
RNAither, an automated pipeline for the statistical

analysis of high-throughput RNAi screens

Nora Rieber and Lars Kaderali

October 13, 2014

Contents

1 Introduction 2

2 Generating an input dataset file for RNAither 2

3 General functions 6
3.1 Creating subsets . 7
3.2 Rearranging the dataset . 7
3.3 Summarizing intensity values 7
3.4 Group replicate values . 7

4 Quality control 8

5 Normalization 10
5.1 Normalization on controls . 11
5.2 Normalization on mean, median, etc 11
5.3 Normalization with Z-scores 11
5.4 Normalization with B-scores 11
5.5 Quantile normalization . 12
5.6 Li-Wong rank normalization 12
5.7 Lowess normalization . 13
5.8 Additional data processing . 13
5.9 Which normalization option to choose? 14

6 Statistical tests and hit scoring 15
6.1 Which options to choose? . 16

7 Gene Set Enrichment Analysis 17

1

8 Wrapper functions mainAnalysis and rnaither 17

9 using the rnaither wrapper 18
9.1 How to specify the input data for the rnaither wrapper . . . 18
9.2 How to specify the normalization steps to carry out 20

10 A sample application on a genome-wide RNAi screen 23

1 Introduction

RNAither performs analyses of human RNAi knock-down screens, from raw
signal intensities to lists of significant genes and biological processes. There
are no prerequisites about plate size, number of signal channels, or availabil-
ity of control measurements.

An overview of the typical work-flow of the pipeline is given in fig. 1. All
steps can be carried out and adapted independently by the user for maxi-
mum flexibility. However, to facilitate usage of the pipeline and speed up
the analysis, we recommend the use of our wrapper function that performs
a comprehensive analysis and presents the results as a set of HTML pages
while still allowing to choose the analysis options - for example normaliza-
tion methods or statistical tests - that are best suited for the type of data
at hand in a concrete case.

Section 2 (Generating an input dataset file for RNAither) and 9 (rnaither
wrapper function and HTML output) are relevant for any user wanting to
use the automated version of the analysis. Sections 3 through 7 describe the
detail of the functions used by the rnaither wrapper function, and intro-
duce some additional analysis functions not included in the wrapper, but are
irrelevant for the standard use of the package. Section 10 presents a sample
application on a genome-wide RNAi screen.

2 Generating an input dataset file for RNAither

The input dataset for the pipeline is a text file generated from the ex-
perimental output data that contains all the information necessary to de-
scribe the experiment. The text file consists of a header and a table.
The header gives information about the external experiment name (ex-
ternal_experiment_name), e.g. “”Johns Experiment Nb. 1””, and the type

2

Figure 1: The typical pipeline analysis work-flow. All steps are independent
but the full work-flow from quality analysis to html output may be carried
out by the rnaither wrapper function. HTML output is dependent on the
wrapper function.

3

of data (type_of_data), e.g. “364 well plate data for virus screens”, and
allows a space for comments, if any (otherwise NA). In the standard case,
the table contains 13 columns, each line corresponding to one spot or well
on one plate:

• the spot number on the plate Spotnumber

• the spot type SpotType, which can be 0 (negative control), 1 (positive
control), 2 (normal sample), or -1 (empty spot or spot of poor quality
that will not be included in the further analysis)

• an internal gene ID (Internal_GeneID), for example the siRNA name.
Can be equal to GeneName.

• the gene name (GeneName)

• the signal intensity (SigIntensity)

• the standard deviation of the signal intensity (SDSIntensity)

• the background intensity value (Background)

• the plate number of the spot/well (LabtekNb)

• the row number of the spot/well (RowNb)

• the column number of the spot/well (ColNb)

• the experiment number (ScreenNb)

• the number of cells in the spot/well (NbCells) - can also be a second
intensity channel.

• the proportion of cells among the recognized objects (PercCells) -
useful when the experimental data is recorded automatically.

These columns are always present, but can be simply set to NA if the in-
formation is not available. Appending additional columns is unproblematic,
and further dataset processing and analysis is not confined to specific col-
umn names. During data analysis, results (e.g. normalized values, p-values
or hit vectors) are appended as extra columns to the dataset.

We implemented the possibility to make a distinction between GeneName

and Internal_GeneID. All pipeline functions that perform annotations or

4

group signal values according to replicates leave the choice of a classification
of replicates according to either the gene (GeneName) or the siRNA (Inter-
nal_GeneID). This means that in case different siRNAs are used to silence
the same gene, we can either treat all siRNAs as having the same effect on
that gene (i.e. we consider two spots with, respectively, geneA silenced by
siRNA1 and geneA silenced by siRNA2, as replicates), or treat them differ-
ently (i.e. we only consider two spots with a silenced geneA as replicates if
siRNA1 was used for both; geneA silenced by siRNA1 and geneA silenced
by siRNA2 are not considered as replicates in the analysis).

Dataset files are usually generated with the function generateDatasetFile

as illustrated in the following example:

> library("RNAither")

> #gene names

> plateLayout1 <- c("test1", "empty", "test3", "test4", "test5",

+ "test6", "test7", "empty", "test9", "test10", "test11", "test12")

> plateLayout2 <- c("test1", "test2", "test3", "test4", "test5",

+ "test6", "test7", "test8", "test9", "test10", "test11", "test12")

> plateLayout <- cbind(plateLayout1, plateLayout2)

> emptyWells <- list(c(2, 8), NA_integer_)

> #the first plate has two empty wells at position 2 and 8,

> #the second plate does not have any empty wells

>

> poorWells <- NA_integer_

> #no wells of poor quality

>

> controlCoordsOutput <- list(list(NA_integer_, NA_integer_), list(NA_integer_, c(9,10)))

> #the first plate does not have any control siRNAs,

> #the second plate has two negative controls at position 9 and 10

>

> backgroundValOutput<-NA_integer_

> #no background signal intensities available

>

> sigPlate1<-c(2578, NA_integer_, 3784, 3784, 2578, 5555, 5555, NA_integer_, 8154, 2578, 3784, 2578)

> sigPlate2<-c(8154, 3784, 5555, 3784, 11969, 2578, 1196, 5555, 17568, 2578, 5555, 2578)

> #the signal intensities on the plates

>

> meanSignalOutput<-list(sigPlate1, sigPlate2)

5

> SDmeansignal<-NA_integer_

> #no standard deviation available

>

> objnumOutput<-NA_integer_

> #no cell count available

>

> cellnumOutput<-NA_integer_

> generateDatasetFile("First test screen", "RNAi in virus-infected cells",

+ NA_character_, "testscreen_output.txt", plateLayout, plateLayout, 3, 4,

+ 1, emptyWells, poorWells, controlCoordsOutput, backgroundValOutput,

+ meanSignalOutput, SDmeansignal, objnumOutput, cellnumOutput)

> #load the dataset into R:

> header<-readLines("testscreen_output.txt",3)

> dataset<-read.table("testscreen_output.txt", skip=3, colClasses=c(NA,

+ NA, NA, NA, "factor", NA, NA, NA, NA, NA, NA, NA, NA, NA),

+ stringsAsFactors=FALSE)

Datasets or dataset files from different experiments and/or plates can be
joined with the functions joinDatasets or joinDatasetFiles for a com-
bined analysis:

> data(exampleDataset, package="RNAither")

> doubledataset <- joinDatasets(list(dataset, dataset))

or:

> data(exampleHeader, package="RNAither")

> data(exampleDataset, package="RNAither")

> saveDataset(header, dataset, "save_testfile1.txt")

> header[[1]] <- "external_experiment_name,Test screen"

> header[[2]] <- "comments,contains twice Screen Nb. 1"

> joinDatasetFiles(list("save_testfile1.txt", "save_testfile1.txt"), 3, header, "concatenated_testfile.txt")

3 General functions

The pipeline provides a set of functions for handling and restructuring the
dataset and the contained values, serving the purpose of adapting the input
data to user needs, if required. It can be inserted as an additional pre-
processing step between the automated parsing of the experimental data
and the data analysis, or be used after the analysis on a fully scored dataset
containing normalized values, p-values and hits.

6

3.1 Creating subsets

The function createSubset returns a subset of the given dataset containing
all spots/lines of the main dataset that have a certain value in a specified
column. For example, it allows to create subsets comprising only spots from
a certain plate or experiment, spots containing a specific siRNA or pos-
itive/negative controls. The corresponding function indexSubset returns
the indexes of the concerned lines in the argument dataset.

3.2 Rearranging the dataset

The function orderGeneIDs orders the given dataset according to a speci-
fied column (usually the signal intensity). eraseDataSetColumn deletes the
specified column.

3.3 Summarizing intensity values

There are many different ways of summarizing intensity values, e.g. those
for one replicate. Besides the obvious mean and median functions already
implemented in R, the pipeline offers the root mean square function (rms):

RMS =

√√√√ 1

n

n∑
i=1

x2i

(xi, being the intensity values, n their number), as well as a trimmed mean
function (trim) based on the R function that computes the mean after re-
moving the upper and lower 5% of the values, and the functions closest-

ToZero and furthestFromZero returning, repectively, the value closest or
furthest from zero. These functions can be set as arguments of the function
summarizeReps that returns a dataset with summarized values (either per
siRNA or per gene).
The function sumChannels allows to generate an additional dataset column
summarizing two columns of the dataset with a specified function (e.g. di-
videChannels). For example, it is possible to divide the column containing
the intensity values by the column containing the number of recognized cells.

3.4 Group replicate values

The function generateReplicateMat, with the help of the function find-

Replicates, generates a matrix containing either all values of a specific
column or all indexes in the dataset for either each possible gene or each

7

possible siRNA. Genes or siRNAs occurring only once in the dataset can be
excluded from the matrix, if required. By default, wells with a SpotType set
to -1 are ignored. However, it is possible to include those wells, as it may
be desirable under certain circumstances.

4 Quality control

The pipeline offers a wide range of possibilities to control the quality of
the experiments to analyze. The functions can be used before or after nor-
malization, to assess the quality of raw data or to monitor the effects of
normalization.

An easy way of verifying if an experiment was successful is to compare
positive and negative controls. A straightforward way to do so is to com-
pare control intensities with each other and with the remaining experimental
data by eye. For this purpose, the functions makeBoxplotControls which
generates a boxplot with boxes for positive controls, negative controls and
remaining data, and plotControlHisto that shows a histogram of the data
with highlighted controls have been implemented. (If controls are missing,
plotHisto is used to plot a histogram without highlighting.) All plots are
available on screen, experiment and plate level. A numerical measure of the
separation of positive and negative controls is given by the Z’ factor which
is computed by the function ZPRIMEQualControl and defined as follows:

Z ′ = 1− 3
σpos + σneg
| µpos − µneg |

Z ′ = 1 stands for an experiment with optimal separation of controls, 1 >
Z ′ ≥ 0.5 for an experiment with excellent separation of controls, and Z ′ <
0.5 for an experiment with limited quantitative information. The results are
plotted and can also be found in an output table. The separation of control
densities (on screen, experiment and plate level) can be checked with the
plots generated with the function controlDensity.

However, positive and negative controls are not always available, or not
available on the same plate, in which case experiment quality can also be
assessed e.g. by generating a plate plot showing the color-coded spatial dis-
tribution of intensity values on the plates with the function spatialDistrib.
Obvious errors having occurred during the experiment become apparent, for
example if certain areas (e.g. the edges of the plate) have strikingly high or

8

low intensity values in comparison with the rest of the plate. spatialDis-

trib uses the plotting function included in the Bioconductor package prada.
The spots are annotated with HTML mouseovers (using either the siRNA or
the gene name) using the Bioconductor package geneplotter and controls
spots, if available, are marked.

For further processing of the data, it may be important - e.g. if the sig-
nificance of intensity values is to be assessed by the t-test - to know if it
follows a normal distribution. This can be tested by generating a QQ-plot
with the function plotQQ. Detailed plots per experiment and per plate are
available.

Boxplots generated by the functions makeBoxplotPerScreen, makeBoxplot-
PerPlate and makeBoxplot4PlateType allow a comparison of intensity chan-
nels between experiments or plates to evaluate reproducibility, while plot-

Bar or ZScorePlotTwo shows the signal intensity of each well accompanied
with the (screen, experiment or plate) median and one and two median ab-
solute deviations. A direct comparison of channels with scatterplots (chan-
nelPlot) including a lowess regression curve is also possible.

After normalization, the variability of siRNA replicates in each experiment
is compared directly through scatterplots (e.g. replicate 1 versus replicate
2) with the function compareReplicates, but also with Spearman’s rank
correlation coefficient, both between experiments and between siRNA repli-
cates (replicatesSpearmancor). (A similar function not included in the
rnaither wrapper function, compareReplicaPlates, also allows to com-
pare replicate plates pairwise.) As stated before, “replicates” can be defined
by the user either on the gene or the siRNA level.

A further way to assess the reproducibility of siRNA replicates is a mea-
sure borrowed from microarray analysis: the coefficient of variation (CV) of
an siRNA is defined as the standard deviation of its values divided by their
mean:

CV =
σsiRNA

µsiRNA

The function replicatesCV plots the CV coefficient versus the mean
intensity for each experiment.

Besides, the standard deviation of each siRNA replicate is plotted in the

9

same fashion as the plate plots generated by spatialDistrib (see above)
with the function compareReplicateSD. This way, siRNA replicates and
experiments bearing a disproportionate standard deviation are visible at a
glance. Plots are available on screen and experiment level.

Additional quality control functions are available that are not included in
the rnaither wrapper function. For screens conducted with positive and
negative controls on each plate, the dynamic range (called with the function
DRQualControl) is another measure to evaluate the separation of controls:

DR =
µneg
µpos

µ being the mean of the positive and negative controls, respectively. If there
is a background intensity available, there is also the possibility to compute
the signal-to-noise ratio (SNR) with the function SNRQualControl which
will plot the distribution of SNR’s per spot for the complete dataset and for
each experiment and plate individually.

If the data was read out with the help of an image recognition software
on a cell-by-cell basis, the function numCellQualControl allows to set up-
per and lower thresholds on the number of cells, as an intensity value per
spot computed with too little or too many cells might not be meaningful.
Accordingly, percCellQualControl allows to set upper and lower thresholds
on the percentage of objects identified as cells, because if very few objects
were identified as cells, the intensity value computed is not meaningful ei-
ther. The default threshold is 3 standard deviations from the mean and is
shown in a histogram. The spot type of spots under or over the respective
thresholds is set to -1, discarding them from the further analysis but still
keeping them in the dataset file. Additionally, excluded siRNAs are saved
to a separate text file.

Wells or entire plates can also be discarded by hand by the user with the
functions discardWells or discardLabtek if there is good cause for doing
so, e.g. if experimental evidence suggests the measured values cannot be
trusted.

5 Normalization

The dataset column containing the values to be normalized is saved as an
additional column with the suffix “.old” (numbered if more than one normal-

10

ization technique is applied) while the original column is replaced with the
normalized values. The name of the methods applied appears in the header
comments. As many normalization methods require the assumption that
most siRNAs do not have any effect, it is possible to exclude the controls
for the computation of normalized values.

5.1 Normalization on controls

The function controlNorm allows to normalize values either on the exper-
iment or plate median of either all positive or all negative controls, or to
choose a specific control siRNA or gene to normalize values on.

5.2 Normalization on mean, median, etc

The function divNorm accepts any kind of summarization function specified
in R, e.g. the mean or median, and applies it either to experiments or to
plates. Depending on requirements, the summarized value is subtracted
from each value (e.g. in the case of log-values) or divides it.

5.3 Normalization with Z-scores

For each spot i, the Z-score is defined as:

Z =
xi − x
sx

xi being the signal intensity for spot i, x the mean intensity value of the
plate and sx the standard deviation. For the function ZScore, these were
replaced by the more robust alternatives of median and median absolute
deviation. Also, a Z-score per screen (instead of per plate) is available.

5.4 Normalization with B-scores

The B-score is implemented in the pipeline with the function BScore. The
procedure first calculates the so-called residual rijp for row i and column j
on plate p:

rijp = yijp − ŷijp = yijp − (µ̂p + R̂ip + Ĉjp)

yijp being the measured value, ŷijp the value fitted by a two-way median
polish that estimates systematic measurement offsets for each row i (R̂ip

being the median of row i) and column j (Ĉjp being the median of column
j). µ̂p is the estimated average of the plate.

11

The B-score is then calculated with:

BScore =
rijp

MADp

MAD being the median absolute deviation defined as follows:

MADp = median{|rijp −median(rijp)|}

5.5 Quantile normalization

Quantile normalization is implemented in the pipeline with the function
quantileNormalization, which uses the Bioconductor package limma.

Given n plates or experiments with p values, a matrix X with p rows and n
columns is formed. Then each column of the matrix is sorted according to
its values and each element of a row is replaced with the mean of the row.
Finally, the elements of each column are sorted back into their initial order.

5.6 Li-Wong rank normalization

The Li-Wong rank normalization - also called invariant probe set normal-
ization - has its origin in microarray pre-processing and is implemented in
the pipeline with the function LiWongRank. The idea is that, given a ranked
list of signal intensities, spots having the same or nearly the same rank on
every replicate plate form the “invariant probe set” and are well-suited for
normalization.

Our pipeline uses a modified version of the technique since the original
method was designed to deal with two-color microarrays, i.e. two linked
data channels, which is not the case in siRNA experiments.

Our function is designed to normalize experiments, each with a certain num-
ber of plates n, that have been repeated several times. For each plate type
in each experiment, the siRNAs are sorted according to their value on the
plate. Only siRNAs used once on the plate are taken into account. (Again,
it is possible to differ between siRNAs and genes.) It is obvious that plate
designs where each siRNA is used several times are not suited for an invari-
ant probe set normalization. An error is triggered if the plate layouts are
not the same for each experiment, or if more than 20% of the spots on one

12

plate are occupied by siRNAs occuring several times on the plate.

Subsequently, for each siRNA the standard deviation of its ranks is com-
puted in order to select siRNAs with a very low standard deviation of ranks,
i.e. having approximately the same rank on each replicate plate, to form the
“invariant probe set”.

The function prints out a histogram of the standard deviations of ranks
for each plate type and allows the user to select one out of a series of siR-
NAs with low standard deviations. For each plate, each spot value is divided
by the value of the spot containing the chosen siRNA.

5.7 Lowess normalization

The Lowess normalization, or locally weighted polynomial regression, is used
in the specific case of two data channels that are assumed to be independent
of each other, e.g. one for a signal intensity, the other for the cell count
per spot. Normally, the signal intensity should not be dependent on the cell
count, however, plots of one channel versus the other show that sometimes
this seems to be the case.

The Lowess normalization is a technique from microarray normalization that
fits a smoothing curve through the points. The idea is to down-weigh data
points. In our example, the normalization would down-weigh the signal in-
tensity of data points which are more than a certain percentage away from
the signal mean. The Lowess normalization is implemented in the pipeline
with the function lowessNorm.

5.8 Additional data processing

Some post-processing steps, for example certain statistical hypothesis tests,
might require an additional normalization of the signal variance. Addition-
ally, it has been shown on microarray data that signal variance increases with
the signal. Variance normalization can be done by dividing values by the
plate or experiment median absolute deviation with the function varAdjust.

The function subtractBackground can be used to subtract signal back-
ground from each well, if applicable.

The dataset can be saved to a text file with the function saveDataset.

13

However, this is not necessary when using the rnaither wrapper function.

5.9 Which normalization option to choose?

The first question to ask is whether we expect most siRNAs to have a signif-
icant effect on the output signal, which for example is the case in validation
screens. If this is the case, most normalization methods cannot be used since
they assume the majority of siRNAs on one plate can serve as controls. As
an example, the Z-score rescales signal intensities relative to within-plate
variation, which in this case is of course not a desired effect.

If controls are available on each plate, one possibility is to normalize val-
ues based on them. However, if only few controls are available, the risk of
introducing severe errors is higher than the potential benefit of the control
normalization.

In case there are few or no controls available, an option is to use the Li-
Wong rank normalization which finds “stable” siRNAs, i.e. siRNAs that are
not used as controls but can serve as such.

If we can make the assumption that most siRNAs will not have an effect,
more normalization options are available. When the plates can be assumed
to be similar (i.e. because they have the same siRNA layout or a high num-
ber of different siRNAs in a primary screen), a normalization on the plate
mean or median (more robust) is acceptable.

A normalization with Z-scores introduces an additional variance normal-
ization and can allow to score hits without using statistical hypothesis tests,
e.g. by stating every siRNA as a hit that is more than two standard devi-
ations (median absolute deviations) away from the population mean (me-
dian). This can be useful when only few replicates of each siRNA are avail-
able, which would make a statistical hypothesis test unreliable.

On large plates (≥ 96 wells) a within-plate normalization can be neces-
sary as we encounter the problem of position (e.g. row and column) bias,
for example through edge effects. This can be counteracted by using a nor-
malization partially similar to the Z-score, the B-score, which estimates row
and column biases and corrects them.

The quantile normalization is similar to the Z-score in that it adjusts the

14

distribution of values on each plate/experiment so that they are more or less
the same.

Finally, in the case of two independent signal channels, the Lowess nor-
malization can be used to correct a dependency artifact.

6 Statistical tests and hit scoring

Hits can be scored according to the t-test (function Ttest), Mann-Whitney
test (function MannWhitney), and/or the Rank Product test (function RankProd-

uct). P-values can be corrected for multiple testing with multTestAdjust.

Each test function is applied to all values of each replicate (biological or
technical) in a specified channel. A sorted, named vector of p-values can be
saved to a text file with the function savepValVec. P-values can be added
as an extra column to the dataset with incorporatepValVec.

Subsequently, genes or siRNAs can be selected as hits with the function hit-

selectionPval, hitselectionZscore, or hitselectionZscorePval. In
the first case, all p-values under a user-defined threshold are chosen. The
second case can be applied when the hit selection is performed directly on
signal values (either per spot or per gene/siRNA), for example Z-scores,
without the use of a statistical test. The user can choose if he wants the
first or last n values of a sorted list of signal values (a warning is issued if
the length of the list is less than 2n), or all values above or below a certain
threshold. The function ZScorePlot helps with the choice of the threshold
by plotting the normalized signal values of all spots or replicates together
with the mean and one and two standard deviations. The third case allows
hit selection according to both a threshold for p-values and one for signal
intensities. This can be useful when there are only few replicates available,
and allows to exclude hits that are only scored because of the small standard
deviation of the signal intensity values of the corresponding replicates.

In all cases, a binary hit vector is generated and added as an extra column
to the dataset. A warning is issued if no hits were identified according to
the user-defined threshold, which is then changed in order to select at least
one hit. A text file containing the identifiers, the corresponding p-values or
in the second case the summarized signals, and all individual signals in the
screen is generated. Calling the function spatialDistribHits generates

15

plate plots of the individual plates, showing spots identified as hits, which
allows to identify suspicious distributions of hits on the plate (e.g. all in one
column or one area of the plate).

If a statistical test was performed, it is possible to generate a modified
volcano plot (with the function volcanoPlot), i.e. a plot of the normalized
signal values versus the negative decadic logarithm of the corresponding p-
value. A horizontal line is drawn at -log10(p-value-threshold) to see hits at
a glance.

Finally, when different tests were performed, it is useful to compare the hits
scored with different methods, which can be achieved with the functions
vennDiag and compareHits. Venn diagrams show the number of overlaps
from up to three different scoring methods while the hit comparison function
saves a list of hit genes or siRNAs that were common to two scoring methods
to a text file. These functions also make it possible to compare hits from
two datasets screened under different conditions, provided the siRNAs used
are the same. Hits can be ordered according to their IDs with the function
orderGeneIDs cited in 3 and then a Venn diagram can be plotted.

6.1 Which options to choose?

The standard way of assessing whether siRNAs have a significant positive
or negative effect on the signal is the use of statistical tests. However, when
few or no replicates of an siRNA are available, as it can happen in very
large, expensive screens, statistical tests are not viable.

In this case, hits can be defined as values that are more than a certain
number (typically two) of standard deviations (median absolute deviations)
away from the population mean (median). This, of course, is only an option
if we can make the assumption that most siRNAs do not show an effect
(see 5.9). Also, it requires prior normalization of mean (median) and stan-
dard deviation (median absolute deviation), e.g. with Z-score or B-score.
This scoring method can also prove useful when combined with a statistical
test (see 6).

When enough replicates are available (number of replicates ≥ 5), we can
choose from three different statistical tests: the t-test, the Mann-Whitney
test, and the Rank Product test. The first is parametric and requires that
the values follow the normal distribution, the latter ones are non-parametric.

16

If we can prove that the data follows a normal distribution (e.g. with a
QQ-plot taken from the quality control), the t-test is the method of choice.
If we cannot, a Mann-Whitney test is possible, as it does not make assump-
tions about underlying distributions and is less susceptible to produce wrong
results in the presence of outliers.

The Rank Product test is a very intuitive test that has become popular
over the last years. It is claimed to be reliable even in highly noisy data,
but needs a relatively high number of replicates to be reliable.

7 Gene Set Enrichment Analysis

The main part of the pathway analysis, i.e. searching for overrepresented
pathways among the hits, is done with the Bioconductor package topGO.
The function first annotates each gene name with its corresponding human
GO identifiers with the Bioconductor package biomaRt.

The actual pathway analysis is done with the function gseaAnalysis which
calls the functions of the topGO package. It uses the hit vector generated
as described in 6 and leaves the choice of one of the three GO ontologies -
biological process, molecular function and cellular component. topGO uses
an algorithm that accounts for the hierarchical structure of the GO database
by filtering out local dependencies that lead to redundancy.

The analysis results are summarized in a table including the top GO terms
identified by the algorithm, their IDs, the corresponding p-value, and the
number of genes in the analysis annotated with this GO term compared to
the number of significant genes annotated with this GO term.

8 Wrapper functions mainAnalysis and rnaither

Two different wrapper functions have been implemented in RNAither, which
automate the data analysis process. While the user is at liberty to use
and assemble all available pipeline functions as he sees fit, these wrapper
functions implement typical work flows and present the analysis results in a
set of HTML pages.

The older releases of RNAither used the mainAnalysis wrapper, which
is deprecated with the latest release and is kept only for backwards compat-

17

ibility reasons. New analyses should use the rnaither wrapper.

9 using the rnaither wrapper

The rnaither wrapper bundles all analysis steps through one convenient
function. Data and normalization steps to be carried out are passed to
rnaither as a parameter, and are then executed in the order specified. A
set of html pages is generated, showing numerous plots of the data after each
normalization step, and providing a convenient hit list both at the level of
individual siRNAs, as well as at the the gene level.

The following example illustrades the simplicity of the procedure:

data(exampleDataset, package="RNAither")

This loads the dataset; the wrapper function can then be called as follows:

rnaither(dataset, expname="Example", excludeCellcounts="none", log-

transform=FALSE, normalization=c("lowess","zscore"), test="none",

scorethresh=2.0, outdir="results")

This will process the dataset in the following way:

1. Create diagnostic plots of the raw data

2. Carry out a lowess normalization to remove the effects of cell counts on
signal intensities, and produce diagnostic plots to evaluate the success
of the normalization

3. Carry out a zscore normalization, and produce diagnostic plots

4. Summarize the replicates, and call hits using a z-score threshold of 2

5. Create html pages showing the results in the subdirectory ”results”

After the analysis has completed, the file results/index.html can be opened
in a web browser to access all plots and hit lists generated.

9.1 How to specify the input data for the rnaither wrapper

The rnaither wrapper function requires the data to be stored in a large
data frame containing the raw data to be analyzed. This data frame is of
the same format as is used in the remainder of the RNAither package, and
must have the following columns:

18

1. Spotnumber contains the well number the corresponding entry is as-
sociated with

2. SpotType contains the information what this spot actually contains:

• A value of -1 means this spot is bad and should be taken out

• A value of 0 stands for ”negative control”.

• A value of 1 stands for ”positive control”.

• A value of 2 means ”this is a normal sample”.

3. Internal_GeneID is an siRNA-ID for the well (a character string).
This ID will be used when reporting hits at the siRNA level

4. GeneName is the name of the gene at the corresponding location (a
character string). This gene name will be used to summarize different
siRNAs against the same gene.

5. SigIntensity is the signal intensity measured for the corresponding
well (Channel 1)

6. SDSIntensity the standard deviation of the signal intensity, if avail-
able. If this is not available, simply set to NA.

7. Background the background of this well, if available. If not available,
simply set to NA.

8. LabtekNb ist the plate number (layout number) this well is on.

9. RowNb is the row number of the well (required for spatial normalization)

10. ColNb is the column number of the well (required for spatial normal-
ization)

11. ScreenNb is the replicate number.

12. NbCells the number of cells in the corresponding well (channel 2).
This number IS REQUIRED and RNAither will report errors when
creating plots if NbCells is not given or set to NA. To analyze screens
that do not have a cell number, fill this column with random numbers
and make sure not to carry out any normalization on cell numbers.

13. PercCells is the ratio (number of identified cells)/(number of identi-
fied objects). This column can be set to NA and is not used by the
rnaither wrapper (but is required by RNAither internal functions).

19

The following code example creates a small sample dataset for the wrap-
per:

Spotnumber <- c(1,2,3,4,1,2,3,4)

SpotType <- c(2,1,0,-1,2,1,0,2)

Internal_GeneID <- c("siRNA_12345","siRNA_12346","siRNA_12347","siRNA_12348",

"siRNA_12345","siRNA_12346","siRNA_12347","siRNA_12348")

GeneName <- c("Gene1","PCtrl","NCtrl","Gene2","Gene1","PCtrl","NCtrl","Gene2")

SigIntensity <- c(354.6,12.6,380.2,364.6,345.5,16.6,450.2,333.6)

SDSIntensity <- rep(NA,8)

Background <- rep(NA,8)

LabtekNb <- rep(1,8)

RowNb <- c(1,1,2,2,1,1,2,2)

ColNb <- c(1,2,1,2,1,2,1,2)

ScreenNb <- c(1,1,1,1,2,2,2,2)

NbCells <- c(200,190,195,180,210,195,215,190)

PercCells <- rep(NA,8)

data <- data.frame(Spotnumber=Spotnumber,SpotType=SpotType,

Internal_GeneID=I(Internal_GeneID),GeneName=I(GeneName),

SigIntensity=SigIntensity,SDSIntensity=SDSIntensity,

Background=Background,LabtekNb=LabtekNb,RowNb=RowNb,

ColNb=ColNb,ScreenNb=ScreenNb,NbCells=NbCells,

PercCells=PercCells)

9.2 How to specify the normalization steps to carry out

Normalization steps to be carried out are specified via parameters passed to
the wrapper.

The following parameters can be specified:

• dataA data frame containing the experimental data to analyze. Each
row is corresponding to one well, with the following columns:

– Spotnumber The position of the well on the plate

– Internal GeneID The ID of the siRNA

– GeneName The gene name

– SpotType Can be -1, 0, 1 or 2. Type -1 wells (e.g. emtpy wells,
wells with poor quality) are not considered in subsequent analyses
but are kept in the data set for the sake of completeness. Type
0 wells correspond to negative controls, type 1 wells to positive
controls. Type 2 wells correspond to the standard data wells.

20

– SigIntensity The signal intensity (channel 1)

– SDSIntensity The standard deviation of the signal intensity, if
available

– Background The background per well, if available

– LabtekNb The plate number

– RowNb The row number

– ColNb The column number

– ScreenNb The screen number

– NbCells E.g. the number of cells identified in the well (channel
2)

– PercCells The ratio (number of identified cells)/(number of iden-
tified objects)

• expnameA character string, assigning a name to the experiment. This
will be used as title in the html output generated by rnaither.

• excludeCellcountsa string constant, one of "none", "lowest", "both",
"lowestperplate" or "bothperplate". The default is "none". This
parameter can be used to exclude wells from the analysis that have
very low or very high numbers of cells.

– ”none”No wells will be excluded based on the number of cells they
contain.

– ”lowest”, ”lowestperplate”The wells with the lowest 5 percent of
cellcounts will be excluded from further analysis. ”lowest” will
consider the entire screen at once, and exclude the wells that are
overall the lowest 5 percent. ”lowestperplate” will consider each
plate separately, excluding on each plate the 5 percent of wells
having the lowest cellcounts.

– ”both”, ”bothperplate”The wells with the lowest and highest 5
percent of cellcounts will be excluded from further analysis. Ex-
cluding wells with high cell counts may be useful for image based
screens, if it is suspected that cells overlap in images, which might
cause problems for image processing. ”both” will consider the en-
tire screen at once, and exclude the wells that are overall the
lowest and highest 5 percent. ”bothperplate” will consider each
plate separately, excluding on each plate the 5 percent of wells
having the lowest and highest cellcounts.

21

• logtransformA logical variable, specifying whether or not the signal
intensities should be log-transformed. Default is FALSE.

• normalizationA list of strings containing the normalization steps to
carry out. The default are is c("lowess","bscore"). The following
normalization procedures are available:

– ”lowess”To carry out lowess normalization. This corrects for ef-
fects of cell counts on the signal intensities.

– ”liwong”To carry out Li-Wong rank normalization of the signal
intensities.

– ”varadjust”To divide each signal intensity value by the variance
of the signal intensities on the respective plate.

– ”divnorm”To divide each signal intensity value by the median
signal intensity of the respective plate.

– ”quantile”To carry out a quantile normalization on the signal in-
tensities.

– ”bscore”To carry out a bscore normalization on the signal inten-
sities (corrects for spatial effects on a plate.

– ”zscore”To carry out a zscore normalization (subtract median of
plate, divide by median absolute deviation per plate).

– ”negcontrol”To normalize on the negative controls - subtract me-
dian of negative controls, divide by MAD of negative controls,
per plate.

– ”percontrol”To do a percentage of controls normalization - Rescale
signal intensities so that mean of negative controls is 100, mean
of positive controls is 0.

– ”percneg”To do a percentage of negative controls normalization -
set mean of negative controls to 100, zero signal intensity remains
at 0. Normalization routines will be executed in the order as they
occur in the list.

• testSpecify what statistical test should be used to identify hits. One
of

– ”ttest”to carry out a t-test if the mean score for a given siRNA /
Gene is 0.

– ”wilcox”to carry out a Wilcoxon test if the mean score for a given
siRNA / Gene is 0.

22

– ”none”to carry out no statistical test.

The default is ”ttest”.

• scorethreshThe threshold on the normalized score to be used to identify
hits. The default is 2.0, hence siRNAs with score > +2 or score < -2
are considered hits.

• pvalthreshThe threshold on the p-value from the statistical test to be
used to identify hits. The default is 0.05

• dogoA logical variable, specifies whether or not a Gene Ontology-based
analysis should be carried out. This parameter is currently ignored,
GO is presently not supported nby the rnaither wrapper.

• outdira string specifying the directory in which the results should be
stored. Can be an absolute or relative path.

• layoutnamesA list of strings, that can be used to assign names to differ-
ent layouts in the screen. The list should contain the same number of
elements as there are different layouts in the screen. These names will
be used as labels for the layouts in the html output. If this parameter
is not specified, layouts will be numbered in the canonical way.

10 A sample application on a genome-wide RNAi
screen

We chose a dataset of a genome-wide RNAi screen of cell viability in Drosophila
cells (M. Boutros et al., Genome-wide RNAi analysis of growth and viability
in Drosophila cells, Science, 303(5659):832-835, 2004.). Genes were knocked
down and cell viability evaluated by measuring luciferase activity, which was
used as a representative of ATP levels in the cells.

The screen consists of 2 times 57 plates (384 wells). Each plate con-
tains one negative and one positive control. The dataset is available in the
RNAither package and can be loaded with the commands:

data(headerDrosophila, package="RNAither") data(datasetDrosophila,

package="RNAither")

We remark that the header is not required by the wrapper function.
This is a primary screen with a small number of controls per plate and

a small number of replicates (two for most of the siRNAs). Given that
the plates are rather large, the best adapted normalization is the z-score

23

(see 5.9). The screen does not contain any cellcount measurements, in-
stead, random normal numbers are used as cellcounts. The most suitable
hit scoring method is a scoring according to the normalized signal intensi-
ties (see 6.1). We define hits as any siRNA yielding a median replicate value
smaller than -2 (i.e., more than twice the median absolute deviation away
from the population median).

The command to conduct the analysis described is the following:
rnaither(datasetDrosophila, expname="Drosophila", excludeCellcounts="none",

logtransform=FALSE, normalization="zscore", test="none", scorethresh=2.0,

outdir="results", reorder=F)

24

