Differential Gene Expression Analysis of LGRC Data

J Fah Sathirapongsasuti

April 12, 2014

1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of death in the United States. Since the year 2000 the number of females dying from COPD has surpassed the number of males, and there is an increasing body of research suggesting females may be biologically more susceptible to COPD. The goal of the study is to explore which molecular pathways might be associated with sexual dimorphism in COPD. This vignette uses gene expression data from the Lung Genomics Research Consortium to identify 959 genes with sexually-dimorphic differential expression in the presence of COPD ("sexually dimorphic and COPD differential" or "SDCD" genes).

2 Preprocessing

Load the necessary packages and datasets.

```
> library(COPDSexualDimorphism)
> -%+%` <- function(x,y) paste(x,y,sep="")
> p.cutoff = 0.01
> data(lgrc.expr)
> data(lgrc.expr.meta)
> data(lgrc.genes)
```


3 Sexually Dimorphic and COPD Differential Gene Expression Analysis

Sexually Dimorphic and COPD Differential (SDCD) analysis comprises of two stratifications: by sex and by COPD status. These tratified analysese are multivariate linear model performed by limma. In each of the analyses, the function sdcd contrasts the linear models from the two trata and outputs a list of genes with SDCD expression. The results from the two stratification analyses are combined at the end.

3.1 Model 1: expression = COPD + Age + pkyrs

Stratified by sex, then compare the betas.

```
> design.mtx = cbind(ctrl=1,
+ copd=as.integer(grepl("COPD",colnames(expr))),
+ age=expr.meta$age,
+ pkyr=expr.meta$pkyrs)
> good.idx = apply(design.mtx,1,function(x){!any(is.na(x))}) & (expr.meta$gender == "1-Male")
> male.fit = lmFit(log(expr)[,good.idx], design.mtx[good.idx,])
> male.fit = eBayes(male.fit)
> good.idx = apply(design.mtx,1,function(x){!any(is.na(x))}) & (expr.meta$gender == "2-Female")
> female.fit = lmFit(log(expr)[,good.idx], design.mtx[good.idx,])
```

```
> female.fit = eBayes(female.fit)
```

$>$ male.female.copd.beta.diff.genes $=$ sdcd(male.fit, female.fit, "copd", lgrc.genes, fdr.cutoff=0.25, fil
[1] "Number of probes with sexual dimorphic differential expression: 1551"

3.2 Model 2: expression = Gender + Age + pkyrs

Male vs female analysis for COPD cases only.

```
> design.mtx = cbind(ctrl=1,
+ gender=expr.meta$gender,
+ age=expr.meta$age,
+ pkyr=expr.meta$pkyrs)
> good.idx = apply(design.mtx,1,function(x){!any(is.na(x))}) & grepl("COPD",colnames(expr))
> copd.fit = lmFit(log(expr)[,good.idx], design.mtx[good.idx,])
> copd.fit = eBayes(copd.fit)
> good.idx = apply(design.mtx,1,function(x){!any(is.na(x))}) & grepl("CTRL",colnames(expr))
> ctrl.fit = lmFit(log(expr)[,good.idx], design.mtx[good.idx,])
> ctrl.fit = eBayes(ctrl.fit)
> copd.ctrl.gender.beta.diff.genes = sdcd(copd.fit, ctrl.fit, "gender", lgrc.genes, fdr.cutoff=0.25, fil
```

[1] "Number of probes with sexual dimorphic differential expression: 1656"

4 Combine the Results

We use set intersection to combine the results from the two stratification analyses.
> male.female.copd.beta.diff.genes.all = sdcd(male.fit, female.fit, "copd", lgrc.genes, fdr.cutoff=10,
[1] "Number of probes with sexual dimorphic differential expression: 13870"
> copd.ctrl.gender.beta.diff.genes.all = sdcd(copd.fit, ctrl.fit, "gender", lgrc.genes, fdr.cutoff=10,
[1] "Number of probes with sexual dimorphic differential expression: 13870"
> all.beta.diff.genes = cbind(copd.ctrl.gender.beta.diff.genes.all, male.female.copd.beta.diff.genes.al > rename.col = grep("beta.diff", names(all.beta.diff.genes))
> names(all.beta.diff.genes)[rename.col[1:2]] = names(all.beta.diff.genes)[rename.col[1:2]] \%+\% ".copd.c > names(all.beta.diff.genes) [rename.col[3:4]] = names(all.beta.diff.genes)[rename.col[3:4]] \% + \% ".male.
> sdcd.genes = merge(copd.ctrl.gender.beta.diff.genes, male.female.copd.beta.diff.genes, by=setdiff(int
> sdcd.genes = unique(sdcd.genes)
> data(lgrc.sdcd.genes)
> print("There are " \%+\% nrow(sdcd.genes) \% $+\%$ " SDCD genes")
[1] "There are 959 SDCD genes"
Then we can plot the results:

```
> # FIGURE 1B
> my.smart.plot(male.fit$coefficients[,"copd"], female.fit$coefficients[,"copd"], main="Coefficients of
> my.smart.plot(male.fit$coefficients[male.female.copd.beta.diff.genes$ensembl_gene_id,"copd"], female.1
> my.smart.plot(male.fit$coefficients[copd.ctrl.gender.beta.diff.genes$ensembl_gene_id,"copd"], female.1
> my.smart.plot(male.fit$coefficients[sdcd.genes$ensembl_gene_id,"copd"], female.fit$coefficients[sdcd.&
> abline(0,1,lty=2,col="gray")
> abline(h=c(qnorm(0.025),qnorm(0.975)),v=c(qnorm(0.025),qnorm(0.975)), lty=3,col="gray")
> smartlegend("right","bottom",c("stratified by gender","stratified by case-control status","both (SDCD)
```


Coefficients of differential gene expression in males and femal


```
> # FIGURE 1C
> all.beta.diff.genes$copd.ctrl.beta.diff = all.beta.diff.genes$copd.beta - all.beta.diff.genes$ctrl.bet
> this.pch = 20
> my.smart.plot(all.beta.diff.genes$copd.ctrl.beta.diff, -log10(all.beta.diff.genes$copd.ctrl.p), main='
> my.smart.plot(all.beta.diff.genes[sdcd.genes$ensembl_gene_id,"copd.ctrl.beta.diff"], -log10(all.beta.c
> smartlegend("right","top",c("SDCD Genes"),pch=this.pch,col=c("purple"))
> CIpercent = 0.9
> abline(v=quantile(all.beta.diff.genes$beta.diff.copd.ctrl, c((1-CIpercent)/2, (1+CIpercent)/2)), col='
> extreme.betas.idx = abs(sdcd.genes$beta.diff.x) > 0.25 | (abs(sdcd.genes$beta.diff.x) > 0.2 & sdcd.ger
> extreme.betas = cbind(sdcd.genes[extreme.betas.idx, c("hgnc_symbol","beta.diff.x","copd.ctrl.p","male.
+ n.log.p=-log10(sdcd.genes[extreme.betas.idx, c("copd.ctrl.p")]))
> print("Extreme beta_diff points are: ")
```

[1] "Extreme beta_diff points are: "
> print (extreme.betas)
hgnc_symbol beta.diff.x copd.ctrl.p male.female.p.adj copd.ctrl.p.adj

TBX18	0.2625562	$3.576277 \mathrm{e}-04$	0.028464545	0.0280109784
CD207	-0.2537996	$4.160540 \mathrm{e}-05$	0.125745744	0.0098877620
ACVR1C	-0.2435254	$5.584837 \mathrm{e}-06$	0.010899375	0.0028915492
EDN3	-0.3337424	$3.564346 \mathrm{e}-07$	0.006448865	0.0004697484
HMGCS2	-0.2716475	$3.437951 \mathrm{e}-03$	0.102258238	0.0839056712

Volcano plot for COPO-control differential expression


```
> # Figure S2
> all.beta.diff.genes$male.female.beta.diff = all.beta.diff.genes$male.beta - all.beta.diff.genes$female
> this.pch = 20
> my.smart.plot(all.beta.diff.genes$male.female.beta.diff, -log10(all.beta.diff.genes$male.female.p), ma
> my.smart.plot(all.beta.diff.genes[sdcd.genes$ensembl_gene_id,"male.female.beta.diff"], -log10(all.beta
> smartlegend("right","top",c("SDCD Genes"),pch=this.pch,col=c("purple"))
> CIpercent = 0.9
> abline(v=quantile(all.beta.diff.genes$beta.diff.male.female, c((1-CIpercent)/2, (1+CIpercent)/2)), col
```


5 Session Information

```
> sessionInfo()
```

R version 3.1.0 (2014-04-10)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] COPDSexualDimorphism_1.0.0 gtools_3.3.1
[3] gplots_2.13.0
[5] GenomeInfoDb_1.0.0
[7] BiocGenerics_0.10.0
[9] beeswarm_0.1.6
GenomicRanges_1.16.0
IRanges_1.21.45
[11] NCBI2R_1.4.5
limma_3.20.0
RColorBrewer_1.0-5
COPDSexualDimorphism.data_0.99.0
loaded via a namespace (and not attached):
[1] KernSmooth_2.23-12 XVector_0.4.0 bitops_1.0-6 caTools_1.16
[5] gdata_2.13.3 stats4_3.1.0 tools_3.1.0

