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1 Introduction

1.1 Background

The main functionality of synapter is to combine proteomics data acquired under

different mass spectrometry settings or with different samples to (i) optimise the

respective qualities of the two data sets or (ii) increase the number of identifica-

tions, thereby decreasing missing values. Besides synapter offers other functionality

inaccessible in the default pipeline, like peptide FDR estimation and filtering on

peptide match type and peptide uniqueness.

The example that motivated the development of this package was to combine data

obtained on a Synapt G2 instrument:

1. HDMSE data, acquired with additional peptide separation using an ion mobil-

ity cell, thus leading to better (both in number and in quality) identification

and

2. standard MSE data (acquired without ion mobility separation), providing bet-

ter data quantitation.

The former is data is called identification peptides and the latter quantitation

peptides, irrespective of the acquisition mode (HDMSE or MSE). This HDMSE/MSE

design is used in this document to illustrate the synapter package.

However, although HDMSE mode possesses superior identification and MSE mode

superior quantitation capabilities and transferring identifications from HDMSE to

MSE is a priori the most efficient setup, identifications can be transferred between

any runs, independently of the acquisition mode. This allows to reduce the number

of missing values, one of the primary limitation of label-free proteomics. Thus users

will benefit from synapter’s functionality even if they run their instruments in a

single mode (HDMSE or MSE only).

However, as will be shown in section 2, transferring identifications from multiple

runs to each other increases analysis time and peptide FDR within the analysis.

synapter allows to minimise these effects to acceptable degree by choosing runs to

transfer identifications from and merging them in the master HDMSE file.

This data processing methodology is described in section 2.2 and the analysis

pipeline is described in section 2.3.

To maximise the benefit of combining better identification and quantitation data,

it is also possible to combine several, previously merged identification data files into

one master set. This functionality is described in section 2.4.

Finally, section 3 illustrates a complete pipeline including synapter and MSnbase

(Gatto and Lilley, 2012) packages to perform protein label-free quantitation: how
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to combine multiple synapter results to represent the complete experimental design

under study and further explore the data, normalise it and perform robust statistical

data analysis inside the R environment.

The rationale underlying synapter’s functionality are described in Shliaha et al.

(2013) and Bond et al. (2013). The first reference describes the benefits of ion

mobility separation on identification and the effects on quantitation, that led to the

development of synapter, which in described and demonstrated in Bond et al. (2013).

synapter is written for R (R Core Team, 2012), an open source, cross platform,

freely available statistical computing environment and programming language1. Func-

tionality available in the R environment can be extended though the usage of pack-

ages. Thousands of developers have contributed packages that are distributed via

the Comprehensive R Archive Network (CRAN) or through specific initiatives like

the Bioconductor2 project (Gentleman et al., 2004), focusing on the analysis and

comprehension of high-throughput biological data.

synapter is such an R package dedicated to the analysis of label-free proteomics

data. To obtain detailed information about any function in the package, it is pos-

sible to access it’s documentation by preceding it’s name with a question mark at

the command line prompt. For example, to obtain information about the synapter

package, one would type ?synapter.

1.2 Installation

synapter is available through the Bioconductor project. Details about the package

and the installation procedure can be found on its page3. Briefly, installation of the

package and all its dependencies should be done using the dedicated Bioconductor

infrastructure as shown below:

> source("http://bioconductor.org/biocLite.R")

> ## or, if you have already used the above before

> library("BiocInstaller")

> ## and to install the package

> biocLite("synapter")

After installation, synapter will have to be explicitly loaded with

1http://www.r-project.org/
2http://www.bioconductor.org/
3http://bioconductor.org/packages/devel/bioc/html/synapter.html
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> library(synapter)

so that all the package’s functionality is available to the user.

1.3 Getting help

There is a general mailing list4 for Bioconductor packages. There is also a on-

line form5 if you do not wish to subscribe to the list. You are also welcome to

contact Laurent Gatto (lg390@cam.ac.uk) for general questions, bugs, comments

and suggestions.

synapter is an open source initiative and contributions, whether new code, doc-

umentation bug fixes and new use cases are much appreciated. The official source

code is available on the Bioconductor svn server6. A testing version and easily fork-

able source tree is available on github7, which also allows to report issues (bugs,

feature requests, . . . ).

2 Data analysis using synapter

2.1 Preparing the input data

Preparation of the data for synapter requires the .raw data first to be processed

with Waters’ ProteinLynx Global Serve (PLGS) software. The PLGS result is then

exported as csv spreadsheet files in user specified folders. These csv files can then

be used as input for synapter.

We also highly recommend users to acquaint themselves with the PLGS search

algorithm for data independent acquisitions (Li et al., 2009).

First the user has to specify the output folders for files to be used in synapter

analysis as demonstrated in figure 1. After the folders are specified ignore the

message that appears requiring restarting PLGS.

At the first stage PLGS performs noise reduction and centroiding, based on

user specified preferences called processing parameters. These preferences deter-

mine thresholds in intensity for discriminating between noise peaks and peptide and

fragment ion peaks in high and low energy functions of an acquisition. The opti-

mal value of these parameters is sample dependant and different between MSE and

HDMSE modes. For synapter to function properly all acquisitions in the analysis

have to be processed with the same thresholds, optimal for the mode identifications

4https://stat.ethz.ch/mailman/listinfo/bioconductor
5http://bioconductor.org/help/mailing-list/mailform/
6http://bioconductor.org/developers/source-control/
7https://github.com/lgatto/synapter/
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Figure 1: Specifying PLGS output folders. The last message can be ignored.

are transferred from (typically HDMSE mode). The user is expected to identify

optimal parameters himself for every new sample type by repeatedly analysing a

representative acquisition with different thresholds.

After the ions peaks have been determined and centroided, the ions representing

charge states and isotopes of a peptide are collapsed into a single entity called EMRT

(exact mass retention time pair). The EMRTs in low energy function represent

unidentified peptides and are assigned peptides sequences during database search.

The total list of EMRTs can be found in the pep3DAMRT.csv file and it is one of the

synapter input files for the runs used for quantitation (typically MSE mode)

Prior to the database search, randomised entries are added to the database to allow

PLGS to compute protein false positive rate. The randomised entries can either be

added automatically or manually, using the Randomise Databank function in the

Databank admin tool. To properly prepare the files for synapter, the user has to add

randomised entries manually via Databank admin tool, since only then randomised

entries identified in the database search will be displayed in the csv output. Figure 2

demonstrates how to create a randomised databank manually using one randomised

entry per regular entry.

The user is also expected to use a minimum of 1 fragment per peptide, 3 fragments

per protein and 1 peptide per protein identification thresholds and 100% False Posi-

tive Rate8 for protein identification during database search for all of the acquisitions

in the analysis as demonstrated in figure 3. This allows to maximise the number

of identified peptides from the randomised part of the database, needed to esti-

8This is erroneously termed false positive rate in the software and manuscript and should be
considered a false discovery rate.
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Figure 2: Databank creation in PLGS.

Figure 3: Databank search options.

mate peptide identifications statistics. The total list of identified peptides is given

in final peptide.csv files. A single final peptide.csv file has to be supplied to

synapter for every run in the analysis (for both identification and quantitation runs).

More details and screenshots are available in a separate document available at

http://lgatto.github.com/synapter/.

2.2 HDMSE/MSE data analysis

The analysis of pairs of HDMSE and MSE data files is based on the following ra-

tionale – combine strengths or each approach by matching high quality HDMSE

identifications to quantified MSE EMRTs applying the following algorithm:

1. Apply various peptide filters to HDMSE and MSE peptides to obtain two sets

of reliably identified unique proteotypic peptides.

2. Use shared HDMSE and MSE peptides to model the deviations in retention

time between the two mass spectrometer runs.
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3. Optimise the parameters that will be used to optimally match all HDMSE

peptides and quantified MSE EMRTs using a grid search.

4. Using the best parameters, match identified HDMSE peptides to quantified

MSE EMRTs.

2.3 Different pipelines

Three different pipeline are available to the user:

2.3.1 Graphical user interface

A simple graphical interface (GUI) can be used to preform a complete data analysis.

This pipeline is the most accessible for users that do not feel comfortable with

command line interfaces (see below) and/or for a limited number of analysis to be

run manually.

The GUI is a graphical layer between the user and the synergise function that

will be described later. For more details on the underlying data processing and

parameters that can be customised, read ?synergise.

Figure 4: Screenshots of the 3 input tabs of the synapterGUI function. From left to
right: (1) the data input tab, (2) the data filtering and retention time modelling tab and
(3) the grid search tab.

The graphical interface is shown on figure 4 and is started by calling the synapterGUI()

function. The interface is composed of three tabs, that allow data input and analyses

parameters customisation. The synapterGUI function itself takes one input param-

eter, n, that defines the number of identification/quantitation sets of files that the

user wants to analyse. Each set is composed of one identification final peptide file

(typically HDMSE), one quantitation final peptide file (typically MSE), one quan-

titation Pep3D file (also MSE) and one output directory. In addition, the user also
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needs to specify one single fasta file that will be used to filter proteotypic peptide.

To perform 3 analysis, as illustrated on figure 4, the function would be executed like

synapterGUI(n = 3) or simply synapterGUI(3).

Data input The first tab uses a tree structure to represent the input sets to be

analysed. The unique fasta file is located at the very top of the hierarchy and

each subsequent node (file set) can be opened and populated. Files are added

by selecting the respective node, clicking the Add button and selecting the

corresponding file using the file selection dialogue that opens. The file names

then appear as new nodes (see for example the identification file in set 1) and

can be removed with the Remove button.

The Master box needs to be checked if the identification inputs are master

files (see section 2.4).

Filtering and modelling The second tab allows to specify peptide filtering and re-

tention time modelling parameters. Modelling accounts for systematic devia-

tion in retention time for peptides between mass spectrometry runs (figure 5)

by fitting a curve through deviation of retention time vs retention time plot.

> plotRt(ups25b, what = "model", nsd = 1)
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Figure 5: Figure illustrating retention time modelling between two runs in synapter, as
generated by the plotRt function.
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For a detailed description of the parameters and the processing pipeline, see

the documentation of the synergise function.

Grid search Matching peptides to quantified EMRTs is done in the two dimen-

sional retention time vs. precursor mass space. The optimal tolerances in

both dimensions are estimated by a grid search that uses common identifica-

tion/quantitation peptides. The size of the grid, i.e. the range of the retention

time (nsd, number of standard deviations in the retention time model) and

mass tolerance (ppm) to be searched can be defined here. In addition, it is

possible to select a subset of the data to reduce search time. For a detailed

description of the parameters, see the documentation of the synergise func-

tion.

Once all the input has been specified, pressing the Run button in the lower left

corner of the GUI starts the synapter run: all n analyses are executed one after each

other and a complete report in html as well as several result files are created in the

respective output folders.

2.3.2 Wrapper function

The synergise function is a high level wrapper that implements a suggested anal-

ysis to combine two files (see next paragraph for details). A set of parameters

can be passed, although sensible defaults are provided. While the analysis is ex-

ecuted, a html report is created, including all result files in text spreadsheet (csv

format) and binary R output. This level allows easy scripting for automated batch

analysis. Using data from the synapterdata package, the following code chunk il-

lustrates the synergise usage. An example report can be found online at http:

//lgatto.github.com/synapter/.

> library(synapterdata)

> hdmsefile <- getHDMSeFinalPeptide()[2]

> basename(hdmsefile)

[1] "HDMSe_101111_25fmol_UPS1_in_Ecoli_04_IA_final_peptide.csv.gz"

> msefile <- getMSeFinalPeptide()[2]

> basename(msefile)

[1] "MSe_101111_25fmol_UPS1_in_Ecoli_03_IA_final_peptide.csv.gz"

> msepep3dfile <- getMSePep3D()[2]

> basename(msepep3dfile)
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[1] "MSe_101111_25fmol_UPS1_in_Ecoli_03_Pep3DAMRT.csv.gz"

> fas <- getFasta()

> basename(fas)

[1] "EcoliK12_enolase_UPSsimga_NB.fasta"

> ## the synergise input is a (named) list of filenames

> input <- list(identpeptide = hdmsefile,

+ quantpeptide = msefile,

+ quantpep3d = msepep3dfile,

+ fasta = fas)

> ## a report and result files will be stored

> ## in the 'output' directory

> output <- tempdir()

> output

[1] "/tmp/Rtmpknnq2m"

> res <- synergise(filenames = input, outputdir = output)

> performance(res)

(S) Synapter: 4745 EMRTs uniquely matched.

(I) Ident: 5642 peptides.

(Q) Quant: 2685 peptides.

Enrichment (S/Q): 76.72%

Overlap:

Q S QS

240 2282 2445

See ?synergise for details.

2.3.3 Detailed step-by-step analysis

The user can have detailed control on each step of the analysis by executing each low-

level function manually. This pipeline, including generation of data containers (class

instances) and all available operations are available in ?Synapter. This strategy

allows the maximum flexibility to develop new unexplored approaches.
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2.4 Using master peptide files

While analysing one MSE file against one single HDMSE file increased the total

number of reliably identified and quantified features compared to each single MSE

analysis, a better procedure can be applied when replicates are available. Consider

the following design with two pairs of files: HDMSE
1 , MSE

1 , HDMSE
2 and MSE

2 . The

classical approach would lead to combining for example, HDMSE
1 and MSE

1 and

HDMSE
2 and MSE

2 . However, HDMSE
1 – MSE

2 and HDMSE
2 – MSE

1 would also be

suitable, possibly leading to new identified and quantified features. Instead of re-

peating all possible combinations, which could hardly be applied for more replicates,

we allow to merge HDMSE
1 and HDMSE

2 into a new master HDMSE
12 and then using

it to transfer identification to both MSE runs. In addition to leading to a simpler

set of analyses, this approach also allows to control the false positive rate during

the HDMSE merging (see section 2.4.1). Such master HDMSE files can be readily

created with the makeMaster function, as described in section 2.4.2.

We will use data from the synapterdata to illustrate how to create master files.

2.4.1 Choosing which HDMSE files to combine

In a more complex design, a greater number of HDMSE files might need to be

combined. When combining files, one also accumulates false peptides assignments.

The extent to which combining files increases new reliable identification at the cost

of accumulating false assignments can be estimated with the estimateMasterFdr

function.

To illustrate how FDR is estimated for master HDMSE files, let’s consider two

extreme cases.

� In the first one, the two files (each with 1000 peptides filtered at an FDR of

0.01) to be combined are nearly identical, sharing 900 peptides. The combined

data will have 900(shared) + 2 × 100(unique) peptides and each file, taken

separately is estimated to have 1000× 0.01 = 10 false positive identifications.

We thus estimate the upper FDR bound after merging the two files to be
20

1100
= 0.0182.

� In the second hypothetical case, the two files (again each with 1000 peptides

filtered at a FDR of 0.01) to be combined are very different and share only

100 peptides. The combined data will have 100(shared) + 2 × 900(unique)

peptides and, as above, each file is estimated to have 10 false discoveries. In

this case, we obtain an upper FDR bound of 20
1900

= 0.0105.
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In general, the final false discovery for two files will be

FDRmaster =
nfd1 + nfd2

union(peptides HDMSE
1 , peptides HDMSE

2 )

where nfdi is the number of false discoveries in HDMSE file i. Note that we do

not make any assumptions about repeated identification in multiple files here.

estimateMasterFdr generalised this for any number of HDMSE files and indicates

the best combination at a fixed user-specified masterFdr level. Mandatory input

is a list of HDMSE file names and a fasta database file name to filter non-unique

proteotypic peptides.

The result of estimateMasterFdr stores the number of unique proteotypic pep-

tides and FDR for all possible 57 combinations of 6 files. A summary can be printed

on the console or plotted with plot(cmb) (see figure 6).

> ## using the full set of 6 HDMSe files and a

> ## fasta database from the synapterdata package

> inputfiles <- getHDMSeFinalPeptide()

> fasta <- getFasta()

> cmb <- estimateMasterFdr(inputfiles, fasta, masterFdr = 0.02,

+ verbose = FALSE)

> cmb

6 files - 57 combinations

Best combination: 4 5

- 5729 proteotypic peptides

- 6642 unique peptides

- 0.017 FDR

The best combination can be extracted with the bestComb function.

> bestComb(cmb)

[1] 4 5

See ?estimateMasterFdr and references therein for more details about the func-

tion and the returned object.

2.4.2 Generating a master file

Now that we have identified which files should be used to create the master file,

we can directly pass the relevant identification files to the makeMaster function

13



> plot(cmb)
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Figure 6: Figure illustrating the relation between the number of unique peptides in the
combined HDMSE file and the resulting false discovery rate. The symbols on the figure
represent the number of files for that particular combination. The dotted line is the user
defined threshold for the combined FDR (masterFdr parameter). The best combination,
i.e the one that maximises the number of unique peptides while keeping the FDR below
masterFdr is highlighted in red.

to generate the master file. The function has one mandatory input parameter,

pepfiles, a list oh identification file names to be merged. The output is an object

of class MasterPeptides that stores the relevant peptides from the original input

files. The result can be saved to disk using saveRDS for further analysis, as described

in section 2.2.

> master <- makeMaster(inputfiles[bestComb(cmb)], verbose = FALSE)

> master

Object of class "MasterPeptides"

1st Master [ 1 2 ] has 6699 peptides

2nd Master [ 2 1 ] has 6709 peptides

[1] HDMSe_111111_50fmol_UPS1_in_Ecoli_04_IA_final_peptide.csv.gz

[2] HDMSe_111111_50fmol_UPS1_in_Ecoli_02_IA_final_peptide.csv.gz

More details can be found in the function documentation accessible with ?makeMaster.
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2.5 Summary

Two functions are needed to choose a set of IR files and create the master IR.

One function enables to perform a complete identification transfer, eiter through a

command line or graphical interface. Table 1 summarises all there is to know to

utilise synapter’s functionality.

Function Description
synapterGUI() Opens the graphical user interface
synergise Runs the complete identification transfer
estimateMasterFdr Chooses which files to be used to create the master IR
makeMaster Creates the master IR

Table 1: The synapter functions.

3 Analysing complete experiments

The functionality described in this section relies on the MSnbase package (Gatto and

Lilley, 2012), which is installed by default with synapter. Please refer to the MSnbase

Bioconductor web page9, the associated vignettes and the respective manual pages

for more details.

The synapterdata already provides preprocessed PLGS data. Six Synapter in-

stances are available: 3 replicates (labelled a, b and c) of the Universal Proteomics

Standard (UPS1) 48 protein mix at 25 fmol and 3 replicates at 50 fmol, in a constant

E. coli background. The 6 files can be loaded in your working space with

> data(ups25a, ups25b, ups25c, ups50a, ups50b, ups50c)

3.1 Applying the Top 3 approach

We will start by describing the analysis of ups25a in details, and then show how

to analyse all the runs using more compact code. The first step of our analysis

is to convert the synapter object output (a Synapter instance), into a MSnbase-

compatible object, called an MSnSet, that we will name ms25a. We can obtain a

description of the MSnSet object by typing its name.

> ms25a <- as(ups25a, "MSnSet")

> class(ups25a)[1]

[1] "Synapter"

9http://bioconductor.org/packages/release/bioc/html/MSnbase.html
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> class(ms25a)[1]

[1] "MSnSet"

> ms25a

MSnSet (storageMode: lockedEnvironment)

assayData: 5642 features, 1 samples

element names: exprs

protocolData: none

phenoData: none

featureData

featureNames: AALESTLAAITESLK IAAANVPAFVSGK ...

NDSALGLFNGDIGIALDR (5642 total)

fvarLabels: peptide.seq protein.Accession ... qval (20

total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: No annotation

- - - Processing information - - -

MSnbase version: 1.12.0

It contains quantitation information about 5642 peptides for 1 sample. In the

code chunk below, we update the default sample name Synapter1 with a more

meaningful one.

> sampleNames(ms25a)

[1] "Synapter1"

> sampleNames(ms25a) <- "ups25a"

> sampleNames(ms25a)

[1] "ups25a"

Quantitative data and meta-data, which has been acquired by synapter, can be

extracted with the exprs and fData methods.

> tail(exprs(ms25a))

ups25a

AFLNDK NA
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IEAQLNDVIADLDAVR 1671

AVFNGLINVAQHAIK 1499

LEEVK 664

VALQGNMDPSMLYAPPAR 2969

NDSALGLFNGDIGIALDR NA

> tail(fData(ms25a)[, c(2, 9)])

protein.Accession precursor.retT

AFLNDK MNME_ECODH 33.51

IEAQLNDVIADLDAVR MNME_ECODH 84.16

AVFNGLINVAQHAIK B1XFY9_ECODH 76.22

LEEVK B1X7F0_ECODH 41.41

VALQGNMDPSMLYAPPAR DCUP_ECODH 67.60

NDSALGLFNGDIGIALDR B1XDM5_ECODH 97.66

> ## all fetaure metadata

> fvarLabels(ms25a)

[1] "peptide.seq" "protein.Accession"

[3] "protein.Description" "protein.falsePositiveRate"

[5] "peptide.matchType" "peptide.mhp"

[7] "peptide.score" "precursor.mhp"

[9] "precursor.retT" "precursor.inten"

[11] "precursor.Mobility" "spectrumID"

[13] "Intensity" "ion_ID"

[15] "ion_area" "ion_counts"

[17] "pval" "Bonferroni"

[19] "BH" "qval"

We will describe a how to process the data using a Top 3 approach, where the

3 most intense peptides of each protein are used to compute the protein intensity,

using the topN and combineFeatures methods. The former allows to extract the

top most intense peptides (default n is 3) and remove all other peptides from the

MSnSet object. The latter than aggregates the n most intense peptides per protein

using a user-defined function (sum, below). Finally, we also scale protein intensity

values depending on the actual number of peptides that have summed. This number

of quantified peptides can be calculated (after topN, but before combineFeatures)

with nQuants.
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> ms25a <- topN(ms25a, groupBy = fData(ms25a)$protein.Accession, n = 3)

> nPeps <- nQuants(ms25a, fcol = "protein.Accession")

> ms25a <- combineFeatures(ms25a, fData(ms25a)$protein.Accession, "sum",

+ na.rm = TRUE, verbose = FALSE)

> head(exprs(ms25a))

ups25a

6PGL_ECODH 71555

ABDH_ECODH 47542

ACCA_ECODH 38249

ACCD_ECODH 25615

ACP_ECODH 16388

APT_ECODH 0

> head(nPeps)

ups25a

6PGL_ECODH 3

ABDH_ECODH 3

ACCA_ECODH 3

ACCD_ECODH 3

ACP_ECODH 1

APT_ECODH 0

> ## scale intensities

> exprs(ms25a) <- exprs(ms25a) * (3/nPeps)

> ## NaN result from the division by 0, when no peptide was found for that

> ## protein

> head(exprs(ms25a))

ups25a

6PGL_ECODH 71555

ABDH_ECODH 47542

ACCA_ECODH 38249

ACCD_ECODH 25615

ACP_ECODH 49164

APT_ECODH NaN
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3.2 Batch processing

The code chunk below repeats the above processing for the other 5 UPS1/E. coli

runs.

> nms <- c(paste0("ups", 25, c("b", "c")),

+ paste0("ups", 50, c("a", "b", "c")))

> tmp <- sapply(nms, function(.ups) {
+ cat("Processing", .ups, "... ")

+ ## get the object from workspace and convert to MSnSet

+ x <- get(.ups, envir = .GlobalEnv)

+ x <- as(x, "MSnSet")

+ sampleNames(x) <- .ups

+ ## extract top 3 peptides

+ x <- topN(x, groupBy = fData(x)$protein.Accession, n = 3)

+ ## calculate the number of peptides that are available

+ nPeps <- nQuants(x, fcol = "protein.Accession")

+ ## sum top3 peptides into protein quantitation

+ x <- combineFeatures(x, fData(x)$protein.Accession,

+ "sum", na.rm = TRUE, verbose = FALSE)

+ ## adjust protein intensity based on actual number of top peptides

+ exprs(x) <- exprs(x) * (3/nPeps)

+ ## adjust feature variable names for combine

+ x <- updateFvarLabels(x, .ups)

+ ## save the new MSnExp instance in the workspace

+ varnm <- sub("ups", "ms", .ups)

+ assign(varnm, x, envir = .GlobalEnv)

+ cat("done\n")
+ })

Processing ups25b ... done

Processing ups25c ... done

Processing ups50a ... done

Processing ups50b ... done

Processing ups50c ... done

We now have 6 MSnSet instances, containing protein quantitation for the 6 UPS/E.

coli runs.
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3.3 Combining data and filtering

We now want to filter data out based on missing quantitation data, retaining proteins

that have been quantified in at a least two out of three replicates. Filtering based

on missing data can be done using the filterNA method and a maximum missing

data content as defined by pNA. Multiple MSnSet instances can be combined with

the combine method, which is described in details in the MSnbase-demo vignette10.

The 6 objects have appropriate distinct sample names and common feature (protein)

names, which will be used to properly combine the quantitation data.

> ms25 <- combine(ms25a, ms25b)

> ms25 <- combine(ms25, ms25c)

> dim(ms25)

[1] 729 3

> ms25 <- filterNA(ms25, pNA = 1/3)

> dim(ms25)

[1] 709 3

Once combined and filtered, the 25 fmol group retains 709 entries with at least 2

out of 3 quantitation values, out of the 729 total number of proteins.

> ms50 <- combine(ms50a, ms50b)

> ms50 <- combine(ms50, ms50c)

> dim(ms50)

[1] 729 3

> ms50 <- filterNA(ms50, pNA = 1/3)

> dim(ms50)

[1] 709 3

Similarly, the 50 fmol group retains 709 entries with at least 2 out of 3 quantitation

values, out of the 729 initial proteins.

We now combine the two subgroups into one MSnSet object that contains all 6

samples and filter for proteins that are observed in both groups, i.e retaining proteins

with a maximum of 2/6 missing values. We also compute a summary table with the

number of protein that have 4, 5, or 6 quantitation values across the 6 samples.

10The vignette is accessible from within R with vignette("MSnbase-demo", package =

"MSnbase").
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> msUps <- combine(ms25, ms50)

> msUps <- filterNA(msUps, pNA = 2/6)

> head(exprs(msUps))

ups25a ups25b ups25c ups50a ups50b ups50c

6PGL_ECODH 71555 62114 60655 59920 56185 53874

ABDH_ECODH 47542 37805 36746 45570 43163 39506

ACCA_ECODH 38249 31543 29570 30697 29656 27851

ACCD_ECODH 25615 22247 20295 22206 19698 19819

ACP_ECODH 49164 738365 706538 734425 712076 655842

AROB_ECODH 5442 4050 3684 4095 4500 3879

> table(apply(exprs(msUps), 1, function(.x) sum(!is.na(.x))))

4 5 6

6 25 674

We obtain a final data set containing 705 proteins. Finally, we normalise protein

intensities in each sample to correct for experimental loading biases and pipetting

errors. To do so, we compute 6 sample medians using all constant E. coli background

proteins and divide each protein by its respective sample mean.

> ecoli <- -grep("ups$", featureNames(msUps))

> meds <- apply(exprs(msUps)[ecoli, ], 2, median, na.rm = TRUE)

> exprs(msUps) <- t(apply(exprs(msUps), 1, "/", meds))

This same procedure could be applied with a set of constant spikes to estimate

absolute protein quantities.

3.4 Statistical analysis of differentially expressed proteins

The UPS1 spiked-in protein mix is composed of 48 proteins, 47 of which have been

observed and quantified in our final data object. In this section, we will illustrate

how to analyse the 705 proteins to extract those that show differences between the

two groups and show that these candidates represent the UPS1 spikes.

The R environment and many of the available packages allow extremely powerful

statistical analysis. In this document, we will apply a standard t-test on log2 trans-

formed data for convenience, to calculate p-value for individual proteins (pv variable

below). For best performance with small number of samples and more complex de-
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signs, we recommend the Bioconductor limma package (Smyth, 2005)11. We then

perform multiple comparison adjustment using the qvalue from the qvalue package,

that implements the method from (Storey and Tibshirani, 2003) (qv variable below).

The multtest package provides several other p-value adjustment methods. We will

also compute log2 fold-changes and illustrate the results on a volcano plot (figure

7). Figure 8 illustrates the UPS1 proteins and samples on a classical heatmap.

> ## use log2 data for t-test

> exprs(msUps) <- log2(exprs(msUps))

> ## apply a t-test and extract the p-value

> pv <- apply(exprs(msUps), 1 ,

+ function(x) t.test(x[1:3], x[4:6])$p.value)

> ## calculate q-values

> library(qvalue)

> qv <- qvalue(pv)$qvalues

> ## calculate log2 fold-changes

> lfc <- apply(exprs(msUps), 1 ,

+ function(x) mean(x[1:3], na.rm=TRUE) - mean(x[4:6], na.rm=TRUE))

> ## create a summary table

> res <- data.frame(cbind(exprs(msUps), pv, qv, lfc))

> ## reorder based on q-values

> res <- res[order(res$qv), ]

> head(round(res, 3))

ups25a ups25b ups25c ups50a ups50b ups50c pv qv lfc

P01112ups -0.053 -0.015 -0.001 1.072 1.118 1.080 0 0.000 -1.113

P00918ups -0.247 -0.201 -0.214 0.616 0.667 0.674 0 0.001 -0.873

P01008ups 0.112 0.106 0.178 1.075 1.132 1.090 0 0.001 -0.967

Q06830ups 0.174 0.118 0.156 1.073 1.095 1.100 0 0.002 -0.940

P10145ups -0.323 -0.332 -0.274 0.689 0.764 0.788 0 0.003 -1.057

P02788ups 0.564 0.647 0.601 1.494 1.532 1.532 0 0.003 -0.915

In the above example, quantitation values and statistics data are saved in a sum-

mary dataframe (res), that can be exported to a comma-separated spreadsheet

with

> write.csv(res, file = "upsResults.csv")

A total 29 proteins show a statistically different pattern between the two groups,

at a false discovery rate of 10%. Table 2 summarises the results for all UPS1 proteins.

11http://www.bioconductor.org/packages/release/bioc/html/limma.html
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> plot(res$lfc, -log10(res$qv),

+ col = ifelse(grepl("ups$", rownames(res)),

+ "#4582B3AA",

+ "#A1A1A180"),

+ pch = 19,

+ xlab = expression(log[2]~fold-change),

+ ylab = expression(-log[10]~q-value))

> grid()

> abline(v = -1, lty = "dotted")

> abline(h = -log10(0.1), lty = "dotted")

> legend("topright", c("UPS", "E. coli"),

+ col = c("#4582B3AA", "#A1A1A1AA"),

+ pch = 19, bty = "n")
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Figure 7: On the volcano plot, each protein is represented by a dot and positioned
according to its log2 fold-change along the x axis and −log10 of its q-value along the
y axis. Proteins with large fold-changes are positioned on the sides of the plot, while
proteins with low q-values are at the top of the figure. The most promising candidates
are this located on the top corners. In our case, the UPS proteins (in blue) have log2
fold-changes around -1 (vertical dotted line), as expected. The horizontal dotted line
represents a q-value threshold of 0.10.
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> heatmap(exprs(msUps)[grep("ups", featureNames(msUps)), ])
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Figure 8: A heatmap of all UPS1 proteins present in the final data set.
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ups25a ups25b ups25c ups50a ups50b ups50c pv qv lfc
P01112ups -0.05 -0.01 -0.00 1.07 1.12 1.08 0.00 0.00 -1.11
P00918ups -0.25 -0.20 -0.21 0.62 0.67 0.67 0.00 0.00 -0.87
P01008ups 0.11 0.11 0.18 1.07 1.13 1.09 0.00 0.00 -0.97
Q06830ups 0.17 0.12 0.16 1.07 1.09 1.10 0.00 0.00 -0.94
P10145ups -0.32 -0.33 -0.27 0.69 0.76 0.79 0.00 0.00 -1.06
P02788ups 0.56 0.65 0.60 1.49 1.53 1.53 0.00 0.00 -0.92
P02753ups -1.90 -1.82 -1.91 -1.01 -0.92 -0.88 0.00 0.01 -0.94
P01375ups 0.81 0.93 0.96 1.82 1.76 1.69 0.00 0.01 -0.86
P69905ups -1.44 -1.56 -1.51 -0.64 -0.58 -0.58 0.00 0.01 -0.91
P00167ups 0.87 0.89 0.97 1.92 1.96 1.94 0.00 0.01 -1.03
P12081ups -0.09 0.10 -0.02 0.94 1.04 1.05 0.00 0.01 -1.01
P00709ups -0.19 -0.31 -0.32 0.42 0.51 0.51 0.00 0.01 -0.75
O00762ups 0.43 0.27 0.26 1.09 1.21 1.21 0.00 0.01 -0.85
P05413ups -0.17 -0.40 -0.28 0.58 0.68 0.69 0.00 0.03 -0.93
P00441ups -0.23 -0.41 -0.39 0.29 0.41 0.41 0.00 0.03 -0.71
P04040ups -0.07 0.14 0.21 1.09 1.25 1.24 0.00 0.03 -1.10
P02787ups 0.00 0.15 0.07 1.50 1.53 1.24 0.00 0.03 -1.35

P10636-8ups 0.73 0.53 0.56 1.49 1.50 1.58 0.00 0.03 -0.92
P06396ups 0.23 0.30 0.04 1.18 1.27 1.30 0.00 0.04 -1.06
P16083ups -0.18 -0.41 -0.28 1.17 1.15 1.17 0.00 0.04 -1.45
P02768ups 0.55 0.34 0.40 1.35 1.43 1.41 0.00 0.04 -0.97
P01127ups 0.33 0.14 0.22 1.18 1.18 1.21 0.00 0.04 -0.96
P08758ups 0.27 0.09 0.08 1.14 1.18 1.16 0.00 0.05 -1.01
P00915ups 0.06 -0.18 0.06 1.10 1.14 1.16 0.00 0.06 -1.15
P15559ups 0.12 -0.09 -0.08 0.88 0.93 0.88 0.00 0.06 -0.91
P55957ups -1.08 -1.46 -1.33 -0.35 -0.39 -0.18 0.00 0.06 -0.98
P62988ups 0.51 0.27 0.37 1.29 1.29 1.24 0.00 0.06 -0.89
P01031ups -0.41 -0.65 -0.64 0.63 0.64 0.63 0.00 0.07 -1.20
P61626ups -0.10 -0.36 -0.32 0.62 0.68 0.67 0.01 0.09 -0.92
P51965ups -0.89 -1.18 -1.30 0.02 -0.04 -0.01 0.01 0.14 -1.11
P01344ups -0.04 -0.40 -0.06 0.57 0.72 0.64 0.01 0.15 -0.81
P01579ups -0.95 -0.72 -0.66 -0.26 -0.25 -0.17 0.02 0.20 -0.55
P41159ups 0.28 -0.21 -0.24 0.78 0.86 1.03 0.02 0.21 -0.94
P62937ups -1.38 -0.69 -1.12 0.31 0.38 0.26 0.02 0.21 -1.38
P68871ups -0.21 -0.44 -0.59 0.37 0.36 0.36 0.02 0.22 -0.78
P08263ups -1.11 -0.64 -1.52 0.19 0.25 0.28 0.03 0.30 -1.33
P99999ups -1.20 -1.99 -1.95 -0.90 -0.19 -0.84 0.04 0.32 -1.07
P10599ups -0.88 -1.13 0.17 1.39 0.90 0.76 0.04 0.32 -1.63
P02144ups -0.96 -0.12 -0.07 0.99 1.06 1.00 0.04 0.33 -1.40
P01133ups -0.80 0.01 -0.38 0.53 0.56 0.50 0.06 0.43 -0.92
P02741ups -0.27 -1.17 -1.09 0.31 0.32 0.30 0.06 0.43 -1.15
P61769ups -0.66 -0.15 -0.16 0.72 0.38 -0.03 0.07 0.47 -0.68
P63165ups -0.98 0.08 0.22 1.07 1.12 1.11 0.07 0.47 -1.33
O76070ups -0.46 0.25 0.33 0.88 0.80 0.94 0.08 0.48 -0.83
P06732ups 1.50 0.54 0.56 1.32 1.36 1.38 0.27 0.50 -0.48
P63279ups -1.86 -3.08 -1.58 -0.64 -0.68 -0.69 0.08 0.50 -1.50
P09211ups 1.73 -1.86 -1.84 -0.76 -0.33 -0.65 0.95 0.59 -0.08

Table 2: UPS1 proteins.
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4 Session information

All software and respective versions used to produce this document are listed below.

� R version 3.1.0 (2014-04-10), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,

LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,

LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,

LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, methods, parallel, stats,

utils

� Other packages: Biobase 2.24.0, BiocGenerics 0.10.0, MSnbase 1.12.0,

Rcpp 0.11.1, codetools 0.2-8, ggplot2 0.9.3.1, knitr 1.5, mzR 1.10.0,

qvalue 1.38.0, synapter 1.6.0, synapterdata 1.0.2, xtable 1.7-3

� Loaded via a namespace (and not attached): BBmisc 1.5, BatchJobs 1.2,

BiocInstaller 1.14.0, BiocParallel 0.6.0, Biostrings 2.32.0, DBI 0.2-7,

IRanges 1.21.45, MASS 7.3-31, RColorBrewer 1.0-5, RSQLite 0.11.4,

XML 3.98-1.1, XVector 0.4.0, affy 1.42.0, affyio 1.32.0, brew 1.0-6,

cleaver 1.2.0, colorspace 1.2-4, dichromat 2.0-0, digest 0.6.4, doParallel 1.0.8,

evaluate 0.5.3, fail 1.2, foreach 1.4.2, formatR 0.10, grid 3.1.0, gtable 0.1.2,

highr 0.3, hwriter 1.3, impute 1.38.0, iterators 1.0.7, labeling 0.2,

lattice 0.20-29, limma 3.20.0, multtest 2.20.0, munsell 0.4.2, mzID 1.2.0,

pcaMethods 1.54.0, plyr 1.8.1, preprocessCore 1.26.0, proto 0.3-10,

reshape2 1.2.2, scales 0.2.3, sendmailR 1.1-2, splines 3.1.0, stats4 3.1.0,

stringr 0.6.2, survival 2.37-7, tcltk 3.1.0, tcltk2 1.2-10, tools 3.1.0, vsn 3.32.0,

zlibbioc 1.10.0
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