
AllelicImbalance

Jesper Robert G̊adin and Lasse Folkersen

March 23, 2015

1 AllelicImbalance

This AllelicImbalance package contains functions for investigating allelic imbal-
ance effects in RNA-seq data. Maternal and paternal alleles could be expected
to show identical transcription rate, resulting in a 50%-50% mix of maternal and
paternal mRNA in a sample. However, this turns out to sometimes not be the
case. The most extreme example is the X-chromosome inactivation in females,
but many autosomal genes also have deviations from identical transcription rate.
The causes of this are not always known, but one likely cause is the difference in
DNA, namely heterozygous SNPs, affecting enhancers, promoter regions, splic-
ing and stability. Identifying this allelic imbalance is therefore of interest to the
characterization of the genome and the aim of the AllelicImbalance package is
to facilitate this.

2 Simple example of building an ASEset object

In this section we will walk through the various ways an ASEset object can be
created. The ASEset object has the SummarizedExperiment as parent class,
and all functions you can apply on this class you can also apply on an ASEset.
Although the preprocessing of RNA-seq data is not the primary focus of this
package, it is a necessary step before analysis. There exists several different
methods for obtaining a bam file, and this section should just be considered an
example. For further details we refer to the web-pages of tophat, bowtie, bwa
and samtools found in the links section at the end of this document.

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR009/ERR009135/*

bowtie -q --best --threads 5 --sam hg19 +

> -1 ERR009135_1.fastq.gz -2 ERR009135_2.fastq.gz "ERR009135.sam"

samtools view -S -b ERR009135.sam > ERR009135.bam

In the above code one paired-end RNA sequencing sample is downloaded
and aligned to the human genome, then converted to bam using samtools. The
resulting bam files can be the direct input to the AllelicImbalance package.
Other aligners can be used as well, as long as bam files are provided as input.
The example code following illustrates how to use the import mechanism on a
chromosome 17-located subset of 20 RNA-seq experiments of HapMap samples.
The output is an ASEset object containing allele counts for all heterozygote
coding SNPs in the region.

1

> searchArea <- GRanges(seqnames = c("17"),ranges = IRanges(79478301,79478361))

> pathToFiles <- system.file("extdata/ERP000101_subset", package="AllelicImbalance")

> reads <- impBamGAL(pathToFiles,searchArea,verbose=FALSE)

> heterozygotePositions <- scanForHeterozygotes(reads,verbose=FALSE)

> countList <- getAlleleCounts(reads, heterozygotePositions, verbose=FALSE)

> a.simple <- ASEsetFromCountList(heterozygotePositions,countList)

> a.simple

class: ASEset

dim: 3 20

exptData(0):

assays(2): countsUnknown mapBias

rownames(3): chr17_79478287 chr17_79478331 chr17_79478334

rowData metadata column names(0):

colnames(20): ERR009097.bam ERR009102.bam ... ERR009160.bam

ERR009167.bam

colData names(0):

3 Building an ASEset object using Bcf files

If more than a few genes and a few samples are analyzed we recommend that a
SNP-call is instead made using the samtools mpileup function (see links section).
The scanForHeterozygotes function is merely a simple SNP-caller and it is
not as computationally optimized as mpileup. In this bash code we download
reference sequence for chromosome 17 and show how to generate mpileup calls
on one of the HapMap samples that were described above.

wget ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/chr17.fa.gz

samtools mpileup -uf hg19.fa ERR009135.bam | bcftools view -bvcg - > ERR009135.bcf

Samtools mpileup generates by default a Vcf file which contains SNP and
short INDEL positions. Piping the output to bcftools we get its binary equiva-
lent (Bcf), which takes less space and can be queried more effective. With the
Bcf files the process of generating an ASEset object starts with a call to the
impBcfGR function instead. This function will import the Bcf file containing all
SNP calls that were generated with the samtools mpileup function.

> BcfGR <- impBcfGR(pathToFiles,searchArea,verbose=FALSE)

> countListBcf <- getAlleleCounts(reads, BcfGR,verbose=FALSE)

> a.bcf <- ASEsetFromCountList(BcfGR, countListBcf)

4 Using strand information

Many RNA-seq experiments do not yield useful information on the strand from
which a given read was made. This is because they involve a step in which a
double-stranded cDNA is created without tracking strand-information. Some
RNA-seq setups do however give this information and in those cases it is im-
portant to keep track of strand in the ASE-experiment. The example data from
above is from an experiment which created double-stranded cDNA before la-
belling and so the ’+’ and ’-’ information in it is arbitrary. However, if we

2

assume that the information has strand information, then the correct procedure
is as follows:

> plus <- getAlleleCounts(reads, heterozygotePositions, strand="+",verbose=F)

> minus <- getAlleleCounts(reads, heterozygotePositions, strand="-",verbose=F)

> a.stranded <-

+ ASEsetFromCountList(

+ heterozygotePositions,

+ countListPlus=plus,

+ countListMinus=minus

+)

> a.stranded

class: ASEset

dim: 3 20

exptData(0):

assays(4): countsPlus countsMinus countsUnknown mapBias

rownames(3): chr17_79478287 chr17_79478331 chr17_79478334

rowData metadata column names(0):

colnames(20): ERR009097.bam ERR009102.bam ... ERR009160.bam

ERR009167.bam

colData names(0):

The main effect of doing this, is in the plotting functions which will separate
reads from different strands if they are specified as done here. It is important,
however, to make sure that the imported RNA-seq experiment does in fact have
proper labeling and tracking of strand information before proceeding with this
method.

5 Two useful helper functions

At this stage it is worth highlighting two useful helper functions that both uses
existing BioC annotation objects. One is the getAreaFromGeneNames which
quickly retrieves the above mentioned searchArea when given just genesym-
bols as input. The other other is the getSnpIdFromLocation function which
attempts to rename location-based SNP names to established rs-IDs in case they
exist. These functions work as follows:

> #Getting searchArea from genesymbol

> library(org.Hs.eg.db)

> searchArea<-getAreaFromGeneNames("ACTG1",org.Hs.eg.db)

Found all requested genes in annotation

> #Getting rs-IDs

> library(SNPlocs.Hsapiens.dbSNP.20120608)

> #seqlevels(a.simple) <- "chr17"

> gr <- rowData(a.simple)

> updatedGRanges<-getSnpIdFromLocation(gr, SNPlocs.Hsapiens.dbSNP.20120608)

Replacing position-based SNP name with rs-ID for 1 SNP(s)

> rowData(a.simple)<-updatedGRanges

>

3

6 Adding phenotype data

Typically an RNA-seq experiment will include additional information about each
sample. It is an advantage to include this information when creating an ASEset
because it can be used for subsequent highlights or subsetting in plotting and
analysis functions.

> #simulate phenotype data

> pdata <- DataFrame(

+ Treatment=sample(c("ChIP", "Input"),length(reads),replace=TRUE),

+ Gender=sample(c("male", "female"),length(reads),replace=TRUE),

+ row.names=paste("individual",1:length(reads),sep=""))

> #make new ASEset with pdata

> a.new <- ASEsetFromCountList(

+ heterozygotePositions,

+ countList,

+ colData=pdata)

> #add to existing object

> colData(a.simple) <- pdata

>

7 Statistical analysis of an ASEset object

One of the simplest statistical test for use in allelic imbalance analysis is the
chi-square test. This test assumes that the uncertainty of ASE is represented by
a normal distribution around an expected mean (i.e 0.5 for equal expression). A
significant result suggests an ASE event. Every strand is tested independently.

> #use a subset for tests

> a2 <- a.stranded[,5:10]

> #two types of tests

> binom.test(a2,"+")

chr17_79478287 chr17_79478331 chr17_79478334

[1,] NA NA NA

[2,] 0.7265625 0.006610751 0.2668457

[3,] NA 0.107752144 NA

[4,] NA NA NA

[5,] NA NA NA

[6,] NA 0.022460938 0.0703125

> chisq.test(a2,"-")

chr17_79478287 chr17_79478331 chr17_79478334

[1,] NA NA NA

[2,] 0.7962534 NA NA

[3,] NA NA NA

[4,] NA NA NA

[5,] NA NA NA

[6,] NA NA NA

4

8 Plotting of an ASEset object

The barplot function for ASEset objects plots the read count of each allele
in each sample. This is useful for getting a very detailed view of individual
SNPs in few samples. As can be seen below, four samples from the HapMap
data contains a strong imbalance at the chr17:79478331 position on the plus
strand. By default the p-value is calculated by a chi-square test. To use other
test results the arguments testValue and testValue2 can be used. When the
counts for one allele are below 5 for one allele the chi-square test returns NA.
This is why there is no P-value above the first bar in the example below.

> barplot(a.stranded[1],strand="+")

> #use other test

> btp <- binom.test(a.stranded[1],"+")

> barplot(a.stranded[1],strand="+", testValue=btp)

>

0

5

10

15

20

E
R

R
00

90
97

.b
am

E
R

R
00

91
02

.b
am

E
R

R
00

91
03

.b
am

E
R

R
00

91
13

.b
am

E
R

R
00

91
15

.b
am

E
R

R
00

91
22

.b
am

E
R

R
00

91
26

.b
am

E
R

R
00

91
27

.b
am

E
R

R
00

91
29

.b
am

E
R

R
00

91
35

.b
am

E
R

R
00

91
41

.b
am

E
R

R
00

91
42

.b
am

E
R

R
00

91
44

.b
am

E
R

R
00

91
46

.b
am

E
R

R
00

91
47

.b
am

E
R

R
00

91
54

.b
am

E
R

R
00

91
57

.b
am

E
R

R
00

91
59

.b
am

E
R

R
00

91
60

.b
am

E
R

R
00

91
67

.b
am

Variant chr17_79478287
G
A

Another example of plotting that is useful is the one invoked with the plotting
type argument ”fraction”. This plotting mechanism is useful to illustrate more
SNPs and more samples in less space than the standard plot. As can be seen
here several other samples are not heterozygote at the chr17:79478331 location.

> barplot(a.simple,type="fraction")

5

25%

50%

75%

rs2230159

A typical question would be to ask why certain heterozygote samples have
allele specific expression. The argument sampleColour argument allows for
different highligts such as illustrated here below for gender. This could also be
used to highlight based on genotype of proximal non-coding SNPs if available.

> sampleColour<-rep("palevioletred",ncol(a.simple))

> sampleColour[colData(a.simple)[,"Gender"]%in%"male"] <- "blue"

> barplot(a.simple[1],type="fraction",sampleColour=sampleColour)

>

6

25%

50%

75%

rs2230159

9 Plot with annotation

It is often of interest to combine the RNA sequencing data with genomic anno-
tation information from online databases. For this purpose there is a function
to extract variant specific annotation such as gene, exon, transcript and CDS.

> library(org.Hs.eg.db)

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> barplot(a.simple[1],OrgDb=org.Hs.eg.db,TxDb=TxDb.Hsapiens.UCSC.hg19.knownGene)

>

7

0

10

20

30

40

50

60
in

di
vi

du
al

1

in
di

vi
du

al
2

in
di

vi
du

al
3

in
di

vi
du

al
4

in
di

vi
du

al
5

in
di

vi
du

al
6

in
di

vi
du

al
7

in
di

vi
du

al
8

in
di

vi
du

al
9

in
di

vi
du

al
10

in
di

vi
du

al
11

in
di

vi
du

al
12

in
di

vi
du

al
13

in
di

vi
du

al
14

in
di

vi
du

al
15

in
di

vi
du

al
16

in
di

vi
du

al
17

in
di

vi
du

al
18

in
di

vi
du

al
19

in
di

vi
du

al
20

Variant rs2230159

0.5

Plus−strand
symbol: NA
exon_id: NAtx_id: NA

Minus−strand
ACTG1 :symbol

NA :exon_idNA :tx_id

G
A

10 locationplot

Finally a given gene or set of proximal genes will often have several SNPs close to
each other. It is of interest to investigate all of them together, in connection with
annotation information. This can be done using the locationplot function.
This function in its simplest form just plot all the SNPs in an ASEset distributed
by genomic location. Additionally it contains methods for including gene-map
information through the arguments OrgDb and TxDb.

> #using count type

> locationplot(a.simple,type="count")

> #use annotation

> locationplot(a.simple,OrgDb=org.Hs.eg.db,TxDb=TxDb.Hsapiens.UCSC.hg19.knownGene)

>

8

79478280 79478300 79478320 79478340

genomic position on chromosome chr17

0

10

20

30

40

50

60
Variant rs2230159

G
A

●

0

10

20

30

40

50

60

70
Variant chr17_79478331

T
G

●

0

20

40

60

80
Variant chr17_79478334

C
G

●

11 Conclusion

In conclusion we hope that you will find this package useful in the investigation of
the genetics of RNA-seq experiments. The various import functions should assist
in the task of actually retrieving allele counts for specific nucleotide positions
from all RNA-seq reads, including the non-trivial cases of intron-spanning reads.
Likewise, the statistical analysis and plotting functions should be helpful in
discovering any allele specific expression patterns that might be found in your
data.

12 Links

Bowtie http://bowtie-bio.sourceforge.net

BWA http://bio-bwa.sourceforge.net/

Samtools http://samtools.sourceforge.net/

Samtools pileup http://samtools.sourceforge.net/mpileup.shtml

Session Info

> sessionInfo()

R version 3.1.3 (2015-03-09)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.9.5 (Mavericks)

9

http://bowtie-bio.sourceforge.net
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
http://samtools.sourceforge.net/mpileup.shtml

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats4 parallel grid stats graphics grDevices utils

[8] datasets methods base

other attached packages:

[1] TxDb.Hsapiens.UCSC.hg19.knownGene_3.0.0

[2] GenomicFeatures_1.18.4

[3] SNPlocs.Hsapiens.dbSNP.20120608_0.99.9

[4] BSgenome_1.34.1

[5] rtracklayer_1.26.2

[6] org.Hs.eg.db_3.0.0

[7] RSQLite_1.0.0

[8] DBI_0.3.1

[9] AnnotationDbi_1.28.2

[10] Biobase_2.26.0

[11] AllelicImbalance_1.4.2

[12] GenomicAlignments_1.2.2

[13] Rsamtools_1.18.3

[14] Biostrings_2.34.1

[15] XVector_0.6.0

[16] GenomicRanges_1.18.4

[17] GenomeInfoDb_1.2.4

[18] IRanges_2.0.1

[19] S4Vectors_0.4.0

[20] BiocGenerics_0.12.1

loaded via a namespace (and not attached):

[1] BBmisc_1.9 BatchJobs_1.6 BiocParallel_1.0.3

[4] Formula_1.2-0 Gviz_1.10.10 Hmisc_3.15-0

[7] MASS_7.3-40 RColorBrewer_1.1-2 RCurl_1.95-4.5

[10] Rcpp_0.11.5 VariantAnnotation_1.12.9 XML_3.98-1.1

[13] acepack_1.3-3.3 base64enc_0.1-2 biomaRt_2.22.0

[16] biovizBase_1.14.1 bitops_1.0-6 brew_1.0-6

[19] checkmate_1.5.2 cluster_2.0.1 codetools_0.2-11

[22] colorspace_1.2-6 dichromat_2.0-0 digest_0.6.8

[25] fail_1.2 foreach_1.4.2 foreign_0.8-63

[28] ggplot2_1.0.1 gtable_0.1.2 iterators_1.0.7

[31] lattice_0.20-30 latticeExtra_0.6-26 matrixStats_0.14.0

[34] munsell_0.4.2 nnet_7.3-9 plyr_1.8.1

[37] proto_0.3-10 reshape2_1.4.1 rpart_4.1-9

[40] scales_0.2.4 sendmailR_1.2-1 splines_3.1.3

[43] stringr_0.6.2 survival_2.38-1 tools_3.1.3

[46] zlibbioc_1.12.0

>

10

	AllelicImbalance
	Simple example of building an ASEset object
	Building an ASEset object using Bcf files
	Using strand information
	Two useful helper functions
	Adding phenotype data
	Statistical analysis of an ASEset object
	Plotting of an ASEset object
	Plot with annotation
	locationplot
	Conclusion
	Links

