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1 Overview

The sva package contains functions for removing batch effects and other unwanted variation in high-
throughput experiments. Specifically, the sva package contains functions for identifying and building
surrogate variables for high-dimensional data sets. Surrogate variables are covariates constructed directly
from high-dimensional data (like gene expression/RNA sequencing/methylation/brain imaging data)
that can be used in subsequent analyses to adjust for unknown, unmodeled, or latent sources of noise.

The sva package can be used to remove artifacts in two ways: (1) identifying and estimating surrogate
variables for unknown sources of variation in high-throughput experiments and (2) directly removing
known batch effects using ComBat [1].

Leek et. al (2010) define batch effects as follows:

Batch effects are sub-groups of measurements that have qualitatively different behaviour
across conditions and are unrelated to the biological or scientific variables in a study. For
example, batch effects may occur if a subset of experiments was run on Monday and another
set on Tuesday, if two technicians were responsible for different subsets of the experiments,
or if two different lots of reagents, chips or instruments were used.

The sva package includes the popular ComBat [1] function for directly modeling batch effects when
they are known. There are also potentially a large number of environmental and biological variables
that are unmeasured and may have a large impact on measurements from high-throughput biological
experiments. For these cases the sva function may be more appropriate for removing these artifacts. It
is also possible to use the sva function with the ComBat function to remove both known batch effects
and other potential latent sources of variation. Removing batch effects and using surrogate variables
in differential expression analysis have been shown to reduce dependence, stabilize error rate estimates,
and improve reproducibility (see [2, 3, 4] for more detailed information).

This document provides a tutorial for using the sva package. The tutorial includes information on (1)
how to estimate the number of latent sources of variation, (2) how to apply thesva package to estimate
latent variables such as batch effects, (3) how to directly remove known batch effects using the ComBat

function, (4) how to perform differential expression analysis using surrogate variables either directly or
with thelimma package, and (4) how to apply “frozen”sva to improve prediction and clustering.

As with any R package, detailed information on functions, along with their arguments and values, can
be obtained in the help files. For instance, to view the help file for the function sva within R, type
?sva. The analyses performed in this experiment are based on gene expression measurements from a
bladder cancer study [5]. The data can be loaded from the bladderbatch data package. The relevant
packages for the Vignette can be loaded with the code:

> library(sva)

> library(bladderbatch)

> data(bladderdata)
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> library(pamr)

> library(limma)

2 Setting up the data

The first step in using the sva package is to properly format the data and create appropriate model
matrices. The data should be a matrix with features (genes, transcripts, voxels) in the rows and samples
in the columns. This is the typical genes by samples matrix found in gene expression analyses. The sva
package assumes there are two types of variables that are being considered: (1) adjustment variables
and (2) variables of interest. For example, in a gene expression study the variable of interest might an
indicator of cancer versus control. The adjustment variables could be the age of the patients, the sex
of the patients, and a variable like the date the arrays were processed.

Two model matrices must be made: the “full model” and the “null model”. The null model is a model
matrix that includes terms for all of the adjustment variables but not the variables of interest. The full
model includes terms for both the adjustment variables and the variables of interest. The assumption is
that you will be trying to analyze the association between the variables of interest and gene expression,
adjusting for the adjustment variables. The model matrices can be created using the model.matrix.

3 Setting up the data from an ExpressionSet

For the bladder cancer study, the variable of interest is cancer status. To begin we will assume no
adjustment variables. The bladder data are stored in an expression set - a Bioconductor object used for
storing gene expression data. The variables are stored in the phenotype data slot and can be obtained
as follows:

> pheno = pData(bladderEset)

The expression data can be obtained from the expression slot of the expression set.

> edata = exprs(bladderEset)

Next we create the full model matrix - including both the adjustment variables and the variable of
interest (cancer status). In this case we only have the variable of interest. Since cancer status has
multiple levels, we treat it as a factor variable.

> mod = model.matrix(~as.factor(cancer), data=pheno)

The null model contains only the adjustment variables. Since we are not adjusting for any other variables
in this analysis, only an intercept is included in the model.

> mod0 = model.matrix(~1,data=pheno)

Now that the model matrices have been created, we can apply the sva function to estimate batch and
other artifacts.
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4 Applying the sva function to estimate batch and other arti-
facts

The sva function performs two different steps. First it identifies the number of latent factors that need
to be estimated. If the sva function is called without the n.sv argument specified, the number of
factors will be estimated for you. The number of factors can also be estimated using the num.sv.

> n.sv = num.sv(edata,mod,method="leek")

> n.sv

[1] 2

Next we apply the sva function to estimate the surrogate variables:

> svobj = sva(edata,mod,mod0,n.sv=n.sv)

Number of significant surrogate variables is: 2

Iteration (out of 5 ):1 2 3 4 5

The sva function returns a list with four components, sv, pprob.gam, pprob.b, n.sv. sv is a matrix
whose columns correspond to the estimated surrogate variables. They can be used in downstream
analyses as described below. pprob.gam is the posterior probability that each gene is associated with
one or more latent variables [?]. pprob.b is the posterior probability that each gene is associated with
the variables of interest [?]. n.sv is the number of surrogate variables estimated by the sva.

5 Adjusting for surrogate variables using the f.pvalue function

The f.pvalue function can be used to calculate parametric F-test p-values for each row of a data
matrix. In the case of the bladder study, this would correspond to calculating a parametric F-test p-
value for each of the 22,283 rows of the matrix. The F-test compares the models mod and mod0. They
must be nested models, so all of the variables in mod0 must appear in mod. First we can calculate the
F-test p-values for differential expression with respect to cancer status, without adjusting for surrogate
variables, adjust them for multiple testing, and calculate the number that are significant with a Q-value
less than 0.05.

> pValues = f.pvalue(edata,mod,mod0)

> qValues = p.adjust(pValues,method="BH")

Note that nearly 70% of the genes are strongly differentially expressed at an FDR of less than 5%
between groups. This number seems artificially high, even for a strong phenotype like cancer. Now
we can perform the same analysis, but adjusting for surrogate variables. The first step is to include
the surrogate variables in both the null and full models. The reason is that we want to adjust for the
surrogate variables, so we treat them as adjustment variables that must be included in both models.
Then P-values and Q-values can be computed as before.
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> modSv = cbind(mod,svobj$sv)

> mod0Sv = cbind(mod0,svobj$sv)

> pValuesSv = f.pvalue(edata,modSv,mod0Sv)

> qValuesSv = p.adjust(pValuesSv,method="BH")

Now these are the adjusted P-values and Q-values accounting for surrogate variables.

6 Adjusting for surrogate variables using the limma package

The limma package is one of the most commonly used packages for differential expression analysis. The
sva package can easily be used in conjunction with the limma package to perform adjusted differential
expression analysis. The first step in this process is to fit the linear model with the surrogate variables
included.

> fit = lmFit(edata,modSv)

From here, you can use the limma functions to perform the usual analyses. As an example, suppose
we wanted to calculate differential expression with respect to cancer. To do that we first compute the
contrasts between the pairs of cancer/normal terms. We do not include the surrogate variables in the
contrasts, since they are only being used to adjust the analysis.

> contrast.matrix <- cbind("C1"=c(-1,1,0,rep(0,svobj$n.sv)),"C2"=c(0,-1,1,rep(0,svobj$n.sv)),"C3"=c(-1,0,1,rep(0,svobj$n.sv)))

> fitContrasts = contrasts.fit(fit,contrast.matrix)

The next step is to calculate the test statistics using the eBayes function:

> eb = eBayes(fitContrasts)

> topTableF(eb, adjust="BH")

C1 C2 C3 AveExpr F P.Value adj.P.Val

207783_x_at -13.45607 0.26592268 -13.19015 12.938786 8622.529 1.207531e-69 1.419929e-65

201492_s_at -13.27594 0.15357702 -13.12236 13.336090 8605.649 1.274450e-69 1.419929e-65

208834_x_at -12.76411 0.06134018 -12.70277 13.160201 6939.501 4.749368e-67 3.527673e-63

212869_x_at -13.77957 0.26008165 -13.51948 13.452076 6593.346 1.939773e-66 1.080599e-62

212284_x_at -13.59977 0.29135767 -13.30841 13.070844 5495.716 2.893287e-64 1.289423e-60

208825_x_at -12.70979 0.08250821 -12.62728 13.108072 5414.741 4.350100e-64 1.615555e-60

211445_x_at -10.15890 -0.06633356 -10.22523 9.853817 5256.114 9.845076e-64 3.133969e-60

213084_x_at -12.59345 0.03015520 -12.56329 13.046529 4790.107 1.260201e-62 3.510132e-59

201429_s_at -13.33686 0.28358293 -13.05328 12.941208 4464.995 8.675221e-62 2.147888e-58

214327_x_at -12.60146 0.20934783 -12.39211 11.832607 4312.087 2.257025e-61 5.029329e-58

7 Applying the ComBat function to adjust for known batches

The ComBat function adjusts for known batches using an empirical Bayesian framework [1]. In order to
use the function, you must have a known batch variable in your dataset.
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> batch = pheno$batch

Just as with sva, we then need to create a model matrix for the adjustment variables, but do not
include the variable of interest. Note that you do not include batch in creating this model matrix - it
will be included later in ComBat function. In this case there are no other adjustment variables so we
simply fit an intercept term.

> modcombat = model.matrix(~1, data=pheno)

By default, all adjustment variables will be treated as factor variables by the ComBat function. If
you would like to include continuous adjustment variables, also create a vector containing the column
numbers of the continuous covariates in the model matrix. This vector must then be input into ComBat

via the numCovs option.

We now apply the ComBat function to the data, using parametric empirical Bayesian adjustments.

> combat_edata = ComBat(dat=edata, batch=batch, mod=modcombat, numCovs=NULL, par.prior=TRUE, prior.plots=FALSE)

Found 5 batches

Found 0 categorical covariate(s)

Standardizing Data across genes

Fitting L/S model and finding priors

Finding parametric adjustments

Adjusting the Data

This returns an expression matrix, with the same dimensions as your original dataset. This new expres-
sion matrix has been adjusted for batch. Significance analysis can then be performed directly on the
adjusted data using the model matrix and null model matrix as described before:

> pValuesComBat = f.pvalue(combat_edata,mod,mod0)

> qValuesComBat = p.adjust(pValuesComBat,method="BH")

These P-values and Q-values now account for the known batch effects included in the batch variable.

There are two additional options for the ComBat function. By default, it performs parametric empirical
Bayesian adjustments. If you would like to use nonparametric empirical Bayesian adjustments, use the
par.prior=FALSE option (this will take longer). Additionally, use the prior.plots=TRUE option to
give prior plots with black as a kernel estimate of the empirical batch effect density and red as the
parametric estimate. For example, you might chose to use the parametric Bayesian adjustments for
your data, but then can check the plots to ensure that the estimates were reasonable.

8 Removing known batch effects with a linear model

Direct adjustment for batch effects can also be performed using the f.pvalue function. In the bladder
cancer example, one of the known variables is a batch variable. This variable can be included as
an adjustment variable in both mod and mod0. Then the f.pvalue function can be used to detect
differential expression. This approach is a simplified version of ComBat.
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> modBatch = model.matrix(~as.factor(cancer) + as.factor(batch),data=pheno)

> mod0Batch = model.matrix(~as.factor(batch),data=pheno)

> pValuesBatch = f.pvalue(edata,modBatch,mod0Batch)

> qValuesBatch = p.adjust(pValuesBatch,method="BH")

9 Surrogate variables versus direct adjustment

The goal of the sva is to remove all unwanted sources of variation while protecting the contrasts due to
the primary variables included in mod. This leads to the identification of features that are consistently
different between groups, removing all common sources of latent variation.

In some cases, the latent variables may be important sources of biological variability. If the goal of the
analysis is to identify heterogeneity in one or more subgroups, the sva function may not be appropriate.
For example, suppose that it is expected that cancer samples represent two distinct, but unknown
subgroups. If these subgroups have a large impact on expression, then one or more of the estimated
surrogate variables may be very highly correlated with subgroup.

In contrast, direct adjustment only removes the effect of known batch variables. All sources of latent
biological variation will remain in the data using this approach. In other words, if the samples were
obtained in different environments, this effect will remain in the data. If important sources of hetero-
geneity (from different environments, lab effects, etc.) are not accounted for, this may lead to increased
false positives.

10 Variance filtering to speed computations when the number
of features is large (m > 100, 000)

When the number of features is very large (m > 100, 000) both the num.sv and sva functions may be
slow, since multiple singular value decompositions of the entire data matrix must be computed. Both
functions include a variance filtering term, vfilter, which may be used to speed up the calculation.
vfilter must be an integer between 100 and the total number of features m. The features are ranked
from most variable to least variable by standard deviation. Computations will only be performed on the
vfilter most variable features. This can improve computational time, but caution should be exercised,
since the surrogate variables will only be estimated on a subset of the matrix. Running the functions
with fewer than 1,000 features is not recommended.

> n.sv = num.sv(edata,mod,vfilter=2000,method="leek")

> svobj = sva(edata,mod,mod0,n.sv=n.sv,vfilter=2000)

Number of significant surrogate variables is: 2

Iteration (out of 5 ):1 2 3 4 5
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11 Applying the fsva function to remove batch effects for pre-
diction

The surrogate variable analysis functions have been developed for population-level analyses such as
differential expression analysis in microarrays. In some cases, the goal of an analysis is prediction. In
this case, data sets are generally composed a training set and a test set. For each sample in the training
set, the outcome/class is known, but latent sources of variability are unknown. For the samples in the
test set, neither the outcome/class or the latent sources of variability are known.

“Frozen” surrogate variable analysis can be used to remove latent variation in the test data set. To
illustrate these functions, the bladder data can be separated into a training and test set.

> set.seed(12354)

> trainIndicator = sample(1:57,size=30,replace=F)

> testIndicator = (1:57)[-trainIndicator]

> trainData = edata[,trainIndicator]

> testData = edata[,testIndicator]

> trainPheno = pheno[trainIndicator,]

> testPheno = pheno[testIndicator,]

Using these data sets, the pamr package can be used to train a predictive model on the training data,
as well as test that prediction on a test data set.

> mydata = list(x=trainData,y=trainPheno$cancer)

> mytrain = pamr.train(mydata)

123456789101112131415161718192021222324252627282930

> table(pamr.predict(mytrain,testData,threshold=2),testPheno$cancer)

Biopsy Cancer Normal

Biopsy 3 1 4

Cancer 0 16 1

Normal 0 2 0

Next, the sva function can be used to calculate surrogate variables for the training set.

> trainMod = model.matrix(~cancer,data=trainPheno)

> trainMod0 = model.matrix(~1,data=trainPheno)

> trainSv = sva(trainData,trainMod,trainMod0)

Number of significant surrogate variables is: 6

Iteration (out of 5 ):1 2 3 4 5

The fsva function can be used to adjust both the training data and the test data. The training data
is adjusted using the calculated surrogate variables. The testing data is adjusted using the “frozen”
surrogate variable algorithm. The output of the fsva function is an adjusted training set and an
adjusted test set. These can be used to train and test a second, more accurate, prediction function.
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> fsvaobj = fsva(trainData,trainMod,trainSv,testData)

> mydataSv = list(x=fsvaobj$db,y=trainPheno$cancer)

> mytrainSv = pamr.train(mydataSv)

123456789101112131415161718192021222324252627282930

> table(pamr.predict(mytrainSv,fsvaobj$new,threshold=1),testPheno$cancer)

Biopsy Cancer Normal

Biopsy 3 0 1

Cancer 0 19 0

Normal 0 0 4

12 sva for sequencing (svaseq)

In our original work we used the identify function for data measured on an approximately symmetric and
continuous scale. For sequencing data, which are often represented as counts, a more suitable model
may involve the use of a moderated log function [?, ?]. For example in Step 1 of the algorithm we
may first transform the gene expression measurements by applying the function log(gij + c) for a small
positive constant. In the analyses that follow we will set c = 1.

First we set up the data by filtering low count genes and identify potential control genes. The group
variable in this case consists of two different treatments.

> library(zebrafishRNASeq)

> library(genefilter)

> data(zfGenes)

> filter = apply(zfGenes, 1, function(x) length(x[x>5])>=2)

> filtered = zfGenes[filter,]

> genes = rownames(filtered)[grep("^ENS", rownames(filtered))]

> controls = grepl("^ERCC", rownames(filtered))

> group = as.factor(rep(c("Ctl", "Trt"), each=3))

> dat0 = as.matrix(filtered)

Now we can apply svaseq to estimate the latent factor. In this case, we set n.sv = 1 because the
number of samples is small (n = 6) but in general svaseq can be used to estimate the number of latent
factors.

> ## Set null and alternative models (ignore batch)

> mod1 = model.matrix(~group)

> mod0 = cbind(mod1[,1])

> svseq = svaseq(dat0,mod1,mod0,n.sv=1)$sv

Number of significant surrogate variables is: 1

Iteration (out of 5 ):1 2 3 4 5

> plot(svseq,pch=19,col="blue")
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13 Supervised sva

In our original work we introduced an algorithm for estimating the genes affected only by unknown
artifacts empirically [?, ?]. Subsequently, Gagnon-Bartsch and colleagues [6] used our surrogate variable
model but made the important point that for some technologies or experiments control probes can be
used to identify the set of genes only affected by artifacts. Supervised sva uses known control probes
to estimate the surrogate variables. You can use supervised sva with the standard sva function. Here
we show an example of how to perform supervised sva with the svaseq function.

> sup_svseq = svaseq(dat0,mod1,mod0,controls=controls,n.sv=1)$sv

sva warning: controls provided so supervised sva is being performed.

Number of significant surrogate variables is: 1

> plot(sup_svseq, svseq,pch=19,col="blue")

Here we passed the controls argument, which is a vector of values between 0 and 1, representing the
probability that a gene is affected by batch but not affected by the group variable. Since we have
known negative control genes in this example, we simply set controls[i] = TRUE for all control genes
and controls[i] = FALSE for all non-controls.

14 What to cite

The sva package includes multiple different methods created by different faculty and students. It would
really help them out if you would cite their work when you use this software.

To cite the overall sva package cite:

• Leek JT, Johnson WE, Parker HS, Jaffe AE, and Storey JD. (2012) The sva package for remov-
ing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics
DOI:10.1093/bioinformatics/bts034

For sva please cite:

• Leek JT and Storey JD. (2008) A general framework for multiple testing dependence. Proceedings
of the National Academy of Sciences , 105: 18718-18723.

• Leek JT and Storey JD. (2007) Capturing heterogeneity in gene expression studies by ‘Surrogate
Variable Analysis’. PLoS Genetics, 3: e161.

For combat please cite:

• Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data
using empirical Bayes methods. Biostatistics, 8 (1), 118-127

For svaseq please cite:

• Leek JT (2014) svaseq: removing batch and other artifacts from count-based sequencing data.
bioRxiv doi: TBD
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For supervised sva please cite:

• Leek JT (2014) svaseq: removing batch and other artifacts from count-based sequencing data.
bioRxiv doi: TBD

• Gagnon-Bartsch JA, Speed TP (2012) Using control genes to correct for unwanted variation in
microarray data. Biostatistics 13:539-52.

For fsva please cite:

• Parker HS, Bravo HC, Leek JT (2013) Removing batch effects for prediction problems with frozen
surrogate variable analysis arXiv:1301.3947

For psva please cite:

• Parker HS, Leek JT, Favorov AV, Considine M, Xia X, Chavan S, Chung CH, Fertig EJ (2014)
Preserving biological heterogeneity with a permuted surrogate variable analysis for genomics batch
correction Bioinformatics doi: 10.1093/bioinformatics/btu375
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