Differential analysis of count data — the DESeq2 package

Michael Love*, Simon Anders?, Wolfgang Huber?

1 Department of Biostatistics, Dana Farber Cancer Institute and
Harvard School of Public Health, Boston, US;
2 European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

*michaelisaiahlove (at) gmail.com

May 13, 2014

Abstract

A basic task in the analysis of count data from RNA-Seq is the detection of differentially
expressed genes. The count data are presented as a table which reports, for each sample, the
number of sequence fragments that have been assigned to each gene. Analogous data also arise
for other assay types, including comparative ChlP-Seq, HiC, shRNA screening, mass spectrometry.
An important analysis question is the quantification and statistical inference of systematic changes
between conditions, as compared to within-condition variability. The package DESeq2 provides
methods to test for differential expression by use of negative binomial generalized linear models;
the estimates of dispersion and logarithmic fold changes incorporate data-driven prior distributions
L. This vignette explains the use of the package and demonstrates typical work flows. Another
vignette, “Beginner's guide to using the DESeq?2 package”, covers similar material but at a slower
pace, including the generation of count tables from FASTQ files.

DESeq2 version: 1.4.5

If you use DESeq2 in published research, please cite:

M. I. Love, W. Huber, S. Anders: Moderated estimation of
fold change and dispersion for RNA-Seq data with DESeq?2.
bioRxiv (2014). doi:10.1101,/002832 [1]

LOther Bioconductor packages with similar aims are edgeR, baySeq and DSS.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/DSS.html

Differential analysis of count data — the DESeq2 package 2
Contents

1 Standard workflow 3

1.1 Quick start 3

1.2 Inputdata e 3

1.2.1 Why raw counts? L 3

1.2.2 SummarizedExperiment input 4

1.2.3 Count matrix input e 5

1.24 HTSeq input e 5

1.25 Noteonfactorlevels 6

1.2.6 About the pasilladataset oo 7

1.3 Differential expression analysis 7

1.4 Exploring and exporting results 8

1.41 MA-plot e 8

1.4.2 More information on results columns 9

1.4.3 Exporting results to HTML or CSV files 9

1.5 Multi-factor designs 10

2 Data transformations and visualization 12

2.1 Count data transformations 12

2.1.1 Blind dispersion estimation 12

2.1.2 Extracting transformed values oL 12

2.1.3 Regularized log transformation L L. 13

2.1.4 Variance stabilizing transformation o L. 13

2.1.5 Effects of transformations on the variance. 14

2.2 Data quality assessment by sample clustering and visualization 15

2.2.1 Heatmap of the counttable, 15

2.2.2 Heatmap of the sample-to-sample distances 17

2.2.3 Principal component plot of the samples 17

3 \Variations to the standard workflow 18

3.1 Wald test individual steps 18

3.2 Contrasts e e 18

3.3 Interactions. L e e 20

3.4 Time-series experiments 22

3.5 Dealing with count outliers 23

3.6 Likelihood ratiotest 24

3.7 Dispersion plot and fitting alternatives, 25

3.7.1 Localdispersion fit 26

3.7.2 Meandispersion e 26

3.7.3 Supply a custom dispersion fito 26

3.8 Independent filtering of results L L 26

3.9 Tests of log2 fold change above or below a threshold 28

3.10 Access to all calculated values 29

3.11 Sample-/gene-dependent normalization factors 31

Differential analysis of count data — the DESeq2 package 3

4 Theory behind DESeq2 32
4.1 The DESeq2 model e 32
4.2 Changes compared to the DESeq package 32
4.3 Count outlier detection e 33
4.4 Contrasts e 33
45 Expanded model matrices Lo 34
4.6 Independent filtering and multiple testing L L 34

4.6.1 Filtering criteria 35
4.6.2 Whydoesitwork? 35
4.6.3 Diagnostic plots for multiple testing L. 36

5 Frequently asked questions 38
5.1 How should | email a question? 38
5.2 Why are some p valuesset to NA? 39
5.3 How do | use the variance stabilized or rlog transformed data for differential testing? . . 39
5.4 Can | use DESeq?2 to analyze paired samples? 39
5.5 Can | use DESeq?2 to analyze a dataset without replicates? 39
5.6 How can | include a continuous covariate in the design formula? 39
5.7 What are the exact steps performed by DESeq()? 40

6 Session Info 40

1 Standard workflow

1.1 Quick start

Here we show the most basic steps for a differential expression analysis. These steps imply you have a
SummarizedExperiment object se with a column condition in colData(se).

dds <- DESeqgDataSet(se = se, design = ~

dds <- DESeq(dds)
res <- results(dds)

1.2 Input data

1.2.1 Why raw counts?

condition)

As input, the DESeq2 package expects count data as obtained, e. g., from RNA-Seq or another high-
throughput sequencing experiment, in the form of a matrix of integer values. The value in the i-th
row and the j-th column of the matrix tells how many reads have been mapped to gene ¢ in sample j.
Analogously, for other types of assays, the rows of the matrix might correspond e. g. to binding regions
(with ChIP-Seq) or peptide sequences (with quantitative mass spectrometry).

http://bioconductor.org/packages/release/bioc/html/DESeq.html

Differential analysis of count data — the DESeq2 package 4

The count values must be raw counts of sequencing reads. This is important for DESeq2’s statistical
model to hold, as only the actual counts allow assessing the measurement precision correctly. Hence,
please do not supply other quantities, such as (rounded) normalized counts, or counts of covered base
pairs — this will only lead to nonsensical results.

1.2.2 SummarizedExperiment input

The class used by the DESeq2 package to store the read counts is DESeqDataSet which extends the
SummarizedExperiment class of the GenomicRanges package. This facilitates preparation steps and
also downstream exploration of results. For counting aligned reads in genes, the summarizeOverlaps
function of GenomicAlignments with mode="Union" is encouraged, resulting in a SummarizedExperi-
ment object (easyRNASeq is another Bioconductor package which can prepare SummarizedExperiment
objects as input for DESeq2). An example of the steps to produce a SummarizedExperiment can
be found in the data package parathyroidSE, which summarizes RNA-Seq data from experiments on
4 human cell cultures [2]. In this last line of the following code chunk, note that dds$variable is
equivalent to colData(dds)$variable.

library("parathyroidSE")
data("parathyroidGenesSE")
se <- parathyroidGenesSE
colnames(se) <- se$run

A DESeqDataSet object must have an associated design formula. The design formula expresses the
variables which will be used in modeling. The formula should be a tilde (~) followed by the variables
with plus signs between them (it will be coerced into an formula if it is not already). An intercept is
included, representing the base mean of counts. The design can be changed later, however then all
differential analysis steps should be repeated, as the design formula is used to estimate the dispersions
and to estimate the log2 fold changes of the model.

The constructor function below shows the generation of a DESeqDataSet from a SummarizedExperi-
ment se. Note: In order to benefit from the default settings of the package, you should put the variable
of interest at the end of the formula and make sure the control level is the first level.

library("DESeq2")

ddsPara <- DESegDataSet(se = se, design = ~ patient + treatment)

ddsPara$treatment <- factor(ddsPara$treatment,
levels=c("Control","DPN", "OHT"))

ddsPara

class: DESegDataSet

dim: 63193 27

exptData(l): MIAME

assays(1): counts

rownames(63193): ENSGO0000000003 ENSGO0000000005 ... LRG_98 LRG_99
rowData metadata column names(0):

colnames(27): SRR479052 SRR479053 ... SRR479077 SRR479078

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html

Differential analysis of count data — the DESeq2 package 5

colData names(8): run experiment ... study sample

1.2.3 Count matrix input

Alternatively, if you already have prepared a matrix of read counts, you can use the function DESeqDataSetFromMatr
For this function you should provide the counts matrix, the column information as a DataFrame or
data.frame and the design formula.

library("pasilla")

library("Biobase")

data("pasillaGenes")

countData <- counts(pasillaGenes)

colData <- pData(pasillaGenes) [,c("condition","type")]

Now that we have a matrix of counts and the column information, we can construct a DESeqDataSet:

dds <- DESeqDataSetFromMatrix(countData = countData,
colData = colData,
design = ~ condition)
dds$condition <- factor(dds$condition,
levels=c("untreated","treated"))
dds

class: DESegDataSet
dim: 14470 7

exptData(0):

assays(l): counts

rownames(14470): FBgn0000003 FBgn0000008 ... FBgn0261574 FBgn0261575
rowData metadata column names(0):
colnames(7): treatedlfb treated2fb ... untreated3fb untreated4fb

colData names(2): condition type

1.2.4 HTSeq input

If you have htseqg-count from the HTSeq python package” you can use the function DESeqDataSetFromHTSeqCour
For an example of using the python scripts, see the pasilla or parathyroid data package. First you will
want to specify a variable which points to the directory in which the HTSeq output files are located.

directory <- "/path/to/your/files/"

However, for demonstration purposes only, the following line of code points to the directory for the
demo HTSeq output files packages for the pasilla package.

2available from http://www—huber.embl.de/users/anders/HTSeq, described in [3]

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroid.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://www-huber.embl.de/users/anders/HTSeq

Differential analysis of count data — the DESeq2 package 6

directory <- system.file("extdata", package="pasilla", mustWork=TRUE)

We specify which files to read in using 1list.files, and select those files which contain the string
"treated" using grep. The sub function is used to chop up the sample filename to obtain the
condition status, or you might alternatively read in a phenotypic table using read.table.

sampleFiles <- grep("treated",list.files(directory) ,value=TRUE)
sampleCondition <- sub("(.*treated).*","\\1",sampleFiles)
sampleTable <- data.frame(sampleName = sampleFiles,
fileName = sampleFiles,
condition = sampleCondition)
ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,
directory = directory,
design= ~ condition)
ddsHTSeq$condition <- factor(ddsHTSeq$condition,
levels=c("untreated", "treated"))
ddsHTSeq

class: DESegDataSet

dim: 70463 7

exptData(0):

assays(l): counts

rownames(70463): FBgn0000003:001 FBgn0000008:001 ... FBgn0261575:001
FBgn0261575:002

rowData metadata column names(0):

colnames(7): treatedlfb.txt treated2fb.txt ... untreated3fb.txt

untreated4fb.txt

colData names(1): condition

1.2.5 Note on factor levels

In the three examples above, we applied the function factor to the column of interest in colData,
supplying a character vector of levels. It is important to supply levels (otherwise the levels are chosen in
alphabetical order) and to put the “control” or “untreated” level as the first element (" base level”), so
that the log2 fold changes produced by default will be the expected comparison against the base level.
An R function for easily changing the base level is relevel. An example of setting the base level of a
factor with relevel is:

dds$condition <- relevel(dds$condition, "untreated")

In addition, when subsetting the columns of a DESeqDataSet, i.e., when removing certain samples from
the analysis, it is possible that all the samples for one or more levels of a variable in the design formula
are removed. In this case, the droplevels function can be used to remove those levels which do not
have samples in the current DESeqDataSet:

Differential analysis of count data — the DESeq2 package 7

dds$condition <- droplevels(dds$condition)

1.2.6 About the pasilla dataset

We continue with the pasilla data constructed from the count matrix method above. This data set
is from an experiment on Drosophila melanogaster cell cultures and investigated the effect of RNAI
knock-down of the splicing factor pasilla [4]. The detailed transcript of the production of the pasilla
data is provided in the vignette of the data package pasilla.

1.3 Differential expression analysis

The standard differential expression analysis steps are wrapped into a single function, DESeq. The
steps of this function are described in Section 4.1 and in the manual page for ?DESeq. The individual
sub-functions which are called by DESeq are still available, described in Section 3.1.

Results tables are generated using the function results, which extracts a results table with log2 fold
changes, p values and adjusted p values. With no arguments to results, the results will be for the
last variable in the design formula, and if this is a factor, the comparison will be the last level of this
variable over the first level.

dds <- DESeq(dds)

res <- results(dds)

resOrdered <- res[order(res$padj),]
head(resOrdered)

log2 fold change (MAP): condition treated vs untreated
Wald test p-value: condition treated vs untreated
DataFrame with 6 rows and 6 columns

baseMean log2FoldChange 1fcSE stat pvalue padj
H## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0039155 453 -4.28 0.192 -22.3 3.58e-110 2.76e-106
FBgn0029167 2165 -2.18 0.108 -20.2 1.02e-90 3.93e-87
FBgn0035085 367 -2.44 0.151 -16.2 6.05e-59 1.56e-55
FBgn0029896 258 =251 0.182 -13.8 3.88e-43 7.50e-40
FBgn0034736 118 -3.17 0.238 -13.3 1.56e-40 2.42e-37
FBgn0040091 611 =il . 58 0.128 -11.9 7.46e-33 9.61e-30

The results function contains a number of arguments to customize the results table which is generated.
Note that the results function automatically performs independent filtering based on the mean of
counts for each gene, optimizing the number of genes which will have an adjusted p value below a given
threshold. This will be discussed further in Section 3.8.

If a multi-factor design is used, or if the variable in the design formula has more than two levels, the
contrast argument of results can be used to extract different comparisons from the DESeqDataSet

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html
http://bioconductor.org/packages/release/data/experiment/html/pasilla.html

Differential analysis of count data — the DESeq2 package 8

unshrunken logz fold changes

log fold change
0
|
log fold change
0
|

1e-01 1e+01 1e+03 1e+05 1e-01 1e+01 1e+03 1e+05

mean expression mean expression

Figure 1: MA-plot. These plots show the log2 fold changes from the treatment over the mean of
normalized counts, i.e. the average of counts normalized by size factors. The left plot shows the
“unshrunken” log2 fold changes, while the right plot, produced by the code above, shows the shrinkage
of log2 fold changes resulting from the incorporation of zero-centered normal prior. The shrinkage is
greater for the log2 fold change estimates from genes with low counts and high dispersion, as can be
seen by the narrowing of spread of leftmost points in the right plot.

returned by DESeq. Multi-factor designs are discussed further in Section 1.5, and the use of the
contrast argument is dicussed in Section 3.2.

For advanced users, note that all the values calculated by the DESeq2 package are stored in the
DESeqDataSet object, and access to these values is discussed in Section 3.10.

1.4 Exploring and exporting results

1.41 MA-plot

In DESeq2, the function plotMA shows the log2 fold changes attributable to a given variable over the
mean of normalized counts. Points will be colored red if the adjusted p value is less than 0.1. Points
which fall out of the window are plotted as open triangles pointing either up or down.

plotMA(res, main="DESeq2", ylim=c(-2,2))

The plotMA function can also take the DESeqDataSet as its first argument, in which case results
will be called internally.

Differential analysis of count data — the DESeq2 package 9

1.4.2 More information on results columns

Information about which variables and tests were used can be found by calling the function mcols on
the results object.

mcols(res)$description

[1] "the base mean over all rows"

[2] "log2 fold change (MAP): condition treated vs untreated"
[3] "standard error: condition treated vs untreated"

[4] "Wald statistic: condition treated vs untreated"

[5] "Wald test p-value: condition treated vs untreated"

[6] "BH adjusted p-values"

For a particular gene, a log2 fold change of —1 for condition treated vs untreated means that
the treatment induces a change in observed expression level of 27! = 0.5 compared to the untreated
condition. If the variable of interest is continuous-valued, then the reported log2 fold change is per unit
of change of that variable.

Note that some values in the results table can be set to NA, for either one of the following reasons:

1. If within a row, all samples have zero counts, the baseMean column will be zero, and the log?2
fold change estimates, p value and adjusted p value will all be set to NA.

2. If a row contains a sample with an extreme count outlier then the p value and adjusted p value
are set to NA. These outlier counts are detected by Cook'’s distance. Customization of this outlier
filtering and description of functionality for replacement of outlier counts and refitting is described
in Section 3.5,

3. If a row is filtered by automatic independent filtering, based on low mean normalized count, then
only the adjusted p value is set to NA. Description and customization of independent filtering is
described in Section 3.8.

1.4.3 Exporting results to HTML or CSV files

An HTML report of the results with plots and sortable/filterable columns can be exported using the
Reporting Tools package on a DESeqDataSet that has been processed by the DESeq function. For a
code example, see the “RNA-seq differential expression” vignette at the ReportingTools page, or the
manual page for the publish method for the DESeqDataSet class.

A plain-text file of the results can be exported using the base R functions write.csv or write.delim.
We suggest using a descriptive file name indicating the variable and levels which were tested.

write.csv(as.data.frame(resOrdered),
file="condition_treated_results.csv")

http://bioconductor.org/packages/release/bioc/html/ReportingTools.html
http://bioconductor.org/packages/release/bioc/html/ReportingTools.html

Differential analysis of count data — the DESeq2 package 10

1.5 Multi-factor designs

Experiments with more than one factor influencing the counts can be easily analyzed using model
formulae including the additional variables. The data in the pasil/la package have a condition of interest
(the column condition), as well as information on the type of sequencing which was performed (the
column type), as we can see below:

colData(dds)

DataFrame with 7 rows and 3 columns

#it condition type sizeFactor
#it <factor> <factor> <numeric>
treatedlfb treated single-read 1.512
treated2fb treated paired-end 0.784
treated3fb treated paired-end 0.896
untreatedlfb untreated single-read 1.050
untreated2fb untreated single-read 1.659
untreated3fb untreated paired-end 0.712
untreated4fb untreated paired-end 0.784

We create a copy of the DESeqDataSet, so that we can rerun the analysis using a multi-factor design.
ddsMF <- dds

We can account for the different types of sequencing, and get a clearer picture of the differences
attributable to the treatment. As condition is the variable of interest, we put it at the end of the
formula. Thus the results function will by default pull the condition results unless contrast or
name arguments are specified. Then we can re-run DESeq:

design(ddsMF) <- formula(™ type + condition)
ddsMF <- DESeq(ddsMF)

Again, we access the results using the results function.

resMF <- results(ddsMF)
head (resMF)

log2 fold change (MAP): condition treated vs untreated
Wald test p-value: condition treated vs untreated
DataFrame with 6 rows and 6 columns

#it baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0000003 0.159 0.1462 0.228 0.6421 0.5208 NA
FBgn0000008 52.226 0.0127 0.292 0.0434 0.9653 0.980
FBgn0000014 0.390 0.05631 0.327 0.1621 0.8712 NA
FBgn0000015 0.905 -0.1768 0.473 -0.3734 0.7088 NA
FBgn0000017 2358.243 -0.2716 0.119 -2.2781 0.0227 0.129
FBgn0000018 221.242 -0.0686 0.160 -0.4281 0.6686 0.863

http://bioconductor.org/packages/release/data/experiment/html/pasilla.html

Differential analysis of count data — the DESeq2 package 11

It is also possible to retrieve the log2 fold changes, p values and adjusted p values of the type variable.
The contrast argument of the function results takes a character vector of length three: the name
of the variable, the name of the factor level for the numerator of the log2 ratio, and the name of the
factor level for the denominator. Contrasts are described in more detail in Section 3.2.

resMFType <- results(ddsMF, contrast=c("type","single-read","paired-end"))
head (resMFType)

log2 fold change (MAP): type single-read vs paired-end
Wald test p-value: type single-read vs paired-end
DataFrame with 6 rows and 6 columns

#Hit baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0000003 0.159 -0.10999 0.210 -0.5231 0.6009 NA
FBgn0000008 52.226 -0.08898 0.288 -0.3087 0.7576 0.877
FBgn0000014 0.390 0.03197 0.304 0.1051 0.9163 NA
FBgn0000015 0.905 -0.30627 0.444 -0.6893 0.4906 NA
FBgn0000017 2358.243 0.00752 0.119 0.0632 0.9496 0.982
FBgn0000018 221.242 0.30050 0.159 1.8941 0.0582 0.212

If the variable is continuous or an interaction term (see Section 3.3) then the results can be extracted us-
ing the name argument to results, where the name is one of elements returned by resultsNames (dds).

Differential analysis of count data — the DESeq2 package 12

2 Data transformations and visualization

2.1 Count data transformations

In order to test for differential expression, we operate on raw counts and use discrete distributions as
described in the previous Section 1.3. However for other downstream analyses — e.g. for visualization
or clustering — it might be useful to work with transformed versions of the count data.

Maybe the most obvious choice of transformation is the logarithm. Since count values for a gene can
be zero in some conditions (and non-zero in others), some advocate the use of pseudocounts, i.e.
transformations of the form

y =logy(n 4+ 1) or more generally, y = log,(n + ng), (1)

where n represents the count values and ng is a positive constant.

In this section, we discuss two alternative approaches that offer more theoretical justification and a
rational way of choosing the parameter equivalent to ng above. One method incorporates priors on the
sample differences [1], and the other uses the concept of variance stabilizing transformations [5, 6, 7].

2.1.1 Blind dispersion estimation

The two functions, rlog and varianceStabilizingTransformation, have an argument blind, for
whether the transformation should be blind to the sample information specified by the design formula.
When blind equals TRUE (the default), the functions will re-estimate the dispersions using only an
intercept (design formula ~ 1). This setting should be used in order to compare samples in a manner
wholly unbiased by the information about experimental groups, for example to perform sample QA
(quality assurance) as demonstrated below.

However, blind dispersion estimation is not the appropriate choice if one expects that many or the
majority of genes (rows) will have large differences in counts which are explanable by the experimental
design, and one wishes to tranform the data for downstream analysis. In this case, using blind dispersion
estimation will lead to large estimates of dispersion, as it attributes differences due to experimental
design as unwanted “noise”, and shrinks the tranformed values towards each other. By setting blind
to FALSE, the dispersions already estimated will be used to perform transformations, or if not present,
they will be estimated using the current design formula. Note that only the fitted dispersion estimates
from mean-dispersion trend line is used in the transformation. So setting blind to FALSE is still mostly
unbiased by the information about the samples.

2.1.2 Extracting transformed values

The two functions return SummarizedExperiment objects, as the data are no longer counts. The assay
function is used to extract the matrix of normalized values.

Differential analysis of count data — the DESeq2 package 13

rld <- rlog(dds)

vsd <- varianceStabilizingTransformation(dds)
rlogMat <- assay(rld)

vstMat <- assay(vsd)

2.1.3 Regularized log transformation

The function rlog, stands for regularized log, transforming the original count data to the log2 scale
by fitting a model with a term for each sample and a prior distribution on the coefficients which is
estimated from the data. This is the same kind of shrinkage (sometimes referred to as regularization,
or moderation) of log fold changes used by the DESeq and nbinomWaldTest, as seen in Figure 1. The
resulting data contains elements defined as:

log,(gij) = Bio + Bij

where ¢;; is a parameter proportional to the expected true concentration of fragments for gene 7 and
sample j (see Section 4.1), B, is an intercept which does not undergo shrinkage, and 3;; is the sample-
specific effect which is shrunk toward zero based on the dispersion-mean trend over the entire dataset.
The trend typically captures high dispersions for low counts, and therefore these genes exhibit higher
shrinkage from therlog.

Note that, as ¢;; represents the part of the mean value y;; after the size factor s; has been divided
out, it is clear that the rlog transformation inherently accounts for differences in sequencing depth.
Without priors, this design matrix would lead to a non-unique solution, however the addition of a prior
on non-intercept betas allows for a unique solution to be found. The regularized log transformation is
preferable to the variance stabilizing transformation if the size factors vary widely.

2.1.4 Variance stabilizing transformation

Above, we used a parametric fit for the dispersion. In this case, the closed-form expression for the
variance stabilizing transformation is used by varianceStabilizingTransformation, which is derived
in the file vst . pdf, that is distributed in the package alongside this vignette. If a local fit is used (option
fitType="locfit" to estimateDispersions) a numerical integration is used instead.

The resulting variance stabilizing transformation is shown in Figure 2. The code that produces the
figure is hidden from this vignette for the sake of brevity, but can be seen in the .Rnw or .R source file.
Note that the vertical axis in such plots is the square root of the variance over all samples, so including
the variance due to the experimental conditions. While a flat curve of the square root of variance over
the mean may seem like the goal of such transformations, this may be unreasonable in the case of
datasets with many true differences due to the experimental conditions.

Differential analysis of count data — the DESeq2 package 14

o —
o -
— =+
=
o —
m variance stabilizing transformation
< W logy(n/s)
| | I T
0 50 100 150
n

Figure 2: VST and log2. Graphs of the variance stabilizing transformation for sample 1, in blue, and
of the transformation f(n) = logy(n/s1), in black. n are the counts and s; is the size factor for the
first sample.

oo 0| o
L2} ™ L2}
o | (=T g]
™ ™ ™
o | o ' a0] ’ '
] K] .] m— T
o i =T - S 5
- ."\-\.' . — - = ol o
o o e N s
o | . | esm———ttensssssens
= T T T T T T T = T T T T T 7 T
o =00 &0 10000 o 200 B0 10000
Fanky| M) iy m)

Figure 3: Per-gene standard deviation (taken across samples), against the rank of the mean, for the
shifted logarithm log,(n + 1) (left), the regularized log transformation (center) and the variance stabi-
lizing transformation (right).

2.1.5 Effects of transformations on the variance

Figure 3 plots the standard deviation of the transformed data, across samples, against the mean, using
the shifted logarithm transformation (1), the regularized log transformation and the variance stabilizing
transformation. The shifted logarithm has elevated standard deviation in the lower count range, and

Differential analysis of count data — the DESeq2 package 15

the regularized log to a lesser extent, while for the variance stabilized data the standard deviation is
roughly constant along the whole dynamic range.

library("vsn"

par (mfrow=c(1,3))

notAllZero <- (rowSums(counts(dds))>0)

meanSdPlot (log2(counts(dds,normalized=TRUE) [notAllZero,] + 1),
ylim = c(0,2.5))

meanSdPlot (assay(rld[notAllZero,]), ylim

meanSdPlot (assay(vsd[notAllZero,]), ylim

c(0,2.5))
c(0,2.5))

2.2 Data quality assessment by sample clustering and visualization

Data quality assessment and quality control (i.e. the removal of insufficiently good data) are essential
steps of any data analysis. These steps should typically be performed very early in the analysis of a new
data set, preceding or in parallel to the differential expression testing.

We define the term quality as fitness for purpose®. Our purpose is the detection of differentially
expressed genes, and we are looking in particular for samples whose experimental treatment suffered
from an anormality that renders the data points obtained from these particular samples detrimental to
our purpose.

2.2.1 Heatmap of the count table

To explore a count table, it is often instructive to look at it as a heatmap. Below we show how to
produce such a heatmap from the raw and transformed data.

library("RColorBrewer")

library("gplots")

select <- order(rowMeans(counts(dds,normalized=TRUE)) ,decreasing=TRUE) [1:30]
hmcol <- colorRampPalette(brewer.pal(9, "GnBu")) (100)

heatmap.2(counts(dds,normalized=TRUE) [select,], col = hmcol,
Rowv = FALSE, Colv = FALSE, scale="none",
dendrogram="none", trace="none", margin=c(10,6))

heatmap.2(assay(rld) [select,], col = hmcol,
Rowv = FALSE, Colv = FALSE, scale="none",
dendrogram="none", trace="none", margin=c(10, 6))

heatmap.2(assay(vsd) [select,], col = hmcol,
Rowv = FALSE, Colv = FALSE, scale="none",
dendrogram="none", trace="none", margin=c(10, 6))

3http://en.wikipedia.org/wiki/Quality_%28business%29

http://en.wikipedia.org/wiki/Quality_%28business%29

Differential analysis of count data — the DESeq2 package 16

Golor Key

Golor Key Color Key

Count
&

Count

1 &

0 2 4
o 2

1914 15 18
Value

13 14 15 16
Value

Fage
Fg
Fag:
Fg

treated1fb

treated2fb

treated3fb
treated1fb
treated2fb
treated3fb

2 £
= &
o o
po) £
© ©
e e

untreatedifb
untreated2fb
untreated3fb
untreated4fb
untreatedifb
untreated2fb
untreated3fb
untreated4fb
treated3fb
untreatedifb
untreated2fb
untreated3fb
untreateddfb

Figure 4: Heatmaps showing the expression data of the 30 most highly expressed genes. The data is

of raw counts (left), from regularized log transformation (center) and from variance stabilizing trans-
formation (right).

Color Key

0 10 20 30 40
Value

untreated : single-read

untreated : single-read

untreated : paired-end

untreated : paired-end

treated : paired-end

treated : paired-end

5

treated : single-read

= = = = = = = |
m £ £ £ £ @ @
SEEEEE
L o 2 o o £ D
o E = = = m
£ 8 @8 8 & £ £
m O o o o m @
- 9o T T O m T
o L @ @ D D @
" ®m @ ® ® § 0§
e ¢ & & D o o
=R — R = -

=R = =

=5 3 =3 =

Figure 5. Sample-to-sample distances. Heatmap showing the Euclidean distances between the
samples as calculated from the regularized log transformation.

Differential analysis of count data — the DESeq2 package 17

treated : paired-end
treated : single-read
untreated : paired-end

untreated :single-read

Figure 6: PCA plot. PCA plot. The 7 samples shown in the 2D plane spanned by their first
two principal components. This type of plot is useful for visualizing the overall effect of experimental
covariates and batch effects.

2.2.2 Heatmap of the sample-to-sample distances

Another use of the transformed data is sample clustering. Here, we apply the dist function to the
transpose of the transformed count matrix to get sample-to-sample distances. We could alternatively
use the variance stabilized transformation here.

distsRL <- dist(t(assay(rld)))

A heatmap of this distance matrix gives us an overview over similarities and dissimilarities between
samples (Figure 5):

mat <- as.matrix(distsRL)
rownames (mat) <- colnames(mat) <- with(colData(dds),

paste(condition, type, sep=" : "))
heatmap.2(mat, trace="none", col = rev(hmcol), margin=c(13, 13))

2.2.3 Principal component plot of the samples

Related to the distance matrix of Section 2.2.2 is the PCA plot of the samples, which we obtain as
follows (Figure 6).

print (plotPCA(rld, intgroup=c("condition", "type")))

Differential analysis of count data — the DESeq2 package 18

3 Variations to the standard workflow

3.1 Wald test individual steps

The function DESeq runs the following functions in order:

dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dds <- nbinomWaldTest (dds)

3.2 Contrasts

A contrast is a linear combination of factor level means, which can be used to test if differences between
groups are actually zero. The simplest use case for contrasts is an experimental design containing a
factor with three levels, say A, B and C. Contrasts enable the user to generate results for all 3 possible
differences: log?2 fold change of B vs A, of C vs A, and of C vs B (the other three possible pairs will
simply have —1x the log2 fold changes of these three).

In order to fit models with “shrunken” log2 fold changes in a manner which is independent to the
choice of base level, DESeq2 uses “expanded model matrices”, described further in Section 4.5. The
expanded model matrices include a coefficient for each level of the factors in addition to an intercept.
The contrast argument of results function is again used to extract test results of log2 fold changes
of interest.

Here we show how to perform contrasts using the parathyroid dataset which was built in Section 1.2.2.
The three levels of the factor treatment are: Control, DPN and OHT. The samples are also split
according to the patient from which the cell cultures were derived, so we include this in the design
formula.

ddsCtrst <- ddsParal[, ddsPara$time == "48h"]
as.data.frame(colData(ddsCtrst) [,c("patient","treatment")])
#it patient treatment

SRR479053 1 Control

SRR479055 1 DPN

SRR479057 1 OHT

SRR479059 2 Control

SRR479062 2 DPN

SRR479065 2 OHT

SRR479067 3 Control

SRR479069 3 DPN

SRR479071 3 OHT

SRR479072 4 Control

SRR479074 4 DPN

SRR479075 4 DPN

Differential analysis of count data — the DESeq2 package 19

SRR479077 4 OHT
SRR479078 4 OHT

design(ddsCtrst) <- ~ patient + treatment

First we run DESeq:
ddsCtrst <- DESeq(ddsCtrst)

Using the contrast argument of the results function, we can specify a test of OHT vs DPN. The
contrast argument takes a character vector of length three, containing the name of the factor, the name
of the numerator level, and the name of the denominator level, where we test the log2 fold change of
numerator vs denominator. Here we extract the results for the log2 fold change of OHT vs DPN for
the treatment factor.

resCtrst <- results(ddsCtrst, contrast=c("treatment","OHT","DPN"))
head(resCtrst,?2)

log2 fold change (MAP): treatment OHT vs DPN
Wald test p-value: treatment OHT vs DPN
DataFrame with 2 rows and 6 columns

#it baseMean log2FoldChange 1fcSE stat pvalue
#it <numeric> <numeric> <numeric> <numeric> <numeric>
ENSGO0O000000003 526.077 -0.0552 0.0565 -0.976 0.329
ENSGO0000000005 0.674 0.0317 0.1506 0.210 0.833
#it padj
#it <numeric>
ENSGO0000000003 0.756
ENSGO0000000005 NA

Additionally, contrast can take a list of length two, where the first element is a character vector of
effects for the numerator of the contrast and the second element is a character vector of effects for
the denominator of the contrast. The names in the list should be elements of resultsNames(dds).
The list contruction allows for multiple effects to be added together in either the numerator or the
denominator, e.g., main effects and interaction effects. Here we produce the same results table by
specifying a list to contrast.

resultsNames (ddsCtrst)

[1] "Intercept" "patient1" "patient2" "patient3"
[6] "patient4" "treatmentControl" "treatmentDPN" "treatmentOHT"

resCtrst <- results(ddsCtrst, contrast=list("treatmentOHT","treatmentDPN"))
head(resCtrst,?2)

log2 fold change (MAP): treatmentOHT vs treatmentDPN

Wald test p-value: treatmentOHT vs treatmentDPN

DataFrame with 2 rows and 6 columns

#i#t baseMean log2FoldChange 1fcSE stat pvalue

Differential analysis of count data — the DESeq2 package 20

H## <numeric> <numeric> <numeric> <numeric> <numeric>
ENSGO0000000003 526.077 -0.0552 0.0565 -0.976 0.329
ENSGO0000000005 0.674 0.0317 0.1506 0.210 0.833
#it padj
#i# <numeric>
ENSGO0000000003 0.756
ENSGO0000000005 NA

For advanced users, a numeric contrast vector can also be provided with one element for each element
provided by resultsNames, i.e. columns of the model matrix. Note that the following contrast is the
same as specified by the character vector and the list in the previous two code chunks.

resultsNames (ddsCtrst)

[1] "Intercept" "patient1" "patient2" "patient3"
[6] "patient4" "treatmentControl" "treatmentDPN" "treatmentOHT"

resCtrst <- results(ddsCtrst, contrast=c(0,0,0,0,0,0,-1,1))
head(resCtrst,2)

log2 fold change (MAP): 0,0,0,0,0,0,-1,+1
Wald test p-value: 0,0,0,0,0,0,-1,+1
DataFrame with 2 rows and 6 columns

Hit baseMean log2FoldChange 1fcSE stat pvalue
<numeric> <numeric> <numeric> <numeric> <numeric>
ENSG0O0000000003 526.077 -0.0552 0.0565 -0.976 0.329
ENSGO0000000005 0.674 0.0317 0.1506 0.210 0.833
#i# padj
H# <numeric>
ENSG0O0000000003 0.756
ENSGO0000000005 NA

The formula that is used to generate the contrasts can be found in Section 4.4.

3.3 Interactions

Interaction terms can be added to the design formula, in order to test, for example, if the log2 fold
change attributable to a given condition is different for different groups of samples. There are a variety
of models involving interaction terms, but here we will show an example using the parathyroid dataset
introduced earlier.

For demonstration purposes, we will disregard the time variable and consider these samples across time
as replicates. Note that this is not recommended for an analysis of this or similar datasets.

ddsX <- ddsPara
design(ddsX) <- ~ patient + treatment + patient:treatment

Differential analysis of count data — the DESeq2 package 21

We can then run the standard analysis and examine the names of the results columns. The model
includes an effect for each patient, an effect for each treatment, and additionally interactions for each
combination of treatment and patient.

ddsX <- DESeq(ddsX)

resultsNames (ddsX)

[1] "Intercept" "patientl"

[3] "patient2" "patient3"

[5] "patient4" "treatmentControl"
[7] "treatmentDPN" "treatmentOHT"

[9] "patientl.treatmentControl" "patient2.treatmentControl"
[11] "patient3.treatmentControl" "patient4.treatmentControl"

[13] "patientl.treatmentDPN" "patient2.treatmentDPN"
[15] "patient3.treatmentDPN" "patient4.treatmentDPN"
[17] "patientl.treatmentOHT" "patient2.treatmentOHT"
[19] "patient3.treatmentOHT" "patient4.treatmentOHT"

In order to test if the log2 fold change for OHT over the control sample is different for patient 4, one
would use the following call to results:

resX <- results(ddsX, contrast =
list("patient4.treatmentOHT",
"patient4.treatmentControl"))
head(resX, 2)

log2 fold change (MAP): patient4.treatmentOHT vs patient4.treatmentControl
Wald test p-value: patient4d.treatmentOHT vs patient4.treatmentControl
DataFrame with 2 rows and 6 columns

#it baseMean log2FoldChange 1fcSE stat pvalue
#it <numeric> <numeric> <numeric> <numeric> <numeric>
ENSGO0000000003 526.077 -0.139813 0.1287 -1.0861 0.277
ENSGO0O000000005 0.674 -0.000821 0.0255 -0.0322 0.974
Hit padj
#it <numeric>
ENSGO0000000003 1
ENSGO0000000005 1

Note that the log2 fold change for treatment of OHT over control for patient 4 is the interaction effect
above in addition to the main effect of treatment OHT over control.

If the factors in the model have only two levels, the handling of interaction is slightly different to simplify
the analysis. Here only a single interaction term is used in the model, and a test for the interaction
effect is extracted using the name argument to results. Here we drop all but two levels of treatment
and patient variables.

ddsXsub <- ddsX[,ddsX$treatment %in}, c("Control","OHT") &
ddsX$patient %in% c("1","2")]

Differential analysis of count data — the DESeq2 package 22

ddsXsub$treatment <- droplevels(ddsXsub$treatment)
ddsXsub$patient <- droplevels(ddsXsub$patient)

We can then rerun DESeq, and note that instead of terms for each level of the factors (expanded model
matrices), we have the standard comparisons over the base level, and a single interaction term which
can be extracted by name.

ddsXsub <- DESeq(ddsXsub)
resultsNames (ddsXsub)

[1] "Intercept" "patient_2_vs_1"
[3] "treatment_OHT_vs_Control" "patient2.treatmentOHT"

resXsub <- results(ddsXsub, name="patient2.treatmentOHT")
head(resXsub, 2)

log2 fold change (MAP): patient2.treatmentOHT
Wald test p-value: patient2.treatmentOHT
DataFrame with 2 rows and 6 columns

#it baseMean log2FoldChange 1fcSE stat pvalue
#it <numeric> <numeric> <numeric> <numeric> <numeric>
ENSGO0000000003 639.72 -0.0174 0.179 -0.0968 0.923
ENSGO0000000005 1.31 -0.1129 0.103 -1.0984 0.272
#it padj
#Hit <numeric>
ENSGO0000000003 1
ENSGO0000000005 1

3.4 Time-series experiments

As with models containing interaction terms, there are a number of ways to analyze time-series ex-
periments, depending on the biological question of interest. In order to test for any differences over
multiple time points, once can use a design including the time factor, and then test using the likelihood
ratio test as described in Section 3.6, where the time factor is removed in the reduced formula. For a
control and treatment time series, one can use a design formula containing the condition factor, the
time factor, and the interaction of the two. In this case, using the likelihood ratio test with a reduced
model which does not contain the interaction term will test whether the condition induces a change in
gene expression at any time point after the base-level time point (time 0).

Effects at individual time points can also be investigated using interactions, however we note that
testing all combinations of time points and conditions is just one approach to exploring time course
data. We also suggest that users consider applying transformations which stabilize the variance of the
count data, as described in Section 2. This transformed data can then be used for exploratory data
analysis, by selecting a subset of genes which has the highest variance and then using other packages
to perform gene clustering.

Differential analysis of count data — the DESeq2 package 23

3.5 Dealing with count outliers

RNA-Seq data sometimes contain isolated instances of very large counts that are apparently unrelated
to the experimental or study design, and which may be considered outliers. There are many reasons why
outliers can arise, including rare technical or experimental artifacts, read mapping problems in the case
of genetically differing samples, and genuine, but rare biological events. In many cases, users appear
primarily interested in genes that show a consistent behavior, and this is the reason why by default,
genes that are affected by such outliers are set aside by DESeq2, or if there are sufficient samples,
outlier counts are replaced for model fitting. These two behaviors are described below.

The DESeq function (and nbinomWaldTest/nbinomLRT functions) calculates, for every gene and for
every sample, a diagnostic test for outliers called Cook’s distance. Cook's distance is a measure of
how much a single sample is influencing the fitted coefficients for a gene, and a large value of Cook's
distance is intended to indicate an outlier count. The Cook’s distances are stored as a matrix available
in assays(dds) [["cooks"]].

The results function automatically flags genes which contain a Cook's distance above a cutoff for
samples which have 3 or more replicates. The p values and adjusted p values for these genes are set to
NA. At least 3 replicates are required for flagging, as it is difficult to judge which sample might be an
outlier with only 2 replicates.

With many degrees of freedom —i. e., many more samples than number of parameters to be estimated —
it is undesirable to remove entire genes from the analysis just because their data include a single count
outlier. When there are 7 or more replicates for a given sample, the DESeq function will automatically
replace counts with large Cook’s distance with the trimmed mean over all samples, scaled up by the
size factor or normalization factor for that sample. This approach is conservative, it will not lead to
false positives, as it replaces the outlier value with the value predicted by the null hypothesis.

The default Cook’s distance cutoff for the two behaviors described above depends on the sample size and
number of parameters to be estimated. The default is to use the 99% quantile of the F'(p, m — p) distri-
bution (with p the number of parameters including the intercept and m number of samples). The default
for gene flagging can be modified using the cooksCutoff argument to the results function. The
gene flagging functionality can be disabled by setting cooksCutoff to FALSE or Inf. The automatic
outlier replacement performed by DESeq can be disabled by setting the minReplicatesForReplace
argument to Inf.

DESeq replaces outliers by calling the replaceQutliers function, which has more arguments for
controlling the replacement behavior. DESeq preserves the original counts in counts(dds) saving the
replacement counts as replaceCounts in assays(dds). The function replaceQutliers replaces the
counts in counts(dds), saving the original counts as originalCounts in assays(dds).

Here we demonstrate the replaceOutliers function on the pasilla dataset, using the version of
dds which was analyzed with only condition in the design formula. This is only for demonstration
purposes, as we suggest 7 or more replicates in order to consider replacement for large Cook'’s distances.
The single factor design is necessary for the demonstration, such that there are 3 or more replicates for
every sample.

Differential analysis of count data — the DESeq2 package

ddsReplace <- replaceOutliers(dds, minReplicates=3)

Finally we re-run all the steps of DESeq.

ddsReplace <- DESeq(ddsReplace)

tab <- table(initial = results(dds)$padj < .1,
replace = results(ddsReplace)$padj < .1)

addmargins (tab)

replace

initial FALSE TRUE Sum
FALSE 6918 1 6919
TRUE 0 810 810
Sum 6918 811 7729

3.6 Likelihood ratio test

24

One reason to use the likelihood ratio test is in order to test the null hypothesis that log2 fold changes
for multiple levels of a factor, or for multiple variables, such as all interactions between two variables,
are equal to zero. The likelihood ratio test can also be specified using the test argument to DESeq,
which substitutes nbinomWaldTest with nbinomLRT. In this case, the user provides the full formula
(the formula stored in design(dds)), and a reduced formula, e.g. one which does not contain the
variable of interest. The degrees of freedom for the test is obtained from the number of parameters
in the two models. The Wald test and the likelihood ratio test share many of the same genes with

adjusted p value < 0.1 for this experiment.

As we already have an object dds with dispersions calculated for the design formula ~ condition, we
only need to run the function nbinomLRT, with a reduced formula including only the intercept, in order

to test the log2 fold change attributable to the condition.

ddsLRT <- nbinomLRT(dds, reduced = ~ 1)

resLRT <- results(ddsLRT)

head (resLRT, 2)

log2 fold change: condition treated vs untreated

LRT p-value: '™ condition' vs '~ 1'

DataFrame with 2 rows and 6 columns

Hit baseMean log2FoldChange 1fcSE stat pvalue padj
H## <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
FBgn0000003 0.159 15.0447 195.974 0.791 0.374 NA
FBgn0000008 52.226 0.0281 0.298 0.010 0.920 0.971

tab <- table(Wald=res$padj < .1, LRT=resLRT$padj < .1)
addmargins(tab)

#it LRT
Wald FALSE TRUE Sum

Differential analysis of count data — the DESeq2 package 25

1e+00

dispersion
1e-04

& gene-est
= fitted
1. = final

| [| |
1e-01 1e+01 1e+03 1e+05

1e-08

mean of normalized counts

Figure 7: Dispersion plot. The dispersion estimate plot shows the gene-wise estimates (black), the
fitted values (red), and the final maximum a posteriori estimates used in testing (blue).

FALSE 6894 0 6894
TRUE 15 794 809
Sum 6909 794 7703

If the full design formula had multiple factors, ~ type + condition, then the reduced formula would
be ~ type, i.e., accounting for only the type of sequencing.

3.7 Dispersion plot and fitting alternatives

Plotting the dispersion estimates is a useful diagnostic. The dispersion plot in Figure 7 is typical, with
the final estimates shrunk from the gene-wise estimates towards the fitted estimates. Some gene-wise
estimates are flagged as outliers and not shrunk towards the fitted value, (this outlier detection is
described in the man page for estimateDispersionsMAP). The amount of shrinkage can be more or
less than seen here, depending on the sample size, the number of coefficients, the row mean and the
variability of the gene-wise estimates.

plotDispEsts(dds)

Differential analysis of count data — the DESeq2 package 26

3.7.1 Local dispersion fit

The local dispersion fit is available in case the parametric fit fails to converge. A warning will be
printed that one should use plotDispEsts to check the quality of the fit, whether the curve is pulled
dramatically by a few outlier points.

ddsLocal <- estimateDispersions(dds, fitType="local")

3.7.2 Mean dispersion

While RNA-Seq data tend to demonstrate a dispersion-mean dependence, this assumption is not ap-
propriate for all assays. An alternative is to use the mean of all gene-wise dispersion estimates.

ddsMean <- estimateDispersions(dds, fitType="mean")

3.7.3 Supply a custom dispersion fit

Any fitted values can be provided during dispersion estimation, using the lower-level functions described
in the manual page for estimateDispersionsGeneEst. In the first line of the code below, the function
estimateDispersionsGeneEst stores the gene-wise estimates in the metadata column dispGeneEst.
In the last line, the function estimateDispersionsMAP, uses this column and the column dispFit to
generate maximum a posteriori (MAP) estimates of dispersion. The modeling assumption is that the
true dispersions are distributed according to a log-normal prior around the fitted values in the column
fitDisp. The width of this prior is calculated from the data.

ddsMed <- estimateDispersionsGeneEst(dds)

useForMedian <- mcols(ddsMed)$dispGeneEst > le-7

medianDisp <- median(mcols(ddsMed)$dispGeneEst [useForMedian] ,na.rm=TRUE)
mcols(ddsMed)$dispFit <- medianDisp

ddsMed <- estimateDispersionsMAP(ddsMed)

3.8 Independent filtering of results

The results function of the DESeq2 package performs independent filtering by default using the mean
of normalized counts as a filter statistic. A threshold on the filter statistic is found which optimizes
the number of adjusted p values lower than a significance level alpha (we use the standard variable
name for significance level, though it is unrelated to the dispersion parameter). The theory behind
independent filtering is discussed in greater detail in Section 4.6. The adjusted p values for the genes
which do not pass the filter threshold are set to NA.

The independent filtering is performed using the filtered p function of the genefilter package, and
all of the arguments of filtered_p can be passed to the results function. The filter threshold value
and the number of rejections at each quantile of the filter statistic are available as attributes of the

http://bioconductor.org/packages/release/bioc/html/genefilter.html

Differential analysis of count data — the DESeq2 package 27

number of rejections
500 700
] |
[#]

300
|

100
|

0.2 0.4 0.6 0.8

theta

Figure 8: Independent filtering. The results function maximizes the number of rejections (adjusted
p value less than a significance level), over theta, the quantiles of a filtering statistic (in this case, the
mean of normalized counts).

object returned by results. For example, we can easily visualize the optimization by plotting the
filterNumRej attribute of the results object, as seen in Figure 8.

attr(res,"filterThreshold")

46.5),
9.2

plot(attr(res,"filterNumRej") ,type="b",
ylab="number of rejections")

Independent filtering can be turned off by setting independentFiltering to FALSE. Alternative fil-
tering statistics can be easily provided as an argument to the results function.

resNoFilt <- results(dds, independentFiltering=FALSE)
table(filtering=(res$padj < .1), noFiltering=(resNoFilt$padj < .1))

#Hit noFiltering
filtering FALSE TRUE
FALSE 6919 0
Hit TRUE 113 697

library(genefilter)

Differential analysis of count data — the DESeq2 package 28

rv <- rowVars(counts(dds,normalized=TRUE))
resFiltByVar <- results(dds, filter=rv)
table(rowMean=(res$padj < .1), rowVar=(resFiltByVar$padj < .1))

H#i#t rowVar

rowMean FALSE TRUE
#i FALSE 6303 19
#i TRUE 0 807

3.9 Tests of log2 fold change above or below a threshold

It is also possible to provide thresholds for constructing Wald tests of significance. Two arguments to
the results function allow for threshold-based Wald tests: 1fcThreshold, which takes a numeric
of a non-negative threshold value, and altHypothesis, which specifies the kind of test. Note that
the alternative hypothesis is specified by the user, i.e. those genes which the user is interested in
finding, and the test provides p values for the null hypothesis, the complement of the set defined by the
alternative. The altHypothesis argument can take one of the following four values, where (3 is the
log2 fold change specified by the name argument:

greaterAbs - || > lfcThreshold - tests are two-tailed

lessAbs - || < lfcThreshold - p values are the maximum of the upper and lower tests
greater - 3 > lfcThreshold

less - § < —lfcThreshold

The test altHypothesis="lessAbs" requires that the user have run DESeq with the argument
betaPrior=FALSE. To understand the reason for this requirement, consider that during hypothesis
testing, the null hypothesis is favored unless the data provide strong evidence to reject the null. For this
test, including a zero-centered prior on log fold change would favor the alternative hypothesis, shrinking
log fold changes toward zero. Removing the prior on log fold changes for tests of small log fold change
allows for detection of only those genes where the data alone provides evidence against the null.

The four possible values of altHypothesis are demonstrated in the following code and visually by
MA-plots in Figure 9. First we run DESeq and specify betaPrior=FALSE in order to demonstrate
altHypothesis="lessAbs".

ddsNoPrior <- DESeq(dds, betaPrior=FALSE)

In order to produce results tables for the following tests, the same arguments (except ylim) would be
provided to the results function.

par (mfrow=c(2,2) ,mar=c(2,2,1,1))
yl <- c(-2.5,2.5)

resGA <- results(dds, lfcThreshold=.5, altHypothesis="greaterAbs")
resLA <- results(ddsNoPrior, lfcThreshold=.5, altHypothesis="lessAbs")
resG <- results(dds, 1lfcThreshold=.5, altHypothesis="greater")

Differential analysis of count data — the DESeq2 package 29

T T T] T T T [
1e-01 1e+03 ie-01 1e+03

Figure 9: MA-plots of tests of log2 fold change with respect to a threshold value. Going
left to right across rows, the tests are for altHypothesis = "greaterAbs", "lessAbs", "greater",
and "less".

resL <- results(dds, lfcThreshold=.5, altHypothesis="less")

plotMA(resGA, ylim=yl)
abline(h=c(-.5,.5),col="dodgerblue",1lwd=2)
plotMA(resLA, ylim=yl)
abline(h=c(-.5,.5),col="dodgerblue",lwd=2)
plotMA(resG, ylim=yl)
abline(h=.5,col="dodgerblue",lwd=2)
plotMA(resL, ylim=yl)
abline(h=-.5,col="dodgerblue",lwd=2)

3.10 Access to all calculated values

All row-wise calculated values (intermediate dispersion calculations, coefficients, standard errors, etc.)
are stored in the DESeqDataSet object, e.g. dds in this vignette. These values are accessible by calling
mcols on dds. Descriptions of the columns are accessible by two calls to mcols.

mcols(dds,use.names=TRUE) [1:4,1:4]

Differential analysis of count data — the DESeq2 package

#Hit
##
##
#it
#i#t
#it
##

DataFrame with 4 rows and 4 columns
allZero dispGeneEst

FBgn0000003
FBgn0000008
FBgn0000014
FBgn0000015

baseMean baseVar

<numeric> <numeric> <logical>
0.159 0.178 FALSE
52.226 154.611 FALSE
0.390 0.444 FALSE
0.905 0.799 FALSE

<numeric>
1.00e-08
3.67e-02
1.00e-08
1.00e-08

here using substr() only for display purposes
substr (names (mcols(dds)),1,10)

##
##
##
##
#it

[1]
(6]
[11]
[16]
[21]

"baseMean"

"dispersion"
"conditionu"
"WaldStatis"
"WaldPvalue"

"baseVar"
"dispIter"
"conditiont"
"WaldStatis"
"betaConv"

"allZero"
"dispOutlie"
"SE_Interce"
"WaldStatis"
"betalter"

mcols(mcols(dds), use.names=TRUE) [1:4,]

##
##
#it
#Hit
#it
##
##

DataFrame with 4 rows and 2 columns

baseMean
baseVar
allZero

type

<character>
intermediate

intermediate

intermediate
dispGeneEst intermediate gene-wise estimates of dispersion

"dispGeneEs" "dispFit"
"dispMAP" "Intercept"
"SE_conditi" "SE_conditi"
"WaldPvalue" "WaldPvalue"
"deviance" "maxCooks"
description
<character>

the base mean over all rows
the base variance over all rows
all counts in a row are zero

30

For advanced users, we also include a convenience function coef for extracting the matrix of coefficients
[Bir] for all genes i and parameters , as in the formula in Section 4.1. This function can also return a
matrix of standard errors, see 7coef. The columns of this matrix correspond to the effects returned by
resultsNames. Note that the results function is best for building results tables with p values and
adjusted p values.

head(coef (dds))

#it
#it
#it
##
##
#it
#it
##
##

DataFrame with 6 rows and 3 columns
Intercept conditionuntreated conditiontreated
<numeric>

FBgn0000003
FBgn0000008
FBgn0000014
FBgn0000015
FBgn0000017
FBgn0000018

.742
.704
.358
.233
.178
. 786

<numeric>
-0.0789
-0.0131
-0.0328
0.1032
0.1361
0.0584

<numeric>
0.0789
0.0131
0.0328
-0.1032
-0.1361
-0.0584

Differential analysis of count data — the DESeq2 package 31

3.11 Sample-/gene-dependent normalization factors

In some experiments, there might be gene-dependent dependencies which vary across samples. For
instance, GC-content bias or length bias might vary across samples coming from different labs or
processed at different times. We use the terms “normalization factors” for a gene x sample matrix,
and “size factors” for a single number per sample. Incorporating normalization factors, the mean
parameter 1i;; from Section 4.1 becomes:

pij = NFijqis

with normalization factor matrix N F' having the same dimensions as the counts matrix K. This matrix
can be incorporated as shown below. We recommend providing a matrix with a mean of 1, which can
be accomplished by dividing out the mean of the matrix.

normFactors <- normFactors / mean(normFactors)
normalizationFactors(dds) <- normFactors

These steps then replace estimateSizeFactors in the steps described in Section 3.1. Normalization
factors, if present, will always be used in the place of size factors.

The methods provided by the cqn or EDASeq packages can help correct for GC or length biases. They
both describe in their vignettes how to create matrices which can be used by DESeq2. From the
formula above, we see that normalization factors should be on the scale of the counts, like size factors,
and unlike offsets which are typically on the scale of the predictors (i.e. the logarithmic scale for the
negative binomial GLM). At the time of writing, the transformation from the matrices provided by these
packages should be:

cqnOffset <- cqnObject$glm.offset
cqnNormFactors <- exp(cqnOffset)
EDASegNormFactors <- exp(-1 * EDASeqOffset)

http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html

Differential analysis of count data — the DESeq2 package 32

4 Theory behind DESeq2

4.1 The DESeq2 model

The DESeq2 model and all the steps taken in the software are described in detail in our pre-print [1],
and we include the formula and descriptions in this section as well. The differential expression analysis
in DESeq2 uses a generalized linear model of the form:

Kij ~ NB(pij, o)
Hij = 8545

logy(qi;) = ;.5

where counts K;; for gene 7, sample j are modeled using a negative binomial distribution with fitted
mean i;; and a gene-specific dispersion parameter «;. The fitted mean is composed of a sample-specific
size factor s;* and a parameter ¢;; proportional to the expected true concentration of fragments for
sample 7. The coefficients (; give the log2 fold changes for gene ¢ for each column of the model matrix
X.

By default these log2 fold changes are the maximum a priori estimates after incorporating a zero-
centered Normal prior — in the software referrred to as a 3-prior — hence DESeq2provides “moderated”
log2 fold change estimates. Dispersions are estimated using expected mean values from the maximum
likelihood estimate of log2 fold changes, and optimizing the Cox-Reid adjusted profile likelihood, as
first implemented for RNA-Seq data in edgeR [8, 9]. The steps performed by the DESeq function are
documented in its manual page; briefly, they are:

1. estimation of size factors s; by estimateSizeFactors
2. estimation of dispersion «; by estimateDispersions
3. negative binomial GLM fitting for 3; and Wald statistics by nbinomWaldTest

For access to all the values calculated during these steps, see Section 3.10

4.2 Changes compared to the DESeq package

The main changes in the package DESeq2, compared to the (older) version DESeq, are as follows:

e SummarizedExperiment is used as the superclass for storage of input data, intermediate calcula-
tions and results.

e Maximum a posteriori estimation of GLM coefficients incorporating a zero-mean normal prior with
variance estimated from data (equivalent to Tikhonov/ridge regularization). This adjustment has
little effect on genes with high counts, yet it helps to moderate the otherwise large spread in log2
fold changes for genes with low counts (e. g. single digits per condition).

e Maximum a posteriori estimation of dispersion replaces the sharingMode options fit-only or
maximum of the previous version of the package [10].

4The model can be generalized to use sample- and gene-dependent normalization factors, see Appendix 3.11.

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html

Differential analysis of count data — the DESeq2 package 33

e All estimation and inference is based on the generalized linear model, which includes the two
condition case (previously the exact test was used).

e The Wald test for significance of GLM coefficients is provided as the default inference method,
with the likelihood ratio test of the previous version still available.

e It is possible to provide a matrix of sample-/gene-dependent normalization factors.

4.3 Count outlier detection

DESeq? relies on the negative binomial distribution to make estimates and perform statistical inference
on differences. While the negative binomial is versatile in having a mean and dispersion parameter,
extreme counts in individual samples might not fit well to the negative binomial. For this reason, we
perform automatic detection of count outliers. We use Cook's distance, which is a measure of how
much the fitted coefficients would change if an individual sample were removed [11]. For more on the
implementation of Cook's distance see Section 3.5 and the manual page for the results function.
Below we plot the maximum value of Cook's distance for each row over the rank of the test statistic
to justify its use as a filtering criterion.

W <- res$stat

maxCooks <- apply(assays(dds) [["cooks"]],1,max)

idx <- lis.na(W)

plot(rank(W[idx]), maxCooks[idx], xlab="rank of Wald statistic",
ylab="maximum Cook's distance per gene",
ylim=c(0,5), cex=.4, col=rgb(0,0,0,.3))

m <- ncol(dds)

p <3

abline(h=qf (.99, p, m - p))

4.4 Contrasts

Contrasts can be calculated for a DESegDataSet object for which the GLM coefficients have already
been fit using the Wald test steps (DESeq with test="Wald" or using nbinomWaldTest). The vector
of coefficients (3 is left multiplied by the contrast vector ¢ to form the numerator of the test statistic.
The denominator is formed by multiplying the covariance matrix 3 for the coefficients on either side
by the contrast vector ¢. The square root of this product is an estimate of the standard error for the
contrast. The contrast statistic is then compared to a normal distribution as are the Wald statistics for
the DESeq2 package.

Differential analysis of count data — the DESeq2 package 34

2w

[4E] L]
o

| —

2 =

O

(&

(=

§ oo
2

o

-

e

L]

E -

E

e

E = 7

0 2000 6000 10000

rank of Wald statistic

Figure 10: Cook’s distance. Plot of the maximum Cook’s distance per gene over the rank of the
Wald statistics for the condition. The two regions with small Cook’s distances are genes with a single
count in one sample. The horizontal line is the default cutoff used for 7 samples and 3 estimated
parameters.

4.5 Expanded model matrices

As mentioned in Section 3.2, DESeq2 uses “expanded model matrices” with the log2 fold change prior,
in order to produce log2 fold change estimates and test results which are independent of the choice
of base level. These model matrices differ from the standard model matrices, in that they have an
indicator column (and therefore a coefficient) for each level of factors in the design formula in addition
to an intercept. Expanded model matrices are not used without the log2 fold change prior or in the
case of designs with 2 level factors and an interaction term.

These matrices are therefore not full rank, but a coefficient vector [3; can still be found due to the zero-
centered prior on non-intercept coefficients. The prior variance for the log2 fold changes is calculated
by first generating maximum likelihood estimates for a standard model matrix. The prior variance for
each level of a factor is then set as the average of the mean squared maximum likelihood estimates for
each level and every possible contrast, such that that this prior value will be base level independent.
The contrast argument of the results function is again used in order to generate comparisons of
Interest.

4.6 Independent filtering and multiple testing

Differential analysis of count data — the DESeq2 package 35

4.6.1 Filtering criteria

The goal of independent filtering is to filter out those tests from the procedure that have no, or little
chance of showing significant evidence, without even looking at their test statistic. Typically, this results
in increased detection power at the same experiment-wide type | error. Here, we measure experiment-
wide type | error in terms of the false discovery rate.

A good choice for a filtering criterion is one that

1. is statistically independent from the test statistic under the null hypothesis,

2. is correlated with the test statistic under the alternative, and

3. does not notably change the dependence structure —if there is any— between the tests that pass
the filter, compared to the dependence structure between the tests before filtering.

The benefit from filtering relies on property 2, and we will explore it further in Section 4.6.2. Its
statistical validity relies on property 1 — which is simple to formally prove for many combinations of
filter criteria with test statistics— and 3, which is less easy to theoretically imply from first principles,
but rarely a problem in practice. We refer to [12] for further discussion of this topic.

A simple filtering criterion readily available in the results object is the mean of normalized counts
irrespective of biological condition (Figure 11). Genes with very low counts are not likely to see
significant differences typically due to high dispersion. For example, we can plot the —log,, p values
from all genes over the normalized mean counts.

plot(res$baseMean+l, -loglO(res$pvalue),
log="x", xlab="mean of normalized counts",
ylab=expression(-log[10] (pvalue)),
ylim=c(0,30),
cex=.4, col=rgb(0,0,0,.3))

4.6.2 Why does it work?

Consider the p value histogram in Figure 12. It shows how the filtering ameliorates the multiple testing
problem — and thus the severity of a multiple testing adjustment — by removing a background set of
hypotheses whose p values are distributed more or less uniformly in [0, 1].

use <- res$baseMean > attr(res,"filterThreshold")
table(use)

use
FALSE TRUE
6728 7742

hl <- hist(res$pvalue[!use], breaks=0:50/50, plot=FALSE)
h2 <- hist(res$pvalue[use], breaks=0:50/50, plot=FALSE)
colori <- c("do not pass ="khaki", ~pass ="powderblue")

Differential analysis of count data — the DESeq2 package 36

20 25 30

—logyglpvalue)
10 15
| |

5
|

0
|

1 100 10000

mean of normalized counts

Figure 11: Mean counts as a filter statistic. The mean of normalized counts provides an indepen-
dent statistic for filtering the tests. It is independent because the information about the variables in the
design formula is not used. By filtering out genes which fall on the left side of the plot, the majority of
the low p values are kept.

barplot(height = rbind(hl$counts, h2$counts), beside = FALSE,
col = colori, space = 0, main = "", ylab="frequency")
text(x = c(0, length(hl$counts)), y = 0, label = paste(c(0,1)),
adj = c(0.5,1.7), xpd=NA)
legend ("topright", fill=rev(colori), legend=rev(names(colori)))

4.6.3 Diagnostic plots for multiple testing

The Benjamini-Hochberg multiple testing adjustment procedure [13] has a simple graphical illustration,
which we produce in the following code chunk. Its result is shown in the left panel of Figure 13.

resFilt <- res[use & !is.na(res$pvalue),]
orderInPlot <- order(resFilt$pvalue)

showInPlot <- (resFilt$pvalue[orderInPlot] <= 0.08)
alpha <- 0.1

plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot] [showInPlot],
pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i]))

Differential analysis of count data — the DESeq2 package 37

O pass
2 _ O do notpass
o
2 -
=
@
=
o
E =
=
D —
od
m —

Figure 12: Histogram of p values for all tests (res$pvalue). The area shaded in blue indicates the
subset of those that pass the filtering, the area in khaki those that do not pass.

abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2)

Schweder and Spjgtvoll [14] suggested a diagnostic plot of the observed p-values which permits estima-
tion of the fraction of true null hypotheses. For a series of hypothesis tests Hi, ..., H,, with p-values
pi, they suggested plotting

(1 —pi;, N(p;)) foriel,...,m, (2)

where N(p) is the number of p-values greater than p. An application of this diagnostic plot to
resFilt$pvalue is shown in the right panel of Figure 13. When all null hypotheses are true, the
p-values are each uniformly distributed in [0, 1], Consequently, the cumulative distribution function
of (p1,...,pm) is expected to be close to the line F(t) = t. By symmetry, the same applies to

(1 —=p1,...,1—pn). When (without loss of generality) the first mq null hypotheses are true and the
other m — my are false, the cumulative distribution function of (1 —py,...,1 — pp,) is again expected
to be close to the line Fy(t) = t. The cumulative distribution function of (1 — ppg41,---5 1 — Pm), ON

the other hand, is expected to be close to a function F}(t) which stays below Fj but shows a steep
increase towards 1 as t approaches 1. In practice, we do not know which of the null hypotheses are
true, so we can only observe a mixture whose cumulative distribution function is expected to be close
to

m — 1My
"R () ()
Such a situation is shown in the right panel of Figure 13. If Fy(t)/Fy(t) is small for small ¢, then the
mixture fraction "¢ can be estimated by fitting a line to the left-hand portion of the plot, and then

F(t) = “2Fy(t) +

Differential analysis of count data — the DESeq2 package 38

noting its height on the right. Such a fit is shown by the red line in the right panel of Figure 13.

plot(1-resFilt$pvalue [orderInPlot],
(length(resFilt$pvalue)-1):0, pch=".",
xlab=expression(1-p[i]), ylab=expression(N(p[i])))
abline(a=0, slope, col="red3", lwd=2)

© =
S A 3
g S -
= w
s 3 5 E-
=1 = =+
od =
=1 [T
p= &
=
=2 (=T
= T T T T T T T T T [
0 500 1000 1500 0.0 02 0.4 0.6 0.8 1.0
rank(p;) 1-p;

Figure 13: Left: illustration of the Benjamini-Hochberg multiple testing adjustment procedure [13].
The black line shows the p-values (y-axis) versus their rank (z-axis), starting with the smallest p-value
from the left, then the second smallest, and so on. Only the first 1608 p-values are shown. The red line
is a straight line with slope a/n, where n = 7729 is the number of tests, and o« = 0.1 is a target false
discovery rate (FDR). FDR is controlled at the value « if the genes are selected that lie to the left of the
rightmost intersection between the red and black lines: here, this results in 810 genes. Right: Schweder
and Spjgtvoll plot, as described in the text. For both of these plots, the p-values resFilt$pvalues
from Section 4.6.1 were used as a starting point. Analogously, one can produce these types of plots for
any set of p-values, for instance those from the previous sections.

5 Frequently asked questions

5.1 How should | email a question?
We welcome emails with questions about our software, and want to ensure that we eliminate issues if
and when they appear. We have a few requests to optimize the process:

e all emails and follow-up questions should take place over the Bioconductor list, which serves as a
repository of information and helps saves the developers’ time in responding to similar questions.

Differential analysis of count data — the DESeq2 package 39

The subject line should contain “DESeq2” and a few words describing the problem.

e first search the Bioconductor list, http://bioconductor.org/help/mailing-1ist/, for past
threads which might have answered your question.

e if you have a question about the behavior of a function, read the sections of the manual page for
this function by typing a question mark and the function name, e.g. ?results. We spend a lot
of time documenting individual functions and the exact steps that the software is performing.

e include all of your R code, especially the creation of the DESeqDataSet and the design formula.
Include complete warning or error messages, and conclude your message with the full output of
sessionInfo().

e if possible, include the output of as.data.frame(colData(dds)), so that we can have a sense
of the experimental setup. If this contains confidential information, you can replace the levels of
those factors using levels ().

5.2 Why are some p values set to NA?

See the details in Section 1.4.2.

5.3 How do | use the variance stabilized or rlog transformed data for dif-
ferential testing?

The variance stabilizing and rlog transformations are provided for applications other than differential

testing, for example clustering of samples or other machine learning applications. For differential testing
we recommend the DESeq function applied to raw counts as outlined in Section 1.3.

5.4 Can | use DESeq2 to analyze paired samples?
Yes, you should use a multi-factor design which includes the sample information as a term in the design

formula. This will account for differences between the samples while estimating the effect due to the
condition. The condition of interest should go at the end of the design formula. See Section 1.5.

5.5 Can | use DESeq2 to analyze a dataset without replicates?
If a DESeqDataSet is provided with an experimental design without replicates, a message is printed,

that the samples are treated as replicates for estimation of dispersion. More details can be found in the
manual page for ?DESeq.

5.6 How can | include a continuous covariate in the design formula?

Continuous covariates can be easily included in the design formula in the same manner as factorial
covariates. Continuous covariates might make sense in certain experiments, where a constant fold

http://bioconductor.org/help/mailing-list/

Differential analysis of count data — the DESeq2 package 40

change might be expected for each unit of the covariate. However, in many cases, more meaningful
results can be obtained by cutting continuous covariates into a factor defined over a small number of
bins (e.g. 3-5). In this way, the average effect of each group is controlled for, regardless of the trend
over the continuous covariates. In R, numeric vectors can be converted into factors using the function
cut.

5.7 What are the exact steps performed by DESeq()?

See the manual page for DESeq, which links to the subfunctions which are called in order, where
complete details are listed.

6 Session Info

R version 3.1.0 (2014-04-10), x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

e Other packages: Biobase 2.24.0, BiocGenerics 0.10.0, DESeq2 1.4.5, GenomelnfoDb 1.0.2,
GenomicRanges 1.16.3, IRanges 1.22.6, RColorBrewer 1.0-5, Rcpp 0.11.1,
RcppArmadillo 0.4.300.0, genefilter 1.46.1, gplots 2.13.0, knitr 1.5, parathyroidSE 1.2.0,
pasilla 0.4.0, vsn 3.32.0

e Loaded via a namespace (and not attached): AnnotationDbi 1.26.0, Bioclnstaller 1.14.2,

BiocStyle 1.2.0, DBI 0.2-7, DESeq 1.16.0, KernSmooth 2.23-12, RSQLite 0.11.4,

XML 3.98-1.1, XVector 0.4.0, affy 1.42.2, affyio 1.32.0, annotate 1.42.0, bitops 1.0-6,

caTools 1.17, codetools 0.2-8, digest 0.6.4, evaluate 0.5.5, formatR 0.10, gdata 2.13.3,

geneplotter 1.42.0, grid 3.1.0, gtools 3.4.0, highr 0.3, lattice 0.20-29, limma 3.20.1,

locfit 1.5-9.1, preprocessCore 1.26.1, splines 3.1.0, stats4 3.1.0, stringr 0.6.2, survival 2.37-7,

tools 3.1.0, xtable 1.7-3, zlibbioc 1.10.0

References

[1] Wolfgang Huber Michael | Love and Simon Anders. Moderated estimation of fold change and
dispersion for RNA-Seq data with DESeq2. bioRxiv preprint, 2014. URL: http://dx.doi.org/
10.1101/002832.

[2] Felix Haglund, Ran Ma, Mikael Huss, Lugman Sulaiman, Ming Lu, Inga-Lena Nilsson, Anders H56g,
Christofer C. Juhlin, Johan Hartman, and Catharina Larsson. Evidence of a Functional Estrogen
Receptor in Parathyroid Adenomas. Journal of Clinical Endocrinology & Metabolism, September
2012. URL: http://dx.doi.org/10.1210/jc.2012-2484, doi:10.1210/jc.2012-2484.

http://dx.doi.org/10.1101/002832
http://dx.doi.org/10.1101/002832
http://dx.doi.org/10.1210/jc.2012-2484
http://dx.doi.org/10.1210/jc.2012-2484

Differential analysis of count data — the DESeq2 package 41

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Paul Theodor Pyl Simon Anders and Wolfgang Huber. HTSeq - A Python framework to work with
high-throughput sequencing data. bioRxiv preprint, 2014. URL: http://dx.doi.org/10.1101/
002824.

A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and
B. R. Graveley. Conservation of an RNA regulatory map between Drosophila and mammals.
Genome Research, pages 193-202, 2011. URL: http://genome.cshlp.org/cgi/doi/10.1101/
gr.108662.110, doi:10.1101/gr.108662.110

Robert Tibshirani. Estimating transformations for regression via additivity and variance stabiliza-
tion. Journal of the American Statistical Association, 83:394—405, 1988.

Wolfgang Huber, Anja von Heydebreck, Holger Siiltmann, Annemarie Poustka, and Martin Vingron.
Parameter estimation for the calibration and variance stabilization of microarray data. Statistical
Applications in Genetics and Molecular Biology, 2(1):Article 3, 2003.

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data.
Genome Biology, 11:R106, 2010. URL: http://genomebiology.com/2010/11/10/R106.

D. R. Cox and N. Reid. Parameter orthogonality and approximate conditional inference. Journal of
the Royal Statistical Society, Series B, 49(1):1-39, 1987. URL: http://www. jstor.org/stable/
2345476.

Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research,
40:4288-4297, January 2012. URL: http://www.ncbi.nlm.nih.gov/pubmed/22287627, doi:
10.1093/nar/gks042.

Hao Wu, Chi Wang, and Zhijin Wu. A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics, September 2012. URL: http://dx.doi.
org/10.1093/biostatistics/kxs033, doi:10.1093/biostatistics/kxs033.

R. Dennis Cook. Detection of Influential Observation in Linear Regression. Technometrics, February
1977.

Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent filtering increases
detection power for high-throughput experiments. PNAS, 107(21):9546-9551, 2010. URL:
http://www.pnas.org/content/107/21/9546.long.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society B, 57:289-300, 1995.

T. Schweder and E. Spjotvoll. Plots of P-values to evaluate many tests simultaneously. Biometrika,
69:493-502, 1982. doi:10.1093/biomet/69.3.493.

http://dx.doi.org/10.1101/002824
http://dx.doi.org/10.1101/002824
http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110
http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110
http://dx.doi.org/10.1101/gr.108662.110
http://genomebiology.com/2010/11/10/R106
http://www.jstor.org/stable/2345476
http://www.jstor.org/stable/2345476
http://www.ncbi.nlm.nih.gov/pubmed/22287627
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033
http://www.pnas.org/content/107/21/9546.long
http://dx.doi.org/10.1093/biomet/69.3.493

	1 Standard workflow
	1.1 Quick start
	1.2 Input data
	1.2.1 Why raw counts?
	1.2.2 SummarizedExperiment input
	1.2.3 Count matrix input
	1.2.4 HTSeq input
	1.2.5 Note on factor levels
	1.2.6 About the pasilla dataset

	1.3 Differential expression analysis
	1.4 Exploring and exporting results
	1.4.1 MA-plot
	1.4.2 More information on results columns
	1.4.3 Exporting results to HTML or CSV files

	1.5 Multi-factor designs

	2 Data transformations and visualization
	2.1 Count data transformations
	2.1.1 Blind dispersion estimation
	2.1.2 Extracting transformed values
	2.1.3 Regularized log transformation
	2.1.4 Variance stabilizing transformation
	2.1.5 Effects of transformations on the variance

	2.2 Data quality assessment by sample clustering and visualization
	2.2.1 Heatmap of the count table
	2.2.2 Heatmap of the sample-to-sample distances
	2.2.3 Principal component plot of the samples

	3 Variations to the standard workflow
	3.1 Wald test individual steps
	3.2 Contrasts
	3.3 Interactions
	3.4 Time-series experiments
	3.5 Dealing with count outliers
	3.6 Likelihood ratio test
	3.7 Dispersion plot and fitting alternatives
	3.7.1 Local dispersion fit
	3.7.2 Mean dispersion
	3.7.3 Supply a custom dispersion fit

	3.8 Independent filtering of results
	3.9 Tests of log2 fold change above or below a threshold
	3.10 Access to all calculated values
	3.11 Sample-/gene-dependent normalization factors

	4 Theory behind DESeq2
	4.1 The DESeq2 model
	4.2 Changes compared to the DESeq package
	4.3 Count outlier detection
	4.4 Contrasts
	4.5 Expanded model matrices
	4.6 Independent filtering and multiple testing
	4.6.1 Filtering criteria
	4.6.2 Why does it work?
	4.6.3 Diagnostic plots for multiple testing

	5 Frequently asked questions
	5.1 How should I email a question?
	5.2 Why are some p values set to NA?
	5.3 How do I use the variance stabilized or rlog transformed data for differential testing?
	5.4 Can I use DESeq2 to analyze paired samples?
	5.5 Can I use DESeq2 to analyze a dataset without replicates?
	5.6 How can I include a continuous covariate in the design formula?
	5.7 What are the exact steps performed by DESeq()?

	6 Session Info

