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1 Introduction

The package Ringo deals with the analysis of two-color oligonucleotide microarrays used
in ChIP-chip projects. The package was started to facilitate the analysis of two-color
microarrays from the company NimbleGen1, but the package has a modular design, such
that the platform-specific functionality is encapsulated and analogous two-color tiling array
platforms can also be processed. The package employs functions from other packages of the
Bioconductor project (Gentleman et al., 2004) and provides additional ChIP-chip-specific
and NimbleGen-specific functionalities.

> library("Ringo")

If you use Ringo for analyzing your data, please cite:

• Joern Toedling, Oleg Sklyar, Tammo Krueger, Jenny J Fischer, Silke Sperling, Wolf-
gang Huber (2007). Ringo - an R/Bioconductor package for analyzing ChIP-chip
readouts. BMC Bioinformatics, 8:221.

Getting help

If possible, please send questions about Ringo to the Bioconductor mailing list.
See http://www.bioconductor.org/docs/mailList.html

Their archive of questions and responses may prove helpful, too.

2 Reading in the raw data

For each microarray, the scanning output consists of two files, one holding the Cy3 intensi-
ties, the other one the Cy5 intensities. These files are tab-delimited text files.

The package comes with (shortened) example scanner output files, in NimbleGen’s pair
format. These files are excerpts of the ChIP-chip demo data that NimbleGen provide at

1for NimbleGen one-color microarrays, we recommend the Bioconductor package oligo
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their FTP site for free download. Their biological context, identification of DNA binding
sites of complexes containing Suz12 in human cells, has been described before (Squazzo
et al., 2006).

> exDir <- system.file("exData",package="Ringo")

> list.files(exDir, pattern="pair.txt")

[1] "MOD_20551_PMT1_pair.txt" "MOD_20742_PMT1_pair.txt"

> head(read.delim(file.path(exDir,"MOD_20551_PMT1_pair.txt"),

+ skip=1))[,c(1,4:7,9)]

IMAGE_ID PROBE_ID POSITION X Y PM

1 20551_PMT1 SUZ100P0000021781 1 269 78 1149.33

2 20551_PMT1 SUZ100P0000021783 16 682 779 1192.00

3 20551_PMT1 SUZ100P0000021785 31 92 405 685.56

4 20551_PMT1 SUZ100P0000021787 46 219 608 562.67

5 20551_PMT1 SUZ100P0000021789 61 217 418 584.56

6 20551_PMT1 SUZ100P0000021791 76 147 406 636.22

In addition, there is a text file that holds details on the samples, including which two pair
files belong to which sample2.

> read.delim(file.path(exDir,"example_targets.txt"), header=TRUE)

SlideNumber FileNameCy3 FileNameCy5

1 Suz12 MOD_20551_PMT1_pair.txt MOD_20742_PMT1_pair.txt

Species Cy3 Cy5

1 Homo sapiens (human) total Suz12

The columns FileNameCy3 and FileNameCy5 hold which of the raw data files belong to
which sample. The immuno-precipitated extract was colored with the Cy5 dye in the
experiment, so the column Cy5 essentially holds which antibody has been used for the
immuno-precipitation, in this case one against the protein Suz12.

Furthermore, there is a file describing the reporter categories on the array (you might know
these Spot Types files from limma (Smyth, 2005))3

> read.delim(file.path(exDir,"spottypes.txt"), header=TRUE)

2You may have to construct such a targets file for your own data. The scripts directory of this pack-
age contains a script convertSampleKeyTxt.R as an inspiration how the file SampleKey.txt provided by
NimbleGen could be used for this.

3The spot types file is usally not provided by the array manufacturer, but needs to be created manually.
You can use the file that comes with the package as a template and extend it as needed. See:
<your-install-directory-of-Rpackages>/Ringo/exData/spottypes.txt.
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SpotType GENE_EXPR_OPTION PROBE_ID Color

1 Probe FORWARD* * black

2 Probe REVERSE* * black

3 Probe BLOCK* * black

4 Negative NGS_CONTROLS* * yellow

5 Empty EMPTY * white

6 H_Code H_CODE * red

7 V_Code V_CODE * blue

8 Random RANDOM * green

Reading all these files, we can read in the raw reporter intensities and obtain an object of
class RGList , a class defined in package limma.

> exRG <- readNimblegen("example_targets.txt","spottypes.txt",path=exDir)

This object is essentially a list and contains the raw intensities of the two hybridizations
for the red and green channel plus information on the reporters on the array and on the
analyzed samples.

> head(exRG$R)

MOD_20742_PMT1_pair

[1,] 613.22

[2,] 841.67

[3,] 659.56

[4,] 494.44

[5,] 469.33

[6,] 544.11

> head(exRG$G)

MOD_20551_PMT1_pair

[1,] 1149.33

[2,] 1192.00

[3,] 685.56

[4,] 562.67

[5,] 584.56

[6,] 636.22

> head(exRG$genes)

GENE_EXPR_OPTION PROBE_ID POSITION X Y Status ID

1 FORWARD1 SUZ100P0000021781 1 269 78 Probe SUZ100P0000021781

2 FORWARD1 SUZ100P0000021783 16 682 779 Probe SUZ100P0000021783

3 FORWARD1 SUZ100P0000021785 31 92 405 Probe SUZ100P0000021785

4 FORWARD1 SUZ100P0000021787 46 219 608 Probe SUZ100P0000021787

5 FORWARD1 SUZ100P0000021789 61 217 418 Probe SUZ100P0000021789

6 FORWARD1 SUZ100P0000021791 76 147 406 Probe SUZ100P0000021791
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> exRG$targets

SlideNumber FileNameCy3 FileNameCy5

1 Suz12 MOD_20551_PMT1_pair.txt MOD_20742_PMT1_pair.txt

Species Cy3 Cy5

1 Homo sapiens (human) total Suz12

Users can alternatively supply raw two-color ChIP-chip readouts from other platforms in
RGList format and consecutively use Ringo to analyze that data. See Section 9 for an
example.

3 Mapping reporters to genomic coordinates

By reporters, we mean the oligo-nucleotides or PCR products that have been fixated on the
array for measuring the abundance of corresponding genomic fragments in the ChIP-chip
experiment.

Each reporter has a unique identifier and (ideally) a unique sequence, but can, and probably
does, appear in multiple copies as features on the array surface.

A mapping of reporters to genomic coordinates is usually provided by the array manufac-
turer, such as in NimbleGen’s *.POS files. If the reporter sequences are provided as well,
you may consider to perform a custom mapping of these sequences to the genome of interest,
using alignment tools such as Exonerate (Slater and Birney, 2005) or functions provided by
the Bioconductor package Biostrings (Pages et al., 2008).

Such a re-mapping of reporters to the genome can sometimes be necessary, for example
when the array has designed on an outdated assembly of the genome. Re-mapping also
provides the advantage that you can allow non-perfect matches of reporters to the genome,
if desired.

Once reporters have been mapped to the genome, this mapping needs to be made available to
the data analysis functions. While a data.frame may be an obvious way of representing such
a mapping, repeatedly extracting sub-sets of the data frame related to a genomic region of
interest turns out to be too slow for practical purposes. Ringo, similar to the Bioconductor
package tilingArray , employs an object of class probeAnno to store the mapping between
reporters on the microarray and genomic positions. Per chromosome, the object holds
four vectors of equal length and ordering that specify at which genomic positions reporter
matches start and end, what identifiers or indices these reporters have in the intensities
data, and whether these reporters match uniquely to the genomic positions.

> load(file.path(exDir,"exampleProbeAnno.rda"))

> ls(exProbeAnno)

[1] "9.end" "9.index" "9.start" "9.unique"

> show(exProbeAnno)
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A 'probeAnno' object holding the mapping between

reporters and genomic positions.

Chromosomes: 9

Microarray platform: NimbleGen MOD_2003-12-05_SUZ12_1in2

Genome: H.sapiens (hg18)

> head(exProbeAnno["9.start"])

[1] 531857 861532 1269645 2497214 2685042 3795381

> head(exProbeAnno["9.end"])

[1] 531916 861591 1269704 2497273 2685101 3795440

The function posToProbeAnno allows generation of a valid probeAnno object, either from
a file that corresponds to a NimbleGen POS file or from a data.frame objects that holds the
same information. The package’s scripts directory contains a script mapReportersWith-

Biostrings.R, which shows how to use Biostrings for mapping the reporter sequences of
the provided example data, and some Perl scripts that allow the conversion of multiple
output files from common alignment tools such as Exonerate into one file that corresponds
to a POS file. The function validObject can be used to perform a quick check whether a
generated probeAnno object will probably work with other Ringo functions.

4 Quality assessment

The image function allows us to look at the spatial distribution of the intensities on a chip.
This can be useful to detect obvious artifacts on the array, such as scratches, bright spots,
finger prints etc. that might render parts or all of the readouts useless.

> par(mar=c(0.01,0.01,0.01,0.01), bg="black")

> image(exRG, 1, channel="green", mycols=c("black","green4","springgreen"))

See figure 1 for the image. Since the provided example data set only holds the intensities
for reporters mapped to the forward strand of chromosome 9, the image only shows the few
green dots of these reporters’ positions. We see, however, that these chromosome 9 reporters
are well distributed over the whole array surface rather than being clustered together in
one part of the array.

It may also be useful to look at the absolute distribution of the single-channel densities.
limma’s function plotDensities may be useful for this purpose.

> plotDensities(exRG)
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Figure 1: Spatial distribution of raw reporter intensities laid out by the reporter position on
the microarray surface.
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In addition, the data file loaded above also contains a GFF (General Feature Format) file
of all transcripts on human chromosome 9 annotated in the Ensembl database (release 46,
August 2007). The script retrieveGenomicFeatureAnnotation.R in the package’s scripts
directory contains example source code showing how the Bioconductor package biomaRt
can be used to generate such an annotated genome features data.frame.

> head(exGFF[,c("name","symbol","chr","strand","start","end")])
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name symbol chr strand start end

1 ENST00000382507 9 1 1056 1620

2 ENST00000326592 9 -1 5841 19587

3 ENST00000382502 9 -1 24394 25841

4 ENST00000355822 9 -1 24921 25277

5 ENST00000382501 9 -1 25028 25856

6 ENST00000382500 FOXD4 9 -1 105991 108951

To assess the impact of the small distance between reporters on the data, one can look at
the autocorrelation plot. For each base-pair lag d, it is assessed how strong the intensities
of reporters at genomic positions x+d are correlated with the probe intensities at positions
x.

The computed correlation is plotted against the lag d.

> exAc <- autocor(exRG, probeAnno=exProbeAnno, chrom="9", lag.max=1000)

> plot(exAc)
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We see some auto-correlation between probe position up to 800 base pairs apart. Since the
sonicated fragments that are hybridized to the array have an average size in the range of
up to 1000 bp, such a degree of auto-correlation up to this distance can be expected.

5 Preprocessing

Following quality assessment of the raw data, we perform normalization of the probe in-
tensities and derive fold changes of reporters’ intensities in the enriched sample divided by
their intensities in the non-enriched input sample and take the (generalized) logarithm of
these ratios.

We use the variance-stabilizing normalization (Huber et al., 2002) or probe intensities and
generate an ExpressionSet object of the normalized probe levels.
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> exampleX <- preprocess(exRG)

> sampleNames(exampleX) <-

+ with(exRG$targets, paste(Cy5,"vs",Cy3,sep="_"))

> print(exampleX)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 991 features, 1 samples

element names: exprs

protocolData: none

phenoData

sampleNames: Suz12_vs_total

varLabels: SlideNumber FileNameCy3 ... Cy5 (6 total)

varMetadata: varLabel labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation:

Among the provided alternative preprocessing options is also the Tukey-biweight scaling
procedure that NimbleGen have used to scale ChIP-chip readouts so that the data is cen-
tered on zero.

> exampleX.NG <- preprocess(exRG, method="nimblegen")

> sampleNames(exampleX.NG) <- sampleNames(exampleX)

The effects of different preprocessing procedures on the data, can be assessed using the
corPlot function.

> corPlot(cbind(exprs(exampleX),exprs(exampleX.NG)),

+ grouping=c("VSN normalized","Tukey-biweight scaled"))
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The same function can also be used to assess the correlation between biological and technical
replicates among the microarray samples.

6 Visualize intensities along the chromosome

The function chipAlongChrom provides a way to visualize the ChIP-chip data in a specified
genome region. For convenience, this function can also be invoked by using the function
plot with an ExpressionSet object as first argument and a probeAnno object as second
argument.

> plot(exampleX, exProbeAnno, chrom="9", xlim=c(34318000,34321000),

+ ylim=c(-2,4), gff=exGFF, colPal=c("skyblue", "darkblue"))

See the result in figure 2.

7 Smoothing of probe intensities

Since the response of reporters to the same amount of hybridized genome material varies
greatly, due to probe GC content, melting temperature, secondary structure etc., it is
suggested to do a smoothing over individual probe intensities before looking for ChIP-
enriched regions.
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Figure 2: Normalized probe intensities around the TSS of the Nudt2 gene.

Here, we slide a window of 800 bp width along the chromosome and replace the intensity
at e genomic position x0 by the median over the intensities of those reporters inside the
window that is centered at x0.

> smoothX <- computeRunningMedians(exampleX, probeAnno=exProbeAnno,

+ modColumn = "Cy5", allChr = "9", winHalfSize = 400)

> sampleNames(smoothX) <- paste(sampleNames(exampleX),"smoothed")

> combX <- combine(exampleX, smoothX)

> plot(combX, exProbeAnno, chrom="9", xlim=c(34318000,34321000),

+ ylim=c(-2,4), gff=exGFF, colPal=c("skyblue", "steelblue"))

See the smoothed probe levels in figure 3.

8 Finding ChIP-enriched regions

To identify antibody-enriched genomic regions, we require the following:

• smoothed intensities of reporters mapped to this region exceed a certain threshold y0

• the region contains at least three probe match positions

• each affected position is less than a defined maximum distance dmax apart from an-
other affected position in the region (we require a certain probe spacing to have
confidence in detected peaks4)

4Note that the term ”peak”, while commonly used in ChIP-chip context, is slightly misleading and the
term ”ChIP-enriched region”, or ”cher” in shorthand, is more appropriate. Within such regions the actual
signal could show two or more actual signal peaks or none at all (long plateau).
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Figure 3: Normalized and smoothed probe intensities around the TSS of the Nudt2 gene.

For setting the threshold y0, one has to assess the expected (smoothed) probe levels in
non-enriched genomic regions, i.e. the null distribution of probe levels. In a perfect world,
we could use a log ratio of 0 as definite cut-off. In this case the “enriched” DNA and
the input DNA sample would be present in equal amounts, so no antibody-bound epitope,
could be found at this genomic site. In practice, there are some reasons why zero may be
a too naive cut-off for calling a probe-hit genomic site enriched in our case. See Bourgon
(2006) for an extensive discussion on problematic issues with ChIP-chip experiments. We
will just briefly mention a few issues here. For once, during the immuno-precipitation, some
non-antibody-bound regions may be pulled down in the assay and consequently enriched
or some enriched DNA may cross-hybridize to other reporters. Furthermore, since genomic
fragments after sonication are mostly a lot larger than the genomic distance between two
probe-matched genomic positions, auto-correlation between reporters certainly is existent.
Importantly, different reporters measure the same DNA amount with a different efficiency
even after normalizing the probe levels, due to sequence properties of the probe, varying
quality of the synthesis of reporters on the array and other reasons. To ameliorate this fact,
we employ the sliding-window smoothing approach.

The aforementioned issues make it difficult to come up with a reasonable estimate for the
null distribution of smoothed probe levels in non-enriched genomic regions. See Figure 4
for the two histograms. We present one way (out of many) for objectively choosing the
threshold y0. The histograms suggest the smoothed reporter levels follow a mixture of two
distributions, one being the null distribution of non-affected reporters and the other one
the alternative one for the smoothed reporter values in ChIP-enriched regions. We assume
the null distribution is symmetric and its mode is the one close to zero in the histogram.
By mirroring its part left of the mode over the mode, we end up with an estimated null
distribution. For the alternative distribution, we only assume that it is stochastically larger
than the null distribution and that its mass to the left of the estimated mode of the null
distribution is negligible. We estimate an upper bound y0 for values arising from the null
distribution and conclude that smoothed probe levels y > y0 are more likely to arise from
the ChIP enrichment distribution than from the null distribution. These estimates are
indicated by red vertical lines in the histograms.
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> (y0 <- apply(exprs(smoothX),2,upperBoundNull))

Suz12_vs_total smoothed

0.7392157

Smoothed reporter intensities [log]
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Figure 4: Histograms of reporter intensities after smoothing of reporter level. The red
vertical line is the cutoff values suggested by the histogram.

Since antibodies vary in their efficiency to bind to their target epitope, we suggest to obtain
a different threshold for each antibody. In the example data, however, we have only one
antibody against Suz12.

While this threshold worked well for us, we do not claim this way to be a gold standard for
determining the threshold. In particular, it does not take into account the auto-correlation
between near-by reporters. See Bourgon (2006) for a more sophisticated algorithm that
does take it into account.

> chersX <- findChersOnSmoothed(smoothX, probeAnno=exProbeAnno, thresholds=y0,

+ allChr="9", distCutOff=600, cellType="human")

> chersX <- relateChers(chersX, exGFF)

> chersXD <- as.data.frame.cherList(chersX)

> chersXD[order(chersXD$maxLevel, decreasing=TRUE),]

name chr start end cellType

1 human.Suz12_vs_total smoothed.chr9.cher1 9 34319028 34319854 human

3 human.Suz12_vs_total smoothed.chr9.cher3 9 34580420 34582384 human

2 human.Suz12_vs_total smoothed.chr9.cher2 9 34579444 34579760 human

antibody

1 Suz12_vs_total smoothed

3 Suz12_vs_total smoothed

2 Suz12_vs_total smoothed

features
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1 ENST00000379158 ENST00000379154 ENST00000379155 ENST00000346365 ENST00000337747

3 ENST00000378980 ENST00000351266

2 ENST00000378980 ENST00000351266

maxLevel score

1 1.9958907 52.1036588

3 1.5341497 47.8557696

2 0.7882005 0.5865187

Note that in Ringo functions, “ChIP-enriched region” is abbreviated to “cher”.

One characteristic of enriched regions that can be used for sorting them is the element
maxLevel, that is the highest smoothed probe level in the enriched region. Alternatively,
one can sort by the score, that is the sum of smoothed probe levels minus the threshold. It
is a discretized version of to the area under the curve with the baseline being the threshold.

> plot(chersX[[1]], smoothX, probeAnno=exProbeAnno, gff=exGFF,

+ paletteName="Spectral")
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Figure 5: One of the identified Suz12-antibody enriched regions on chromosome 9.

Figure 5 displays an identified enriched region, which is located upstream of the Nudt2 gene.
This ChIP-enriched region was already obvious in plots of the normalized data (see Figure
3). While it is reassuring that our method recovers it as well, a number of other approaches
would undoubtedly have reported it as well.

9 Agilent data

The package Ringo can also be applied to ChIP-chip data from manufacturers other than
NimbleGen. As long as the data is supplied as an RGList or ExpressionSet , the functions
of the package can be used, although certain function arguments may need to be changed
from their default setting. As an example, we demonstrate how Ringo can be used for the
analysis of ChIP-chip data generated on two-color microarrays from Agilent. These data
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have been described in Schmidt et al. (2008), and the raw data files were downloaded from
the ArrayExpress database (Parkinson et al., 2009, accession: E-TABM-485). The data
are ChIP-chip measurements of the histone modification H3K4me3 in a 300 kb region of
chromosome 17 in mouse Tc1 liver cells. These demo data files included in this package are
only excerpts of the original data files.

First we read in the raw data using the function read.maimages from package limma.

> agiDir <- system.file("agilentData", package="Ringo")

> arrayfiles <- list.files(path=agiDir,

+ pattern="H3K4Me3_Tc1Liver_sol1_mmChr17_part.txt")

> RG <- read.maimages(arrayfiles, source="agilent", path=agiDir)

Annotation of the one sample was provided and we created a targets file that contains this
sample annotation.

> at <- readTargets(file.path(agiDir,"targets.txt"))

> RG$targets <- at

Have a look at the raw data structure in R.

> show(RG)

An object of class "RGList"

$G

[1] 135.0 52.0 50.0 86.0 134.5

774 more rows ...

$Gb

[1] 48.0 49.0 49.0 49.0 49.5

774 more rows ...

$R

[1] 111.0 67.0 68.0 94.0 253.5

774 more rows ...

$Rb

[1] 65.0 64.0 65.0 65.5 66.0

774 more rows ...

$targets

SlideNumber

H3K4Me3_Tc1Liver_sol1_mmChr17_part H3K4me3Tc1Liver

FileName

H3K4Me3_Tc1Liver_sol1_mmChr17_part H3K4Me3_Tc1Liver_sol1_mmChr17_part.txt

Species Tissue Cy3 Cy5 Antibody

H3K4Me3_Tc1Liver_sol1_mmChr17_part Mus musculus Liver input H3K4me3 H3K4me3

$genes
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Row Col ProbeUID ControlType ProbeName GeneName

1 1 1 0 1 MmCGHBrightCorner MmCGHBrightCorner

2 1 2 1 1 DarkCorner DarkCorner

3 1 3 1 1 DarkCorner DarkCorner

4 1 4 3 0 A_68_P31052153 chr17:012323564-012323623

5 1 95 185 0 A_68_P31152765 chr17:033822110-033822154

SystematicName

1 MmCGHBrightCorner

2 DarkCorner

3 DarkCorner

4 chr17:012323564-012323623

5 chr17:033822110-033822154

774 more rows ...

$source

[1] "agilent"

We can only perform limited quality assessment of these data, as the data only consist of
one sample and the demo data files are only a short excerpt of the full raw data from that
microarray. Have a look at the spatial distribution of the raw intensities on the microarray
surface.

> par(mar=c(0.01,0.01,0.01,0.01), bg="black")

> image(RG, 1, channel="red", dim1="Col", dim2="Row",

+ mycols=c("sienna","darkred","orangered"))

Figure 6: Spatial distribution of raw reporter intensities of the Agilent microarray, laid out
by the reporter position on the microarray surface.

See the result in Figure 6. Again, the sparseness of the image is due to the fact that the
example data is only a short excerpt of the original raw data file from the microarray.

To create a probeAnno object for this array, there are two possibilites:
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1. one option – in many cases the preferable one – is to remap all the probe sequences
from the array description file to the current genome build

2. often, as in this case, the systematic name Agilent gives to reporters on the array corre-
sponds to the genomic coordinates these reporters were designed to match. Therefore,
if one decides to accept the mapping provided by the manufacturer, these systematic
names can be used to generate a probeAnno object.

Here, we show the second option and use the systematic names of the reporters, as provided
in the raw data file.

> pA <- extractProbeAnno(RG, "agilent", genome="mouse",

+ microarray="Agilent Tiling Chr17")

Genome annotation The provided Agilent example data relate to chromosome 17 of the
Mouse genome. We have used the package biomaRt to retrieve annotated genes on this
chromosome from the Ensembl database5.

> load(file=file.path(agiDir,"mm9chr17.RData"))

Data processing We preprocess the data in the same way as the previous example data
set.

> X <- preprocess(RG[RG$genes$ControlType==0,], method="nimblegen",

+ idColumn="ProbeName")

> sampleNames(X) <- X$SlideNumber

We visualize the data in the region around the start site of the gene Rab11b on chromo-
some 17. For setting the parameters of the sliding-window smoothing, we first investigate
the spacing between adjacent reporter matches on the genome.

> probeDists <- diff(pA["17.start"])

> br <- c(0, 100, 200, 300, 500, 1000, 10000, max(probeDists))

> table(cut(probeDists, br))

(0,100] (100,200] (200,300] (300,500]

0 338 221 104

(500,1e+03] (1e+03,1e+04] (1e+04,2.13e+07]

71 39 2

The majority of match positions are 100–300 bp apart.

> smoothX <- computeRunningMedians(X, modColumn="Antibody",

+ winHalfSize=500, min.probes=3, probeAnno=pA)

> sampleNames(smoothX) <- paste(sampleNames(X),"smooth",sep=".")

5See the script retrieveGenomicFeatureAnnotation.R in the package’s scripts directory for details.
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We visualize the data after smoothing in the region around the start site of the gene Rab11b
on chromosome 17.

> combX <- combine(X, smoothX)

> plot(combX, pA, chr="17", coord=33887000+c(0, 13000),

+ gff=mm9chr17, maxInterDistance=450, paletteName="Paired")
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Figure 7: Normalized and smoothed Agilent reporter intensities around the TSS of the gene
Rap11b.

See the result in Figure 7.

Find ChIP-enriched regions We compare two approaches to determine the threshold y0
above which smoothed reporter levels are considered to indicate enrichment. The first one
is the non-parametric approach that we introduced before (see Section 8). The second one
is similar. Only both the null distribution and the alternative distribution are assumed to
be Gaussians. The threshold is minimal reporter levels with a sufficiently small p-value
under the Gaussian null distribution.

> y0 <- upperBoundNull(exprs(smoothX))

> y0G <- twoGaussiansNull(exprs(smoothX))

> hist(exprs(smoothX), n=100, main=NA,

+ xlab="Smoothed expression level [log2]")

> abline(v=y0, col="red", lwd=2)

> abline(v=y0G, col="blue", lwd=2)

> legend(x="topright", lwd=2, col=c("red","blue"),

+ legend=c("Non-parametric symmetric Null", "Gaussian Null"))

Even though the non-parametric estimate is usually preferable, with few data points such as
in this case, the estimate derived from a Gaussian null distribution might provide a better
threshold for enrichment. We are going to use this threshold y0G for the identification of
ChIP-enriched regions.
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> chersX <- findChersOnSmoothed(smoothX, probeAnno=pA, threshold=y0G,

+ cellType="Tc1Liver")

> chersX <- relateChers(chersX, gff=mm9chr17, upstream=5000)

We find 14 ChIP-enriched regions.

> chersXD <- as.data.frame(chersX)

> head(chersXD[order(chersXD$maxLevel, decreasing=TRUE),])

name chr start end cellType

6 Tc1Liver.H3K4me3Tc1Liver.smooth.chr17.cher6 17 33725511 33734380 Tc1Liver

4 Tc1Liver.H3K4me3Tc1Liver.smooth.chr17.cher4 17 33640444 33642033 Tc1Liver

5 Tc1Liver.H3K4me3Tc1Liver.smooth.chr17.cher5 17 33642962 33644147 Tc1Liver

2 Tc1Liver.H3K4me3Tc1Liver.smooth.chr17.cher2 17 33634150 33635943 Tc1Liver

10 Tc1Liver.H3K4me3Tc1Liver.smooth.chr17.cher10 17 33795820 33798894 Tc1Liver

12 Tc1Liver.H3K4me3Tc1Liver.smooth.chr17.cher12 17 33814429 33816303 Tc1Liver

antibody features maxLevel score

6 H3K4me3Tc1Liver.smooth ENSMUSG00000024300 5.504729 121.60989

4 H3K4me3Tc1Liver.smooth 5.081668 23.04169

5 H3K4me3Tc1Liver.smooth 5.002873 15.12560

2 H3K4me3Tc1Liver.smooth 4.889622 31.76257

10 H3K4me3Tc1Liver.smooth ENSMUSG00000059208 4.868514 43.09071

12 H3K4me3Tc1Liver.smooth ENSMUSG00000059208 4.498009 17.69241

This concludes the example of how Ringo can be used to analyze other types of ChIP-chip
data.

10 Concluding Remarks

The package Ringo aims to facilitate the analysis ChIP-chip readouts. We constructed it
during the analysis of a ChIP-chip experiment for the genome-wide identification of modified
histone sites on data gained from NimbleGen two-color microarrays. Analogous two-color
microarray platforms, however, can also be processed. Key functionalities of Ringo are
data read-in, quality assessment, preprocessing of the raw data, and visualization of the
raw and preprocessed data. The package also contains algorithms for the detection of for
ChIP-enriched genomic regions. While one of these algorithm worked quite well with our
data, we do not claim it to be the definite algorithm for that task.

Further reading For an extended tutorial about how to use Ringo for the analysis of ChIP-
chip data, please refer to Toedling and Huber (2008) and the corresponding Bioconductor
package ccTutorial .

Package versions This vignette was generated using the following package versions:

• R version 3.1.1 Patched (2014-09-25 r66681), x86_64-apple-darwin13.1.0

18



• Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats,
utils

• Other packages: Biobase 2.26.0, BiocGenerics 0.12.0, Matrix 1.1-4,
RColorBrewer 1.0-5, Ringo 1.30.0, lattice 0.20-29, limma 3.22.0, mclust 4.4

• Loaded via a namespace (and not attached): AnnotationDbi 1.28.0,
BiocInstaller 1.16.0, DBI 0.3.1, GenomeInfoDb 1.2.0, IRanges 2.0.0,
KernSmooth 2.23-13, RSQLite 0.11.4, S4Vectors 0.4.0, XML 3.98-1.1, affy 1.44.0,
affyio 1.34.0, annotate 1.44.0, genefilter 1.48.0, preprocessCore 1.28.0, splines 3.1.1,
stats4 3.1.1, survival 2.37-7, tools 3.1.1, vsn 3.34.0, xtable 1.7-4, zlibbioc 1.12.0
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