in the current working directory

gauchoReport(gaucho_synth_data,s)

Figure 7: The optimum solution for the synthetic data set. A shows the relationship between the
six clones with the mutations that are gained in each clone labelled. B shows the proportions of
each sample that is composed by each clone. C shows hierarchical clustering of the input data,
with the corresponding clones for each mutation as a coloured side bar.

2.4 Example 4 - real experimental data with contamination

The final included data set and is important for several reasons:

1. It’s experimental, biological data from a published source [8]

2. The publication suggests an optimum (”correct”) solution

3. The input data is contaminated, so we can test the contamination parameter of gaucho()

4. The data is functionally identical to the sort of mutation data we see in tumour/normal
paired sequencing experiments

Load library

library(gaucho)

Load yeast data set

BYB1_G07_pruned = read.table(file.path(system.file("extdata",package="gaucho"),"BYB1_G07_pruned.txt"),header=TRUE,row.names=1)

Execute gaucho() function on the yeast data set

The paper claims that there are 6 clones with multiple roots

yDataSolution=gaucho(BYB1_G07_pruned, number_of_clones=6, contamination=1, iterations=3000)

Access solution slot in returned object to show highest scoring solution(s)

yDataSolution@solution

14

Create output files representing the solution(s) in the current working directory

gauchoReport(BYB1_G07_pruned,yDataSolution)

As expected, solutions with 6 clones (as suggested by the publication) score the highest as
a group. However, we found a subtly different solution with 7 clones that scored even higher.
Therefore, the output of that solution is presented below.

Figure 8: A high-scoring solution solution for the yeast data set composed of 7 clones. A shows
the reconstructed phylogeny with each clone labelled with its associated mutations; inset is the
6 clone phylogeny described by Kernighan et al. B shows the proportions of each sample that
is composed by each clone. Note that clone H, which is not present in either the phylogeny
or heatmap, represents ”contamination”. In this context, the contamination is yeast cells that
contain none of the mutations that were measured. C shows hierarchical clustering of the input
data, with the corresponding clones for each mutation as a coloured side bar.

2.5 Advanced gaucho usage and best practices

We have covered the basic usage of gaucho using small data sets with simple phylogenies, larger
data sets with complex phylogenies and finally we recapitulated the results found through other
methods in a published data set. Here we explain more complex use of gaucho and provide sample
code for running your own analyses.

2.5.1 Finding an initial estimate of the number of clones

All gaucho requires to run is some input and the number of clones. How can we supply the number
of clones to gaucho without knowing it first?

Fortunately, gaucho itself provides a method to estimate the number of clones. Although there
are other methods we plan to implement in gaucho in a later release, the best method currently is
run gaucho a number of times with a number of different clone numbers and select the value that
gives the lowest scores.

Ideally, you should run gaucho as many times as possible over as large a range of clone numbers
as possible, but in practice we have found 10 data points to be more than enough to find a suitable
estimate. Note that each run does not need to be as thorough as when looking for the final solution;
a few hundred to a thousand iterations per run should be sufficient to indicate the result.

Load library

library(gaucho)

Load simple data set

gaucho_synth_data = read.table(file.path(system.file("extdata",package="gaucho"),"gaucho_synth_data.txt"),header=TRUE,row.names=1)

15

We know that there are 6 clones in this data set.

Let's loop from number_of_clones=4 to number_of_clones=8 to illustrate this

Also, assume we know nothing about phylogeny, so leave nroot as the default value

Assign parameters and create an empty data frame to hold the results

clonerange=4:8

n=5

results=matrix(NA,nrow=iterations,ncol=length(clonerange))

colnames(results)=paste0(rep("clone",length(clonerange)),clonerange)

Execute gaucho n times for each number of clones

for(c in clonerange){
for(thisn in 1:n){
message(paste("Iteration",thisn,"using",c,"clones"))

s=gaucho(gaucho_synth_data, number_of_clones=c,iterations=1000)

Assign best fitness value to an element in the matrix

results[thisn,which(c==clonerange)]=s@fitnessValue

}
}

Plot the results

boxplot(results)

16

Figure 9: Lowest fitness scores for different numbers of clones in the synthetic data. Although
7 clones gives a lower median score across 10 runs, 6 clones acheived the lowest single score.
Therefore, 6 and 7 clones should be explored further.

2.5.2 Executing gaucho multiple times

Now that the number of clones has been established to most likely be 6 or 7, a larger number of
longer runs should be executed. There are a number of ways to address this, but in this example
a simple loop executes multiple runs of gaucho for a set number of clones and adds the resulting
object to a list. When the run is complete (or is manually ended using ctrl-C), the user may
interrogate the list to find the best solution.

Load library

library(gaucho)

Load simple data set

gaucho_synth_data = read.table(file.path(system.file("extdata",package="gaucho"),"gaucho_synth_data.txt"),header=TRUE,row.names=1)

Execute 20 runs

n=20

Create an empty list to hold all results

17

gauchoResults = list()

Execute gaucho n times, pushing each resulting object into a list

for(thisn in 1:n){
message(paste("Iteration",thisn))

syntheticDataSolution=gaucho(gaucho_synthetic_data, number_of_clones=6, iterations=10000)

gauchoResults[thisn]=syntheticDataSolution

}

Find lowest fitness values of all runs

bestScore = max(sapply(gauchoResults, function(x) x@fitnessValue))

Which run was it?

which(sapply(gauchoResults, function(x) x@fitnessValue)==bestScore)

Multicore, parallel solutions that run multiple gaucho instances concurrently will be added in
a future release of gaucho.

3 Session Info

sessionInfo()

R version 3.1.1 Patched (2014-09-25 r66681)

Platform: x86_64-apple-darwin13.1.0 (64-bit)

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

attached base packages:

[1] grid compiler stats graphics grDevices utils datasets

[8] methods base

##

other attached packages:

[1] gaucho_1.2.0 Rgraphviz_2.10.0 png_0.1-7 heatmap.plus_1.3

[5] graph_1.44.0 GA_2.1

##

loaded via a namespace (and not attached):

[1] BiocGenerics_0.12.0 evaluate_0.5.5 formatR_1.0

[4] highr_0.3 knitr_1.7 parallel_3.1.1

[7] stats4_3.1.1 stringr_0.6.2 tools_3.1.1

References

[1] A. Murison and C. P. Wardell. GAUCHO: Genetic Algorithms for Understanding Clonal
Heterogeneity and Ordering. R package.

[2] L. Melchor et al. “Single-Cell Genetic Analysis Reveals The Genetic Composition Of Founder
Clones, Phylogenetic Patterns Of Branching and Parallel Evolution, and Clonal Fluctuations
Following Patient Treatment In Multiple Myeloma”. In: Leukemia (in press).

[3] Luca Scrucca. “GA: A Package for Genetic Algorithms in R”. In: Journal of Statistical Soft-
ware 53.4 (2013), pp. 1–37. url: http://www.jstatsoft.org/v53/i04/.

18

http://www.jstatsoft.org/v53/i04/

[4] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing. Vienna, Austria, 2013. url: http://www.R-project.org/.

[5] Allen Day. heatmap.plus: Heatmap with more sensible behavior. R package version 1.3. 2012.
url: http://CRAN.R-project.org/package=heatmap.plus.

[6] Simon Urbanek. png: Read and write PNG images. R package version 0.1-7. 2013. url: http:
//CRAN.R-project.org/package=png.

[7] R. Gentleman et al. graph: A package to handle graph data structures. R package version
1.38.3.

[8] G. I. Lang et al. “Pervasive genetic hitchhiking and clonal interference in forty evolving yeast
populations”. In: Nature 500.7464 (2013), pp. 571–574.

19

http://www.R-project.org/
http://CRAN.R-project.org/package=heatmap.plus
http://CRAN.R-project.org/package=png
http://CRAN.R-project.org/package=png

	Overview
	Introduction
	Genetic algorithms
	gaucho input
	How gaucho encodes individuals and solutions
	gaucho mutation function
	gaucho output

	Worked examples
	Example 1 - simple synthetic data
	Example 2 - synthetic data containing a hidden clone
	Example 3 - complex synthetic data and noisy synthetic data
	Example 4 - real experimental data with contamination
	Advanced gaucho usage and best practices
	Finding an initial estimate of the number of clones
	Executing gaucho multiple times

	Session Info
	References

