Package ‘Rsamtools’

October 8, 2014
Type Package
Title Binary alignment (BAM), variant call (BCF), or tabix file import
Version 1.16.1
Author Martin Morgan, Herv\{ }'e Pag\{ } es, Valerie Obenchain
Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>
Description This package provides an interface to the 'samtools','beftools’, and 'tabix’ utilities (see 'LI-
CENCE) for manipulating SAM (Sequence Alignment / Map), binary variant
call (BCF) and compressed indexed tab-delimited (tabix) files.
URL http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
License Artistic-2.0 | file LICENSE
LazyLoad yes
Depends methods, IRanges (>= 1.21.10), Genomi-
cRanges (>= 1.15.11),XVector (>= 0.3.2), Biostrings (>= 2.31.3), GenomelnfoDb(>=
0.99.17)
Imports utils, BiocGenerics (>= 0.1.3), zlibbioc, bitops
Suggests GenomicAlignments, ShortRead (>= 1.19.10), GenomicFea-
tures, TxDb.Dmelanogaster. UCSC.dm3.ensGene, KEGG.db,TxDb.Hsapiens.UCSC.hg18 knownGene, RNAse-
gqData. HNRNPC.bam.chr14,BSgenome.Hsapiens.UCSC.hg19, pasillaBamSubset, RUnit, Bioc-
Style

LinkingTo IRanges, XVector, Biostrings

biocViews Datalmport, Sequencing

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

2 Rsamtools-package

R topics documented:
Rsamtools-package 2
applyPileups 3
BamFile e 5
Bamlnput 10
BamSampler 15
BamViews 16
BefFile . . . o o e 19
Beflnput L L 22
ComPpression i e e e e e e e 24
deprecated 25
FaFile e 25
Falnput e 28
headerTabix 30
indexTabix e 30
PileupFiles e 32
PileupParam L 34
quickBamFlagSummary L 37
readPileup L 38
RsamtoolsFile e 39
RsamtoolsFileList o e 41
ScanBamParam L 42
ScanBcfParam-class 46
seqnamesTabix 48
TabixFile 49
TabixInput 52
yieldReduce L 53

Index 56

Rsamtools-package 'samtools’ aligned sequence utilities interface
Description

This package provides facilities for parsing samtools BAM (binary) files representing aligned se-
quences.

Details

See packageDescription(Rsamtools) for package details. A useful starting point is the scanBam
manual page.

Note

This package documents the following classes for purely internal reasons, see help pages in other
packages: bzfile, fifo, gzfile, pipe, unz, url.

applyPileups 3

Author(s)

Author: Martin Morgan

Maintainer: Biocore Team c/o BioC user list <bioconductor @stat.math.ethz.ch>

References
The current source code for samtools and beftools is from https://github.com/samtools/samtools.
Additional material is at http://samtools.sourceforge.net/.

Examples

packageDescription(Rsamtools)

applyPileups Create summary pile-up statistics across multiple BAM files.

Description

applyPileups scans one or more BAM files, returning position-specific sequence and quality sum-

maries.
Usage
applyPileups(files, FUN, ..., param)
Arguments
files A PileupFiles instances.
FUN A function of 1 argument, x, to be evaluated for each yield (see yieldSize,

yieldBy, yieldAll). The argument x is a 1ist, with elements describing the
current pile-up. The elements of the list are determined by the argument what,
and include:

seqnames: (Always returned) A named integer() representing the seqnames
corresponding to each position reported in the pile-up. This is a run-length
encoding, where the names of the elements represent the seqnames, and the
values the number of successive positions corresponding to that seqname.

pos: Always returned) A integer() representing the genomic coordinate of
each pile-up position.

seq: An array of dimensions nucleotide x file x position.
The ‘nucleotide’ dimension is length 5, corresponding to ‘A’, ‘C’, ‘G’, ‘T,
and ‘N’ respectively.
Entries in the array represent the number of times the nucleotide occurred
in reads in the file overlapping the position.

qual: Like seq, but summarizing quality; the first dimension is the Phred-
encoded quality score, ranging from ‘!’ (0) to ‘~” (93).

Additional arguments, passed to methods.

param An instance of the object returned by PileupParam.

https://github.com/samtools/samtools
http://samtools.sourceforge.net/

4 applyPileups

Details

Regardless of param values, the algorithm follows samtools by excluding reads flagged as un-
mapped, secondary, duplicate, or failing quality control.

Value

applyPileups returns a 1ist equal in length to the number of times FUN has been called, with each
element containing the result of FUN.

PileupParam returns an object describing the parameters.

Author(s)

Martin Morgan

References

http://samtools.sourceforge.net/

See Also

PileupParam.

Examples

fl <- system.file("extdata”, "ex1.bam", package="Rsamtools",
mustWork=TRUE)

fls <- PileupFiles(c(fl, f1l))

calcInfo <-
function(x)

information at each pile-up position
info <- apply(x[["seq"]11, 2, function(y) {
y <= yLc("A", "C", "G", "T"),,drop=FALSE]
y <-y+ 1L # continuity
cvg <- colSums(y)
p <-y / cvglcol(y)]
h <- -colSums(p * log(p))
ifelse(cvg == 4L, NA, h)
»
list(segnames=x[["seqnames”"]], pos=x[["pos"]1], info=info)
3
which <- GRanges(c("”seql”, "seq2"), IRanges(c(1000, 1000), 2000))
param <- PileupParam(which=which, what="seq")
res <- applyPileups(fls, calcInfo, param=param)
str(res)
head(res[[1]]1[["pos"]]) # positions matching param
head(res[[1]1]1[["info"]]) # inforamtion in each file

http://samtools.sourceforge.net/

BamFile 5

param as part of files

fls1 <- PileupFiles(c(fl, fl), param=param)
resl <- applyPileups(fls1, calcInfo)
identical(res, resl)

yield by position, across ranges

param <- PileupParam(which=which, yieldSize=500L, yieldBy="position",
what="seq")

res <- applyPileups(fls, calcInfo, param=param)

sapply(res, "[[", "segnames")

BamFile Maintain and use BAM files

Description

Use BamFile() to create a reference to a BAM file (and optionally its index). The reference remains
open across calls to methods, avoiding costly index re-loading.
BamFilelList() provides a convenient way of managing a list of BamFile instances.

Usage

Constructors

BamFile(file, index=file, ..., yieldSize=NA_integer_, obeyQname=FALSE,
asMates=FALSE)
BamFilelList(..., yieldSize=NA_integer_, obeyQname=FALSE, asMates=FALSE)

Opening / closing

S3 method for class BamFile

open(con, ...)
S3 method for class BamFile
close(con, ...)

accessors; also path(), index(), yieldSize()

S4 method for signature BamFile
isOpen(con, rw="")
S4 method for signature BamFile

isIncomplete(con)

S4 method for signature BamFile
obeyQname (object, ...)

obeyQname (object, ...) <- value

S4 method for signature BamFile

6 BamFile

asMates(object, ...)
asMates(object, ...) <- value
actions

S4 method for signature BamFile

scanBamHeader(files, ...)
S4 method for signature BamFile
seginfo(x)

S4 method for signature BamFile

filterBam(file, destination, index=file, ...,
filter=FilterRules(), indexDestination=TRUE,
param=ScanBamParam(what=scanBamWhat()))

S4 method for signature BamFile

indexBam(files, ...)

S4 method for signature BamFile

sortBam(file, destination, ..., byQname=FALSE, maxMemory=512)
S4 method for signature BamFilelList

mergeBam(files, destination, ...)

reading

S4 method for signature BamFile
scanBam(file, index=file, ..., param=ScanBamParam(what=scanBamWhat()))

counting

S4 method for signature BamFile

countBam(file, index=file, ..., param=ScanBamParam())

S4 method for signature BamFilelList

countBam(file, index=file, ..., param=ScanBamParam())

S4 method for signature BamFile

quickBamFlagSummary(file, ..., param=ScanBamParam(), main.groups.only=FALSE)
Arguments

Additional arguments.

For BamFilelist, this can either be a single character vector of paths to BAM
files, or several instances of BamFile objects. When a character vector of paths,
a second named argument ‘index’ can be a character() vector of length equal
to the first argument specifying the paths to the index files, or character() to
indicate that no index file is available. See BamFile.

con An instance of BamFile.

x, object, file, files
A character vector of BAM file paths (for BamFile) or a BamFile instance (for
other methods).

index character(1); the BAM index file path (for BamFile); ignored for all other meth-
ods on this page.

BamFile 7

yieldSize Number of records to yield each time the file is read from with scanBam. See
‘Fields’ section for details.

asMates Logical indicating if records should be paired as mates. See ‘Fields’ section for
details.

obeyQname Logical indicating if the BAM file is sorted by gname. In Bioconductor > 2.12
paired-end files do not need to be sorted by gname. Instead use asMates=TRUE
for reading paired-end data. See ‘Fields’ section for details.

value Logical value for setting asMates and obeyQname in a BamFile instance.

filter A FilterRules instance. Functions in the FilterRules instance should expect
a single DataFrame argument representing all information specified by param.
Each function must return a logical vector, usually of length equal to the num-
ber of rows of the DataFrame. Return values are used to include (when TRUE)
corresponding records in the filtered BAM file.

destination character(1) file path to write filtered reads to.

indexDestination

logical(1) indicating whether the destination file should also be indexed.

byQname, maxMemory

param

rw

See sortBam.

An optional ScanBamParam instance to further influence scanning, counting, or
filtering.

Mode of file; ignored.

main.groups.only

See quickBamFlagSummary.

Objects from the Class

Objects are created by calls of the form BamFile().

Fields

The BamFile class inherits fields from the RsamtoolsFile class and has fields:

yieldSize: Number of records to yield each time the file is read from using scanBam or, when
length(bamWhich()) 1= 0, a threshold which yields records in complete ranges
whose sum first exceeds yieldSize. Setting yieldSize on a BamFilelList does not alter
existing yield sizes set on the individual BamFile instances.

asMates: A logical indicating if the records should be returned as mated pairs. When TRUE
scanBam attempts to mate (pair) the records and returns two additional fields groupid and
mate_status. groupid is an integer vector of unique group ids; mate_status is a factor with
level mated for records successfully paired by the algorithm, ambiguous for records that are
possibly mates but cannot be assigned unambiguously, or unmated for reads that did not have

valid mates.
Mate criteria:

» Bit 0x40 and 0x80: Segments are a pair of first/last OR neither segment is marked first/last

» Bit 0x100: Both segments are secondary OR both not secondary

8 BamFile

e Bit 0x10 and 0x20: Segments are on opposite strands

* mpos match: segment] mpos matches segment2 pos AND segment2 mpos matches seg-
mentl pos
e tid match

Flags, tags and ranges may be specified in the ScanBamParam for fine tuning of results.

obeyQname: A logical(0) indicating if the file was sorted by qname. In Bioconductor > 2.12
paired-end files do not need to be sorted by gname. Instead set asMates=TRUE in the BamFile
when using the readGAlignmentsListFromBam function from the GenomicAlignments pack-
age.

Functions and methods

BamFilelist inherits methods from RsamtoolsFilelList and SimplelList.

Opening / closing:

open.BamFile Opens the (local or remote) path and index (if bamIndex is not character(0)),
files. Returns a BamFile instance.

close.BamFile Closes the BamFile con; returning (invisibly) the updated BamFile. The instance
may be re-opened with open.BamFile.

isOpen Tests whether the BamFile con has been opened for reading.

isIncomplete Tests whether the BamFile con is niether closed nor at the end of the file.
Accessors:

path Returns a character(1) vector of BAM path names.

index Returns a character(0) or character(1) vector of BAM index path names.

yieldSize, yieldSize<- Return or set an integer(1) vector indicating yield size.

obeyQname, obeyQname<- Return or set a logical(0) indicating if the file was sorted by qname.

asMates, asMates<- Return or set a logical(0) indicating if the records should be returned as mated
pairs.

Methods:

scanBamHeader Visit the path in path(file), returning the information contained in the file
header; see scanBamHeader.

seqinfo, seqnames, seqlength Visit the path in path(file), returning a Seqinfo, character, or
named integer vector containing information on the anmes and / or lengths of each sequence.
Seqnames are ordered ‘naturally’ as, e.g., ‘chrl’, ‘chr2’, ...

scanBam Visit the path in path(file), returning the result of scanBam applied to the specified
path.

countBam Visit the path(s) in path(file), returning the result of countBam applied to the speci-
fied path.

filterBam Visit the path in path(file), returning the result of filterBam applied to the specified
path.

indexBam Visit the path in path(file), returning the result of indexBam applied to the specified
path.

BamFile 9

sortBam Visit the path in path(file), returning the result of sortBam applied to the specified
path.

mergeBam Merge several BAM files into a single BAM file. See mergeBam for details; additional
arguments supported by mergeBam, character-method are also available for BamFilelList.

show Compactly display the object.

Author(s)

Martin Morgan and Marc Carlson

See Also

e The readGAlignmentsFromBam, readGAlignmentPairsFromBam, and readGAlignmentsListFromBam
functions defined in the GenomicAlignments package.

* summarizeOverlaps and findSpliceOverlaps-methods in the GenomicAlignments package
for methods that work on a BamFile and BamFileList objects.

Examples

#H#
BamFile options.
##

fl <- system.file("extdata”, "ex1.bam", package="Rsamtools")
bf <- BamFile(fl)
bf

When asMates=TRUE scanBam() reads the data in as
pairs. See asMates above for details of the pairing
algorithm.

asMates(bf) <- TRUE

When yieldSize is set, scanBam() will iterate
through the file in chunks.
yieldSize(bf) <- 500

##
Reading Bam files.
##

fl <- system.file("extdata”, "ex1.bam", package="Rsamtools",
mustWork=TRUE)
length(scanBam(f1)[[1]11[[1]]) # all records

bf <- open(BamFile(fl)) # implicit index
bf

identical (scanBam(bf), scanBam(fl))

close(bf)

10 BamlInput

Use yieldSize to iterate through a file in chunks.

bf <- open(BamFile(fl, yieldSize=1000))

while (nrec <- length(scanBam(bf)[[1J1L[11]1))
cat("records:", nrec, "\n")

close(bf)

Repeatedly visit multiple ranges in the BamFile.

rng <- GRanges(c("seql"”, "seq2"), IRanges(1, c(1575, 1584)))

bf <- open(BamFile(fl))

sapply(seg_len(length(rng)), function(i, bamFile, rng) {
param <- ScanBamParam(which=rng[i], what="seq")
bam <- scanBam(bamFile, param=param)[[1]]
alphabetFrequency(bam[["seq"]], baseOnly=TRUE, collapse=TRUE)

}, bf, rng)
close(bf)
BamInput Import, count, index, filter, sort, and merge ‘BAM’ (binary alignment)
files.
Description

Import binary ‘BAM’ files into a list structure, with facilities for selecting what fields and which
records are imported, and other operations to manipulate BAM files.

Usage
scanBam(file, index=file, ..., param=ScanBamParam(what=scanBamWhat()))
countBam(file, index=file, ..., param=ScanBamParam())
scanBamHeader(files, ...)
S4 method for signature character
scanBamHeader(files, ...)
asBam(file, destination, ...)

S4 method for signature character
asBam(file, destination, ...,
overwrite=FALSE, indexDestination=TRUE)

asSam(file, destination, ...)

S4 method for signature character
asSam(file, destination, ..., overwrite=FALSE)
filterBam(file, destination, index=file, ...)

S4 method for signature character
filterBam(file, destination, index=file, ...,

BamlInput

filter=FilterRules(), indexDestination=TRUE,
param=ScanBamParam(what=scanBamWhat()))

sortBam(file, destination, ...)

S4 method for signature character

sortBam(file, destination, ..., byQname=FALSE, maxMemory=512)
indexBam(files, ...)

S4 method for signature character

indexBam(files, ...)

mergeBam(files, destination, ...)

S4 method for signature character

mergeBam(files, destination, ..., region = RangedData(),

overwrite = FALSE, header = character(), byQname = FALSE,
addRG = FALSE, compressLevell = FALSE, indexDestination =

11

FALSE)

Arguments

file The character(1) file name of the ‘BAM’ " SAM’ for asBam) file to be processed.

files The character() file names of the ‘BAM’ file to be processed. For mergeBam,
must satisfy length(files) >= 2.

index The character(1) name of the index file of the ’'BAM’ file being processed; this
is given without the ’.bai’ extension.

destination The character(1) file name of the location where the sorted, filtered, or merged
output file will be created. For asBam asSam, and sortBam this is without the
“.bam” file suffix.

region A RangedData() instance with >= 1 rows, specifying the region of the BAM
files to merged.
Additional arguments, passed to methods.

overwrite A logical(1) indicating whether the destination can be over-written if it already
exists.

filter A FilterRules instance allowing users to filter BAM files based on arbitrary
criteria, as described below.

indexDestination
A logical(1) indicating whether the created destination file should also be in-
dexed.

byQname A logical(1) indicating whether the sorted destination file should be sorted by
Query-name (TRUE) or by mapping position (FALSE).

header A character(1) file path for the header information to be used in the merged
BAM file.

addRG A logical(1) indicating whether the file name should be used as RG (read group)
tag in the merged BAM file.

compressLevell A logical(1) indicating whether the merged BAM file should be compressed to

zip level 1.

12 BamlInput

maxMemory A numerical(1) indicating the maximal amount of memory (in MB) that the
function is allowed to use.

param An instance of ScanBamParam. This influences what fields and which records
are imported.

Details

The scanBam function parses binary BAM files; text SAM files can be parsed using R’s scan func-
tion, especially with arguments what to control the fields that are parsed.

countBam returns a count of records consistent with param.

scanBamHeader visits the header information in a BAM file, returning for each file a list containing
elements targets and text, as described below. The SAM / BAM specification does not require
that the content of the header be consistent with the content of the file, e.g., more targets may be
present that are represented by reads in the file.

asBam converts 'SAM’ files to ’'BAM’ files, equivalent to samtools view -Sb file > destination.
The 'BAM’ file is sorted and an index created on the destination (with extension ’.bai’) when
indexDestination=TRUE.

asSam converts ' BAM’ files to "'SAM’ files, equivalent to samtools view file > destination.

filterBam parses records in file. Records satisfying the bamWhich bamFlag and bamSimpleCigar
criteria of param are accumulated to a default of yieldSize = 1000000 records (change this by
specifying yieldSize when creating a BamFile instance; see BamFile-class). These records are
then parsed to a DataFrame and made available for further filtering by user-supplied FilterRules.
Functions in the FilterRules instance should expect a single DataF rame argument representing all
information specified by param. Each function must return a logical vector equal to the number
of rows of the DataFrame. Return values are used to include (when TRUE) corresponding records
in the filtered BAM file. The BAM file is created at destination. An index file is created on
the destination when indexDestination=TRUE. It is more space- and time-efficient to filter use
bamWHich, bamFlag, and bamSimpleCigar, if appropriate, than to supply FilterRules.

sortBam sorts the BAM file given as its first argument, analogous to the “samtools sort” function.
indexBam creates an index for each BAM file specified, analogous to the ‘samtools index’ function.

mergeBam merges 2 or more sorted BAM files. As with samtools, the RG (read group) dictionary in
the header of the BAM files is not reconstructed.

Details of the ScanBamParam class are provide on its help page; several salient points are reiterated
here. ScanBamParam can contain a field what, specifying the components of the BAM records to
be returned. Valid values of what are available with scanBamWhat. ScanBamParam can contain an
argument which that specifies a subset of reads to return. This requires that the BAM file be indexed,
and that the file be named following samtools convention as <bam_filename>.bai. ScanBamParam
can contain an argument tag to specify which tags will be extracted.

Value

The scanBam, character-method returns a list of lists. The outer list groups results from each
Ranges list of bamWhich(param); the outer list is of length one when bamWhich(param) has
length 0. Each inner list contains elements named after scanBamWhat (); elements omitted from
bamWhat (param) are removed. The content of non-null elements are as follows, taken from the
description in the samtools API documentation:

BamlInput 13

e gname: This is the QNAME field in SAM Spec v1.4. The query name, i.e., identifier, associ-
ated with the read.

* flag: This is the FLAG field in SAM Spec v1.4. A numeric value summarizing details of the
read. See ScanBamParam and the flag argument, and scanBamFlag().

* rname: This is the RNAME field in SAM Spec v1.4. The name of the reference to which the
read is aligned.

* strand: The strand to which the read is aligned.

* pos: This is the POS field in SAM Spec v1.4. The genomic coordinate at the start of the
alignment. Coordinates are ‘left-most’, i.e., at the 3’ end of a read on the ’-’ strand, and 1-
based. The position excludes clipped nucleotides, even though soft-clipped nucleotides are
included in seq.

» gwidth: The width of the query, as calculated from the cigar encoding; normally equal to the
width of the query returned in seq.

* mapq: This is the MAPQ field in SAM Spec v1.4. The MAPping Quality.
* cigar: This is the CIGAR field in SAM Spec v1.4. The CIGAR string.

* mrnm: This is the RNEXT field in SAM Spec v1.4. The reference to which the mate (of a
paired end or mate pair read) aligns.

* mpos: This is the PNEXT field in SAM Spec v1.4. The position to which the mate aligns.
* isize: This is the TLEN field in SAM Spec v1.4. Inferred insert size for paired end alignments.

* seq: This is the SEQ field in SAM Spec v1.4. The query sequence, in the 5’ to 3’ orientation.
If aligned to the minus strand, it is the reverse complement of the original sequence.

e qual: This is the QUAL field in SAM Spec v1.4. Phred-encoded, phred-scaled base quality
score, oriented as seq.

e groupid: This is an integer vector of unique group ids returned when asMates=TRUE in a
BamFile object. groupid values are used to create the partitioning for a GAlignmentsList
object.

* mate_status: Returned (always) when asMates=TRUE in a BamFile object. This is a factor
indicating status (mated, ambiguous, unmated) of each record.

scanBamHeader returns a list, with one element for each file named in files. The list contains two
element. The targets element contains target (reference) sequence lengths. The text element is
itself a list with each element a list corresponding to tags (e.g., ‘@SQ’) found in the header, and the
associated tag values.

asBam, asSam return the file name of the destination file.
sortBam returns the file name of the sorted file.
indexBam returns the file name of the index file created.

filterBam returns the file name of the destination file created.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>. Thomas Unterhiner <thomas.unterthiner @students.jku.at>
(sortBam).

14 BamlInput

References

http://samtools.sourceforge.net/

See Also

ScanBamParam, scanBamWhat, scanBamFlag

Examples
fl <- system.file("extdata”, "ex1.bam"”, package="Rsamtools",
mustWork=TRUE)
##
scanBam
#H

res0 <- scanBam(f1l)[[1]] # always list-of-lists

names(res0)

length(resO[["gname"]1])

lapply(res0, head, 3)

table(width(resO[["seq"1]1)) # query widths

table(resO[["qwidth"]], useNA="always") # query widths derived from cigar
table(resO[["cigar”]], useNA="always")

table(resO[["strand”]], useNA="always")

table(resO[["flag"]], useNA="always")

which <- RangesList(seql1=IRanges(1000, 2000),
seq2=IRanges(c(100, 1000), c(1000, 2000)))

pl <- ScanBamParam(which=which, what=scanBamWhat())

resl <- scanBam(fl, param=p1)

names(res1)

names(res1[[2]1])

p2 <- ScanBamParam(what=c("rname"”, "strand”, "pos”, "qwidth"))
res2 <- scanBam(fl, param=p2)

p3 <- ScanBamParam(flag=scanBamFlag(isMinusStrand=FALSE))
length(scanBam(fl, param=p3)[[1]1])

##
filterBam
##

param <- ScanBamParam(
flag=scanBamFlag(isUnmappedQuery=FALSE),
what="seq")
dest <- filterBam(fl, tempfile(), param=param)
countBam(dest) ## 3271 records
filt <- list(MinWidth = function(x) width(x$seq) > 35)
dest <- filterBam(fl, tempfile(), param=param, filter=FilterRules(filt))
countBam(dest) ## 398 records

http://samtools.sourceforge.net/

BamSampler 15

res3 <- scanBam(dest, param=ScanBamParam(what="seq"))[[1]]
table(width(res3$seq))

##
sortBam
##

sorted <- sortBam(fl, tempfile())

map mcols(gwhich) to output, e.g., of countBam

gwhich <- as(which, "GRanges")[c(2, 1, 3)]
mcols(gwhich)[["OriginalOrder”]] <- 1:3

cnt <- countBam(fl, param=ScanBamParam(which=gwhich))
cntVals <- unlist(split(mcols(gwhich), segnames(gwhich)))
cbind(cnt, as.data.frame(cntVals))

BamSampler Sample from a BAM files

Description

Use BamSampler () to create a reference to a BAM file (and optionally its index). Calls to scanBam
(and many functions that use scanBam) draw a random sample from the BAM file.

Usage

Constructors
BamSampler(file, index = file, ..., yieldSize, obeyQname = FALSE, asMates = FALSE)

S4 method for signature BamSampler

scanBam(file, index=file, ..., param=ScanBamParam(what=scanBamWhat()))
Arguments

file character(1); BAM file path for BamSampler, or BamSampler index for scanBam
and other functions.

index character(1); the BAM index file path (for BamFile); ignored for other methods.

. Additional arguments; see BamFile-class.

yieldSize integer(1); number of records to yield each time the file is read from using
scanBam.

obeyQname logical(1); indicating whether the file is sorted by gname and if so, that gnames
are not split between yields.

asMates logical(1); indicating whether the records should be returned as mated pairs.

param An optional ScanBamParam instance to further influence scanning, counting, or

filtering.

16 BamViews

Objects from the Class

Objects are created by calls of the form BamSampler().

Fields

The BamSampler class inherits fields from the BamFile class.

Functions and methods

BamSampler inherits methods from BamFile and can be used in place of BamFile in many functions.

Author(s)

Martin Morgan

Examples

library(GenomicAlignments) # for readGAlignmentsFromBam()
fl <- system.file("extdata”, "ex1.bam"”, package="Rsamtools")
samp <- BamSampler(fl, yieldSize=1000)

two independent samples
head(readGAlignmentsFromBam(samp))
head(readGAlignmentsFromBam(samp))

BamViews Views into a set of BAM files

Description

Use BamViews() to reference a set of disk-based BAM files to be processed (e.g., queried using
scanBam) as a single ‘experiment’.

Usage

Constructor

BamViews (bamPaths=character(0),
bamIndicies=bamPaths,
bamSamples=DataFrame (row.names=make.unique(basename(bamPaths))),
bamRanges, bamExperiment = list(), ...)

S4 method for signature missing

BamViews (bamPaths=character(0),
bamIndicies=bamPaths,
bamSamples=DataFrame(row.names=make.unique(basename(bamPaths))),
bamRanges, bamExperiment = list(), ..., auto.range=FALSE)

Accessors

bamPaths (x)

BamViews 17

bamSamples(x)
bamSamples(x) <- value
bamRanges (x)
bamRanges(x) <- value
bamExperiment (x)

S4 method for signature BamViews

names (x)

S4 replacement method for signature BamViews
names(x) <- value

S4 method for signature BamViews

dimnames(x)

S4 replacement method for signature BamViews, ANY
dimnames(x) <- value

bamDirname(x, ...) <- value

Subset

S4 method for signature BamViews, ANY,ANY
x[i, j, ..., drop=TRUE]

S4 method for signature BamViews,ANY,missing
x[i, j, ..., drop=TRUE]

S4 method for signature BamViews,missing, ANY
x[i, j, ..., drop=TRUE]

Input

S4 method for signature BamViews

scanBam(file, index = file, ..., param = ScanBamParam(what=scanBamWhat()))
S4 method for signature BamViews

countBam(file, index = file, ..., param = ScanBamParam())

Show
S4 method for signature BamViews
show(object)

Arguments

bamPaths A character() vector of BAM path names.
bamIndicies A character() vector of BAM index file path names, without the ‘.bai’ extension.

bamSamples A DataFrame instance with as many rows as length(bamPaths), containing
sample information associated with each path.

bamRanges A GRanges, RangedData or missing instance with ranges defined on the spaces
of the BAM files. Ranges are not validated against the BAM files.

bamExperiment A list() containing additional information about the experiment.

auto.range If TRUE and all bamPaths exist, populate the ranges with the union of ranges
returned in the target element of scanBamHeader.

Additional arguments.

18 BamViews

X An instance of BamViews.

object An instance of BamViews.

value An object of appropriate type to replace content.

i During subsetting, a logical or numeric index into bamRanges.

j During subsetting, a logical or numeric index into bamSamples and bamPaths.

drop A logical(1), ignored by all BamViews subsetting methods.

file An instance of BamViews.

index A character vector of indices, corresponding to the bamPaths(file).

param An optional ScanBamParam instance to further influence scanning or counting.
Objects from the Class

Objects are created by calls of the form BamViews().

Slots

bamPaths A character() vector of BAM path names.
bamlIndicies A character() vector of BAM index path names.

bamSamples A DataFrame instance with as many rows as length(bamPaths), containing sample
information associated with each path.

bamRanges A GRanges instance with ranges defined on the spaces of the BAM files. Ranges are
not validated against the BAM files.

bamExperiment A list() containing additional information about the experiment.

Functions and methods

See *Usage’ for details on invocation.

Constructor:
BamViews: Returns a BamViews object.
Accessors:

bamPaths Returns a character() vector of BAM path names.
bamlIndicies Returns a character() vector of BAM index path names.

bamSamples Returns a DataFrame instance with as many rows as length(bamPaths), containing
sample information associated with each path.

bamSamples<- Assign a DataFrame instance with as many rows as length(bamPaths), contain-
ing sample information associated with each path.

bamRanges Returns a GRanges instance with ranges defined on the spaces of the BAM files.
Ranges are not validated against the BAM files.

bamRanges<- Assign a GRanges instance with ranges defined on the spaces of the BAM files.
Ranges are not validated against the BAM files.

bamExperiment Returns a list() containing additional information about the experiment.

BcfFile 19

names Return the column names of the BamViews instance; same as names (bamSamples(x)).
names<- Assign the column names of the BamViews instance.
dimnames Return the row and column names of the BamViews instance.

dimnames<- Assign the row and column names of the BamViews instance.
Methods:

"[" Subset the object by bamRanges or bamSamples.

scanBam Visit each path in bamPaths(file), returning the result of scanBam applied to the spec-
ified path. bamRanges(file) takes precedence over bamWhich(param).

countBam Visit each path in bamPaths(file), returning the result of countBam applied to the
specified path. bamRanges(file) takes precedence over bamWhich(param).

show Compactly display the object.

Author(s)

Martin Morgan

Examples

fls <- system.file("extdata”, "ex1.bam"”, package="Rsamtools"”,
mustWork=TRUE)

rngs <- GRanges(segnames = Rle(c("chr1”, "chr2"), c(9, 9)),

ranges = c(IRanges(seq(10000, 90000, 10000), width=500),
IRanges(seq(100000, 900000, 100000), width=5000)),

Count = seqg_len(18L))

v <- BamViews(fls, bamRanges=rngs)

v

v[1:5,]

bamRanges(v[c(1:5, 11:15),1)

bamDirname(v) <- getwd()

v

BcfFile Manipulate BCF files.

Description

Use BcfFile() to create a reference to a BCF (and optionally its index). The reference remains
open across calls to methods, avoiding costly index re-loading.

BcfFileList() provides a convenient way of managing a list of BcfFile instances.

20 BcfFile

Usage

Constructors

BcfFile(file, index = file,
mode=ifelse(grepl("\\.bcf$", file), "rb"”, "r"))

BcfFileList(...)

Opening / closing

S3 method for class BcfFile

open(con, ...)
S3 method for class BcfFile
close(con, ...)

accessors; also path(), index()

S4 method for signature BcfFile
isOpen(con, rw="")
bcfMode (object)

actions

S4 method for signature BcfFile
scanBcfHeader(file, ...)

S4 method for signature BcfFile
scanBcf(file, ..., param=ScanBcfParam())
S4 method for signature BcfFile
indexBcf (file, ...)

Arguments
con, object An instance of BcfFile.
file A character(1) vector of the BCF file path or, (for indexBcf) an instance of
BcfFile point to a BCF file.
index A character(1) vector of the BCF index.
mode A character(1) vector; mode="rb" indicates a binary (BCF) file, mode="r" a text
(VCF) file.
param An optional ScanBcfParam instance to further influence scanning.
Additional arguments. For BcfFilelList, this can either be a single character
vector of paths to BCF files, or several instances of BcfFile objects.
rw Mode of file; ignored.
Objects from the Class

Objects are created by calls of the form BcfFile().

BcfFile 21

Fields

The BcfFile class inherits fields from the RsamtoolsFile class.

Functions and methods

BcfFilelList inherits methods from RsamtoolsFilelList and SimplelList.

Opening / closing:

open.BcfFile Opens the (local or remote) path and index (if bamIndex is not character(0)),
files. Returns a BcfFile instance.

close.BcfFile Closes the BcfFile con; returning (invisibly) the updated BcfFile. The instance
may be re-opened with open.BcfFile.

Accessors:

path Returns a character(1) vector of the BCF path name.
index Returns a character(1) vector of BCF index name.
bcfMode Returns a character(1) vector BCF mode.

Methods:

scanBef Visit the path in path(file), returning the result of scanBcf applied to the specified path.
show Compactly display the object.

Author(s)

Martin Morgan

Examples

fl <- system.file("extdata”, "ex1.bcf", package="Rsamtools",
mustWork=TRUE)

bf <- BcfFile(fl) # implicit index

bf

identical (scanBcf(bf), scanBcf(fl))

rng <- GRanges(c("seql”, "seq2"), IRanges(1, c(1575, 1584)))
param <- ScanBcfParam(which=rng)
bcf <- scanBcf(bf, param=param) ## all ranges

ranges one at a time bf
open(bf)
sapply(seg_len(length(rng)), function(i, bcfFile, rng) {
param <- ScanBcfParam(which=rng)
bcf <- scanBcf(bcfFile, param=param)[[1]]
do extensive work with bcf
isOpen(bf) ## file remains open
}, bf, rng)

22 Bceflnput

BcfInput Operations on ‘BCF’ files.

Description

Import, coerce, or index variant call files in text or binary format.

Usage
scanBcfHeader(file, ...)
S4 method for signature character
scanBcfHeader(file, ...)
scanBcf(file, ...)
S4 method for signature character
scanBcf(file, index = file, ..., param=ScanBcfParam())

asBcf(file, dictionary, destination, ...,
overwrite=FALSE, indexDestination=TRUE)

S4 method for signature character

asBcf(file, dictionary, destination, ...,
overwrite=FALSE, indexDestination=TRUE)

indexBcf (file, ...)
S4 method for signature character
indexBcf(file, ...)

Arguments

file For scanBcf and scanBcfHeader, the character() file name of the ‘BCF’ file to
be processed, or an instance of class BcfFile.

index The character() file name(s) of the ‘BCF’ index to be processed.

dictionary a character vector of the unique “CHROM” names in the VCF file.

destination The character(1) file name of the location where the BCF output file will be
created. For asBcf this is without the “.bcf™ file suffix.

param A instance of ScanBcfParaminfluencing which records are parsed and the ‘INFO’
and ‘GENO’ information returned.
Additional arguments, e.g., for scanBcfHeader, character-method, mode of
BcfFile.

overwrite A logical(1) indicating whether the destination can be over-written if it already
exists.

indexDestination

A logical(1) indicating whether the created destination file should also be in-
dexed.

Bcflnput 23

Details

bcf* functions are restricted to the GENO fields supported by ‘bcftools’ (see documentation at the
url below). The argument param allows portions of the file to be input, but requires that the file
be BCF or bgzip’d and indexed as a TabixFile. For similar functions operating on VCF files see
?scanVcf in the VariantAnnotation package.

Value

scanBcfHeader returns a list, with one element for each file named in file. Each element of the
list is itself a list containing three elements. The reference element is a character() vector with
names of reference sequences. The sample element is a character() vector of names of samples.
The header element is a character() vector of the header lines (preceeded by “##7) present in the
VCEF file.

scanBcf returns a list, with one element per file. Each list has 9 elements, corresponding to the
columns of the VCF specification: CHROM, POS, ID, REF, ALTQUAL, FILTER, INFO, FORMAT, GENO.

The GENO element is itself a list, with elements corresponding to fields supported by ‘bcftools’ (see
documentation at the url below).

asBcf creates a binary BCF file from a text VCF file.

indexBcf creates an index into the BCEF file.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>.

References

http://vcftools.sourceforge.net/specs.html outlines the VCF specification.

http://samtools. sourceforge.net/mpileup.shtml contains information on the portion of the
specification implemented by bcftools.

http://samtools.sourceforge.net/ provides information on samtools.

See Also

BcfFile, TabixFile

Examples

fl <- system.file("extdata”, "ex1.bcf"”, package="Rsamtools”,
mustWork=TRUE)

scanBcfHeader (f1)

bcf <- scanBcf(fl)

value: list-of-lists

str(bcf[1:81)

names (bcf[["GENO"]1])

str(head(bcf[["GENO"IILL"PL"11))

example(BcfFile)

http://vcftools.sourceforge.net/specs.html
http://samtools.sourceforge.net/mpileup.shtml
http://samtools.sourceforge.net/

24 Compression

Compression File compression for tabix (bgzip) and fasta (razip) files.

Description

These functions compress files for use in other parts of Rsamtools: bgzip for tabix files, razip for
random-access fasta files.

Usage
bgzip(file, dest=sprintf("%s.bgz", sub("\\.gz$", "", file)),
overwrite = FALSE)
razip(file, dest=sprintf("%s.rz", sub(”"\\.gz$", "", file)),
overwrite = FALSE)
Arguments
file A character(1) path to an existing uncompressed or gz-compressed file. This file
will be compressed.
dest A character(1) path to a file. This will be the compressed file. If dest exists,
then it is only over-written when overwrite=TRUE.
overwrite A logical(1) indicating whether dest should be over-written, if it already exists.
Value
The full path to dest.
Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

References

http://samtools.sourceforge.net/

See Also

TabixFile, FaFile.

Examples

from <- system.file("extdata”, "ex1.sam”, package="Rsamtools”,
mustWork=TRUE)

to <- tempfile()

zipped <- bgzip(from, to)

http://samtools.sourceforge.net/

deprecated 25

deprecated Deprecated functions

Description

Functions listed on this page are no longer supported.

Details

For yieldTabix, use the yieldSize argument of TabixFiles.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>.

FaFile Manipulate indexed fasta files.

Description

Use FaFile() to create a reference to an indexed fasta file. The reference remains open across calls
to methods, avoiding costly index re-loading.

FaFileList() provides a convenient way of managing a list of FaFile instances.

Usage

Constructors

FaFile(file, ...)
FaFileList(...)

Opening / closing

S3 method for class FaFile

open(con, ...)
S3 method for class FaFile
close(con, ...)

accessors; also path(), index()

S4 method for signature FaFile
isOpen(con, rw="")

actions

26

FaFile

S4 method for signature FaFile
indexFa(file, ...)

S4 method for signature FaFile

scanFalndex(file, ...)

S4 method for signature FaFilelist
scanFalndex(file, ..., as=c("GRangesList"”, "GRanges"))

S4 method for signature FaFile
seqginfo(x)

S4 method for signature FaFile
countFa(file, ...)

S4 method for signature FaFile,GRanges
scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet”, "AAStringSet"))
S4 method for signature FaFile,RangeslList
scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet"”, "AAStringSet"))
S4 method for signature FaFile,RangedData
scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet”, "AAStringSet"))
S4 method for signature FaFile,missing
scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet"”, "AAStringSet"))

S4 method for signature FaFile
getSeq(x, param, ...)

S4 method for signature FaFilelist
getSeq(x, param, ...)

Arguments

con, X An instance of FaFile or (for getSeq) FaFilelList.

file A character(1) vector of the fasta file path (for FaFile), or an instance of class
FaFile or FaFilelList (for scanFalndex, getSeq).

param An optional GRanges, RangesList, or RangedData instance to select reads (and
sub-sequences) for input. See Methods, below.

Additional arguments.

* For FaFilelist, this can either be a single character vector of paths to
BAM files, or several instances of FaFile objects.

» For scanFa,FaFile,missing-method this can include arguemnts to readDNAStringSet

/ readRNAStringSet / readAAStringSet when paramis ‘missing’.
rw Mode of file; ignored.

as A character(1) vector indicating the type of object to return.

FaFile 27

¢ For scanFalndex, default GRangeslList, with index information from each
file is returned as an element of the list.

¢ For scanFa, default DNAStringSet.

GRangesList, index information is collapsed across files into the unique index
elements.

Objects from the Class

Objects are created by calls of the form FaFile().

Fields

The FaFile class inherits fields from the RsamtoolsFile class.

Functions and methods

FaFilelList inherits methods from RsamtoolsFilelList and SimplelList.

Opening / closing:

open.FaFile Opens the (local or remote) path and index files. Returns a FaFile instance.

close.FaFile Closes the FaFile con; returning (invisibly) the updated FaFile. The instance may
be re-opened with open.FaFile.

Accessors:

path Returns a character(1) vector of the fasta path name.
index Returns a character(1) vector of fasta index name (minus the ’.fai’ extension).

Methods:

indexFa Visit the path in path(file) and create an index file (with the extension °.fai’).

scanFalndex Read the sequence names and and widths of recorded in an indexed fasta file, return-
ing the information as a GRanges object.

seqinfo Consult the index file for defined sequences (seqlevels()) and lengths (seqlengths()).
countFa Return the number of records in the fasta file.

scanFa Return the sequences indicated by param as a DNAStringSet instance. segnames (param)
selects the sequences to return; start(param) and end{param} define the (1-based) region
of the sequence to return. Values of end(param) greater than the width of the sequence are
set to the width of the sequence. When param is missing, all records are selected. When
length(param)==0 no records are selected.

getSeq Returns the sequences indicated by param from the indexed fasta file(s) of file.
For the FaFile method, the return type is a DNAStringSet. The getSeq,FaFile and scanFa,FaFile,GRanges
methods differ in that getSeq will reverse complement sequences selected from the minus
strand.
For the FaFilelList method, the param argument must be a GRangesList of the same length
as file, creating a one-to-one mapping between the ith element of file and the ith element
of param; the return type is a SimpleList of DNAStringSet instances, with elements of the
list in the same order as the input elements.

show Compactly display the object.

28

Author(s)

Martin Morgan

Examples

fl <- system.file("extdata”, "ce2dictl.fa", package="Rsamtools",

mustWork=TRUE)
fa <- open(FaFile(fl)) # open
countFa(fa)
(idx <- scanFalndex(fa))
(dna <- scanFa(fa, param=idx[1:2]))
ranges(idx) <- narrow(ranges(idx), -10) # last 10 nucleotides
(dna <- scanFa(fa, param=idx[1:2]))

Falnput

Falnput Operations on indexed ’fasta’ files.

Description

Scan indexed fasta (or compressed fasta) files and their indicies.

Usage

indexFa(file, ...)

S4 method for signature character
indexFa(file, ...)

scanFalndex(file, ...)

S4 method for signature character
scanFalndex(file, ...)

countFa(file, ...)

S4 method for signature character
countFa(file, ...)

scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet"”, "AAStringSet"))
S4 method for signature character,GRanges
scanfFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet"”, "AAStringSet"))
S4 method for signature character,RangeslList
scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet"”, "AAStringSet"))
S4 method for signature character,RangedData

Falnput 29

scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet"”, "AAStringSet"))
S4 method for signature character,missing
scanFa(file, param, ...,

as=c("DNAStringSet"”, "RNAStringSet"”, "AAStringSet"))

Arguments
file A character(1) vector containing the fasta file path.
param An optional GRanges, RangesList, or RangedData instance to select reads (and
sub-sequences) for input.
as A character(1) vector indicating the type of object to return; default DNAStringSet.
Additional arguments, passed to readDNAStringSet / readRNAStringSet /
readAAStringSet when paramis ‘missing’.
Value

indexFa visits the path in file and create an index file at the same location but with extension
‘.fai’).

scanFalndex reads the sequence names and and widths of recorded in an indexed fasta file, return-
ing the information as a GRanges object.

countFa returns the number of records in the fasta file.

scanFa return the sequences indicated by param as a DNAStringSet, RNAStringSet, AAStringSet
instance. seqnames (param) selects the sequences to return; start(param) and end{param} define
the (1-based) region of the sequence to return. Values of end(param) greater than the width of the
sequence are set to the width of the sequence. When param is missing, all records are selected.
When param is GRanges (), no records are selected.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>.

References

http://samtools.sourceforge.net/ provides information on samtools.

Examples
fa <- system.file("extdata”, "ce2dictl.fa", package="Rsamtools",
mustWork=TRUE)
countFa(fa)

(idx <- scanFalndex(fa))

(dna <- scanfFa(fa, idx[1:21))

ranges(idx) <- narrow(ranges(idx), -10) # last 10 nucleotides
(dna <- scanFa(fa, idx[1:21))

http://samtools.sourceforge.net/

30 indexTabix

headerTabix Retrieve sequence names defined in a tabix file.

Description

This function queries a tabix file, returning the names of the ‘sequences’ used as a key when creating
the file.

Usage
headerTabix(file, ...)
S4 method for signature character
headerTabix(file, ...)
Arguments
file A character (1) file path or TabixFile instance pointing to a ‘tabix’ file.
Additional arguments, currently ignored.
Value

A list(4) of the sequence names, column indicies used to sort the file, the number of lines skipped
while indexing, and the comment character used while indexing.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>.

Examples

fl <- system.file("extdata”, "example.gtf.gz", package="Rsamtools",
mustWork=TRUE)
headerTabix(f1)

indexTabix Compress and index tabix-compatible files.

Description

Index (with indexTabix) files that have been sorted into ascending sequence, start and end position
ordering.

indexTabix

Usage

31

indexTabix(file,

Arguments
file

format

seq

start

end

skip

comment

zeroBased

Value

format=c("gff", "bed”, "sam”, "vcf”, "vcf4", "psltbl”),
seq=integer(), start=integer(), end=integer(),
skip=0L, comment="#", zeroBased=FALSE, ...)

A characater(1) path to a sorted, bgzip-compressed file.

The format of the data in the compressed file. A characater(1) matching one of
the types named in the function signature.

If format is missing, then seq indicates the column in which the ‘sequence’
identifier (e.g., chrq) is to be found.

If format is missing, start indicates the column containing the start coordinate
of the feature to be indexed.

If format is missing, end indicates the column containing the ending coordinate
of the feature to be indexed.

The number of lines to be skipped at the beginning of the file.

A single character which, when present as the first character in a line, indicates
that the line is to be omitted. from indexing.

A logical(1) indicating whether coordinats in the file are zero-based.

Additional arguments.

The return value of indexTabix is an updated instance of file reflecting the newly-created index

file.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>.

References

http://samtools.sourceforge.net/tabix.shtml

Examples

from <- system.file("extdata”, "ex1.sam”, package="Rsamtools",

to <~ tempfile()

mustWork=TRUE)

zipped <- bgzip(from, to)
idx <- indexTabix(zipped, "sam")

tab <- TabixFile(zipped, idx)

http://samtools.sourceforge.net/tabix.shtml

32 PileupFiles
PileupFiles Represent BAM files for pileup summaries.
Description
Use PileupFiles() to create a reference to a BAM files (and their indicies), to be used for calcu-
lating pile-up summaries.
Usage
Constructors
PileupFiles(files, ., param=PileupParam())
S4 method for signature character
PileupFiles(files, ., param=PileupParam())
S4 method for signature list
PileupFiles(files, ., param=PileupParam())
opening / closing
S3 method for class PileupFiles
open(con, ...)
S3 method for class PileupFiles
close(con, ...)
accessors; also path()
S4 method for signature PileupFiles
isOpen(con, rw="")
plpFiles(object)
plpParam(object)
actions
S4 method for signature PileupFiles,missing
applyPileups(files, FUN, ., param)
S4 method for signature PileupFiles,PileupParam
applyPileups(files, FUN, ., param)
display
S4 method for signature PileupFiles
show(object)
Arguments

files For PileupFiles, a character() or list of BamFile instances representing
files to be included in the pileup. Using a 1ist of BamFile allows indicies to be
specified when these are in non-standard format. All elements of ... must be

the same type.

PileupFiles 33

For applyPileups,PileupFiles-method, a PileupFiles instance.

Additional arguments, currently ignored.

con, object An instance of PileupFiles.
FUN A function of one argument; see applyPileups.
param An instance of PileupParam, to select which records to include in the pileup,
and which summary information to return.
rw character() indicating mode of file; not used for TabixFile.
Objects from the Class

Objects are created by calls of the form PileupFiles().

Fields
The PileupFiles class is implemented as an S4 reference class. It has the following fields:

files A list of BamFile instances.

param An instance of PileupParam.

Functions and methods
Opening / closing:

open.PileupFiles Opens the (local or remote) path and index of each file in the PileupFiles
instance. Returns a PileupFiles instance.

close.PileupFiles Closes each file in the PileupFiles instance; returning (invisibly) the updated
PileupFiles. The instance may be re-opened with open.PileupFiles.

Accessors:

plpFiles Returns the list of the files in the PileupFiles instance.

plpParam Returns the PileupParam content of the PileupFiles instance.
Methods:

applyPileups Calculate the pileup across all files in files according to criteria in param (or
plpParam(files) if param is missing), invoking FUN on each range or collection of posi-
tions. See applyPileups.

show Compactly display the object.

Author(s)

Martin Morgan

Examples

example (applyPileups)

34

PileupParam

PileupParam

Parameters for creating pileups from BAM files

Description

Use PileupParam() to create a parameter object influencing what fields and which records are used
to calculate pile-ups, and to influence the values returned.

Usage

Constructor

PileupParam(flag = scanBamFlag(),
minBaseQuality = 13L, minMapQuality = OL,
minDepth = OL, maxDepth = 250L,

yieldSize =

1L, yieldBy = c("range"”, "position”), yieldAll = FALSE,

which = GRanges(), what = c("seq"”, "qual"))

Accessors
plpFlag(object)
plpFlag(object)

<- value

plpMaxDepth(object)
plpMaxDepth(object) <- value
plpMinBaseQuality(object)
plpMinBaseQuality(object) <- value
plpMinDepth(object)
plpMinDepth(object) <- value
plpMinMapQuality(object)
plpMinMapQuality(object) <- value

plpWhat (object)
plpWhat (object)

<- value

plpWhich(object)
plpWhich(object) <- value
plpYieldAll(object)
plpYieldAll(object) <- value
plpYieldBy(object)
plpYieldBy(object) <- value
plpYieldSize(object)
plpYieldSize(object) <- value

S4 method for signature PileupParam

show(object)

Arguments

flag

An instance of the object returned by scanBamFlag, restricting various aspects
of reads to be included or excluded.

PileupParam

35

minBaseQuality The minimum read base quality below which the base is ignored when summa-

rizing pileup information.

minMapQuality The minimum mapping quality below which the entire read is ignored.

minDepth The minimum depth of the pile-up below which the position is ignored.

maxDepth The maximum depth of reads considered at any position; this can be used to
limit memory consumption.

yieldSize The number of records to include in each call to FUN.

yieldBy How records are to be counted. By range (in which case yieldSize must equal
1) means that FUN is invoked once for each range in which. By position means
that FUN is invoked whenever pile-ups have been accumulated for yieldSize
positions, regardless of ranges in which.

yieldAll Whether to report all positions (yieldAl11=TRUE), or just those passing the fil-
tering criteria of flag, minBaseQuality, etc. When yieldAl11=TRUE, positions
not passing filter criteria have ‘0’ entries in seq or qual.

which A GRanges or RangesList instance restricting pileup calculations to the corre-
sponding genomic locations.

what A character() instance indicating what values are to be returned. One or more
of c("seq”, "qual").

object An instace of class PileupParam.

value An instance to be assigned to the corresponding slot of the PileupParam in-
stance.

Objects from the Class

Objects are created by calls of the form PileupParam().

Slots

Slot interpretation is as described in the ‘Arguments’ section.

flag Object of class integer encoding flags to be kept when they have their 0’ (keep0) or I’
(keep1) bit set.

minBaseQuality An integer(1).

minMapQuality An integer(1).

minDepth An integer(1).

maxDepth An integer(1).

yieldSize An integer(1).

yieldBy An character(1).
yieldAll A logical(l).

which A GRanges or RangesList instance.

what A character().

36

PileupParam

Functions and methods

See *Usage’ for details on invocation.

Constructor:
PileupParam: Returns a PileupParam object.

Accessors: get or set corresponding slot values; for setters, value is coerced to the type of the
corresponding slot.

plpFlag, plpFlag<- Returns or sets the named integer vector of flags; see scanBamFlag.

plpMinBaseQuality, plpMinBaseQuality<- Returns or sets an integer(1) vector of miminum
base qualities.

plpMinMapQuality, plpMinMapQuality<- Returns or sets an integer (1) vector of miminum
map qualities.

plpMinDepth, plpMinDepth<- Returns or sets an integer (1) vector of miminum pileup depth.

plpMaxDepth, plpMaxDepth<- Returns or sets an integer (1) vector of the maximum depth to
which pileups are calculated.

plpYieldSize, plpYieldSize<- Returns or sets an integer (1) vector of yield size.

plpYieldBy, plpYieldBy<- Returns or sets an character (1) vector determining how pileups will
be returned.

plpYieldAll, plpYieldAll<- Returns or sets an logical (1) vector indicating whether all positions,
or just those satisfying pileup positions, are to be returned.

plpWhich, plpWhich<- Returns or sets the object influencing which locations pileups are calcu-
lated over.

plpWhat, plpWhat<- Returns or sets the character vector describing what summaries are re-
turned by pileup.

Methods:

show Compactly display the object.

Author(s)

Martin Morgan

See Also

applyPileups.

Examples

example(applyPileups)

quickBamFlagSummary 37

quickBamFlagSummary Group the records of a BAM file based on their flag bits and count the
number of records in each group

Description

quickBamFlagSummary groups the records of a BAM file based on their flag bits and counts the
number of records in each group.

Usage

quickBamFlagSummary(file, ..., param=ScanBamParam(), main.groups.only=FALSE)

S4 method for signature character
quickBamFlagSummary(file, index=file, ..., param=ScanBamParam(),
main.groups.only=FALSE)

S4 method for signature list
quickBamFlagSummary(file, ..., param=ScanBamParam(), main.groups.only=FALSE)

Arguments

file, index For the character method, the path to the BAM file to read, and to the index file
of the BAM file to read, respectively.

For the list() method, file is a named list with elements “qname” and “flag”
with content as from scanBam.

Additional arguments, perhaps used by methods.

param An instance of ScanBamParam. This determines which records are considered in
the counting.

main.groups.only
If TRUE, then the counting is performed for the main groups only.

Value

Nothing is returned. A summary of the counts is printed to the console unless redirected by sink.

Author(s)

H. Pages

References

http://samtools.sourceforge.net/

http://samtools.sourceforge.net/

38 readPileup

See Also

scanBam, ScanBamParam.

BamFile for a method for that class.

Examples

bamfile <- system.file("extdata”, "ex1.bam”, package="Rsamtools",
mustWork=TRUE)
quickBamFlagSummary(bamfile)

readPileup Import samtools pileup’ files.

Description

Import files created by evaluation of samtools’ pileup -cv command.

Usage
readPileup(file, ...)
S4 method for signature connection
readPileup(file, ..., variant=c("SNP", "indel”, "all"))
Arguments
file The file name, or connection, of the pileup output file to be parsed.
Additional arguments, passed to methods. For instance, specify variant for the
readPileup,character-method.
variant Type of variant to parse; select one.
Value

readPileup returns a GRanges object.

The value returned by variant="SNP" or variant="all" contains:

space: The chromosome names (fastq ids) of the reference sequence
position: The nucleotide position (base 1) of the variant.

referenceBase: The nucleotide in the reference sequence.

consensusBase; The consensus nucleotide, as determined by samtools pileup.
consensusQuality: The phred-scaled consensus quality.

snpQuality: The phred-scaled SNP quality (probability of the consensus being identical to the
reference).

maxMappingQuality: The root mean square mapping quality of reads overlapping the site.

coverage: The number of reads covering the site.

RsamtoolsFile 39

The value returned by variant="indel"” contains space, position, reference, consensus, consen-
susQuality, snpQuality, maxMappingQuality, and coverage fields, and:

alleleOne, alleleTwo The first (typically, in the reference sequence) and second allelic variants.

alleleOneSupport, alleleTwoSupport The number of reads supporting each allele.

additionallndels The number of additional indels present.

Author(s)

Sean Davis

References

http://samtools.sourceforge.net/

Examples

fl <- system.file("extdata”, "pileup.txt"”, package="Rsamtools"”,
mustWork=TRUE)

(res <- readPileup(fl))

xtabs(~referenceBase + consensusBase, mcols(res))[DNA_BASES,]

Not run: ## uses a pipe, and arguments passed to read.table

three successive piles of 100 records each

cmd <- "samtools pileup -cvf human_b36_female.fa.gz na19240_3M.bam"
p <- pipe(cmd, "r")

snp <- readPileup(p, nrow=100) # variant="SNP"

indel <- readPileup(p, nrow=100, variant="indel")

all <- readPileup(p, nrow=100, variant="all")

End(Not run)

RsamtoolsFile A base class for managing file references in Rsamtools

Description

RsamtoolsFile is a base class for managing file references in Rsamtools; it is not intended for
direct use by users — see, e.g., BamFile.

Usage

accessors
index(object)
S4 method for signature RsamtoolsFile

http://samtools.sourceforge.net/

40 RsamtoolsFile

path(object, ...)
S4 method for signature RsamtoolsFile
isOpen(con, rw="")
S4 method for signature RsamtoolsFile

yieldSize(object, ...)
yieldSize(object, ...) <- value
S4 method for signature RsamtoolsFile
show(object)
Arguments
con, object An instance of a class derived from RsamtoolsFile.
rw Mode of file; ignored.
Additional arguments, unused.
value Replacement value.
Objects from the Class

Users do not directly create instances of this class; see, e.g., BamFile-class.

Fields

The RsamtoolsFile class is implemented as an S4 reference class. It has the following fields:

.extptr An externalptr initialized to an internal structure with opened bam file and bam index
pointers.

path A character(1) vector of the file name.
index A character(1) vector of the index file name.

yieldSize An integer(1) vector of the number of records to yield.

Functions and methods
Accessors:

path Returns a character(1) vector of path names.
index Returns a character(1) vector of index path names.

yieldSize, yieldSize<- Return or set an integer(1) vector indicating yield size.
Methods:

isOpen Report whether the file is currently open.

show Compactly display the object.

Author(s)

Martin Morgan

RsamtoolsFileList 41

RsamtoolsFilelist A base class for managing lists of Rsamtools file references

Description

RsamtoolsFilelist is a base class for managing lists of file references in Rsamtools; it is not
intended for direct use — see, e.g., BamFilelList.

Usage

S4 method for signature RsamtoolsFilelList
path(object, ...)

S4 method for signature RsamtoolsFilelist
isOpen(con, rw="")

S3 method for class RsamtoolsFilelList

open(con, ...)
S3 method for class RsamtoolsFilelist
close(con, ...)
S4 method for signature RsamtoolsFilelList
names (x)
S4 method for signature RsamtoolsFilelList
yieldSize(object, ...)

Arguments

con, object, x An instance of a class derived from RsamtoolsFilelist.
rw Mode of file; ignored.

Additional arguments.

Objects from the Class

Users do not directly create instances of this class; see, e.g., BamFileList-class.

Functions and methods

This class inherits functions and methods for subseting, updating, and display from the SimpleList
class.

Methods:

isOpen: Report whether each file in the list is currently open.
open: Attempt to open each file in the list.
close: Attempt to close each file in the list.

names: Names of each element of the list or, if names are NULL, the basename of the path of each
element.

42 ScanBamParam

Author(s)

Martin Morgan

ScanBamParam Parameters for scanning BAM files

Description

Use ScanBamParam() to create a parameter object influencing what fields and which records are
imported from a (binary) BAM file. Use of which requires that a BAM index file (<filename>.bai)
exists.

Usage

Constructor

ScanBamParam(flag = scanBamFlag(), simpleCigar = FALSE,
reverseComplement = FALSE, tag = character(0),
what = character(0), which)

Constructor helpers

scanBamFlag(isPaired = NA, isProperPair = NA, isUnmappedQuery = NA,
hasUnmappedMate = NA, isMinusStrand = NA, isMateMinusStrand = NA,
isFirstMateRead = NA, isSecondMateRead = NA, isNotPrimaryRead = NA,
isNotPassingQualityControls = NA, isDuplicate = NA,
isValidVendorRead = NA)

scanBamWhat ()

Accessors

bamFlag(object, asInteger=FALSE)
bamFlag(object) <- value
bamReverseComplement(object)
bamReverseComplement (object) <- value
bamSimpleCigar(object)
bamSimpleCigar(object) <- value

bamTag(object)
bamTag(object) <- value
bamWhat (object)

bamWhat (object) <- value
bamWhich(object)

bamWhich(object) <- value

S4 method for signature ScanBamParam
show(object)

ScanBamParam

Flag utils

43

bamFlagAsBitMatrix(flag, bitnames=FLAG_BITNAMES)
bamFlagAND(flagl, flag2)
bamFlagTest(flag, value)

Arguments

flag

simpleCigar

For ScanBamParam, an integer(2) vector used to filter reads based on their ’flag’
entry. This is most easily created with the scanBamFlag() helper function.

For bamFlagAsBitMatrix, bamFlagTest an integer vector where each element
represents a “flag’ entry.

A logical(1) vector which, when TRUE, returns only those reads for which the
cigar (run-length encoded representation of the alignment) is missing or contains
only matches / mismatches (M).

reverseComplement

tag

what

which

isPaired

isProperPair

isUnmappedQuery

A logical(1) vectors. BAM files store reads mapping to the minus strand as
though they are on the plus strand. Rsamtools obeys this convention by de-
fault (reverseComplement=FALSE), but when this value is set to TRUE returns
the sequence and quality scores of reads mapped to the minus strand in the re-
verse complement (sequence) and reverse (quality) of the read as stored in the
BAM file. This might be useful if wishing to recover read and quality scores
as represented in fastq files, but is NOT appropriate for variant calling or other
alignment-based operations.

A character vector naming tags to be extracted. A tag is an optional field, with
arbitrary information, stored with each record. Tags are identified by two-letter
codes, so all elements of tag must have exactly 2 characters.

A character vector naming the fields to return scanBamWhat () returns a vector
of available fields. Fields are described on the scanBam help page.

A GRanges, RangesList, RangedData, any object that can be coerced to a
RangesList, or missing object, from which a IRangesList instance will be
constructed. Names of the IRangesList correspond to reference sequences,
and ranges to the regions on that reference sequence for which matches are de-
sired. Because data types are coerced to IRangesList, which does not include
strand information (use the flag argument instead). Only records with a read
overlapping the specified ranges are returned. All ranges must have ends less
than or equal to 536870912.

A logical(1) indicating whether unpaired (FALSE), paired (TRUE), or any (NA)
read should be returned.

A logical(1) indicating whether improperly paired (FALSE), properly paired
(TRUE), or any (NA) read should be returned. A properly paired read is de-
fined by the alignment algorithm and might, e.g., represent reads aligning to
identical reference sequences and with a specified distance.

A logical(1) indicating whether unmapped (TRUE), mapped (FALSE), or any
(NA) read should be returned.

44

ScanBamParam

hasUnmappedMate
Alogical(1) indicating whether reads with mapped (FALSE), unmapped (TRUE),
or any (NA) mate should be returned.
isMinusStrand Alogical(1l) indicating whether reads aligned to the plus (FALSE), minus (TRUE),
or any (NA) strand should be returned.
isMateMinusStrand
A logical(1) indicating whether mate reads aligned to the plus (FALSE), minus
(TRUE), or any (NA) strand should be returned.
isFirstMateRead
A logical(1) indicating whether the first mate read should be returned (TRUE)
or not (FALSE), or whether mate read number should be ignored (NA).
isSecondMateRead
A logical(1) indicating whether the second mate read should be returned (TRUE)
or not (FALSE), or whether mate read number should be ignored (NA).
isNotPrimaryRead
A logical(1) indicating whether alignments that are primary (FALSE), are not
primary (TRUE) or whose primary status does not matter (NA) should be re-
turned. A non-primary alignment (“secondary alignment” in the SAM specifi-
cation) might result when a read aligns to multiple locations. One alignment is
designated as primary and has this flag set to FALSE; the remainder, for which
this flag is TRUE, are designated by the aligner as secondary.
isNotPassingQualityControls
A logical(1) indicating whether reads passing quality controls (FALSE), reads
not passing quality controls (TRUE), or any (NA) read should be returned.
isValidVendorRead
Deprecated; use isNotPassingQualityControls.

isDuplicate A logical(1) indicating that un-duplicated (FALSE), duplicated (TRUE), or any
(NA) reads should be returned. Duplicated’ reads may represent PCR or optical

duplicates.
object An instance of class ScanBamParam.
value An instance of the corresponding slot, to be assigned to object or, for bamFlagTest,

acharacter (1) name of the flag to test, e.g., “isUnmappedQuery”, from the ar-
guments to scanBamFlag.

asInteger logical(1) indicating whether ‘flag’ should be returned as an encoded integer
vector (TRUE) or human-readable form (FALSE).

bitnames Names of the flag bits to extract. Will be the colnames of the returned matrix.

flagl, flag2 Integer vectors containing ‘flag’ entries.

Objects from the Class

Objects are created by calls of the form ScanBamParam().

Slots

flag Object of class integer encoding flags to be kept when they have their 0’ (keep0) or ’1’
(keep1) bit set.

ScanBamParam 45

simpleCigar Object of class logical indicating, when TRUE, that only ’simple’ cigars (empty or
’M’) are returned.

reverseComplement Object of class logical indicating, when TRUE, that reads on the minus
strand are to be reverse complemented (sequence) and reversed (quality).

tag Object of class character indicating what tags are to be returned.
what Object of class character indicating what fields are to be returned.

which Object of class RangesList indicating which reference sequence and coordinate reads must
overlap.

Functions and methods
See *Usage’ for details on invocation.
Constructor:

ScanBamParam: Returns a ScanBamParam object. The which argument to the constructor can be
one of several different types, as documented above.

Accessors:

bamTag, bamTag<- Returns or sets a character vector of tags to be extracted.
bamWhat, bamWhat<- Returns or sets a character vector of fields to be extracted.

bamWhich, bamWhich<- Returns or sets a RangesList of bounds on reads to be extracted. A
length 0 RangesList represents all reads.

bamFlag, bamFlag<- Returns or sets an integer (2) representation of reads flagged to be kept or
excluded.

bamSimpleCigar, bamSimpleCigar<- Returns or sets a logical(1) vector indicating whether
reads without indels or clipping be kept.

bamReverseComplement, bamReverseComplement<- Returns or sets a logical(1) vector in-
dicating whether reads on the minus strand will be returned with sequence reverse comple-
mented and quality reversed.

Methods:

show Compactly display the object.

Author(s)

Martin Morgan

See Also

scanBam

46 ScanBcfParam-class

Examples

defaults
p0 <- ScanBamParam()

subset of reads based on genomic coordinates

which <- RangesList(seql1=IRanges(1000, 2000),
seq2=IRanges(c(100, 1000), c(1000, 2000)))

p1 <- ScanBamParam(which=which)

subset of reads based on flag value
p2 <- ScanBamParam(flag=scanBamFlag(isMinusStrand=FALSE))

subset of fields

p3 <- ScanBamParam(what=c("rname", "strand”, "pos”, "qwidth"))
use
fl <- system.file("extdata”, "ex1.bam", package="Rsamtools",

mustWork=TRUE)
res <- scanBam(fl, param=p2)[[1]1]
lapply(res, head)

tags; NM: edit distance; H1: 1-difference hits
p4 <- ScanBamParam(tag=c("NM", "H1"), what="flag")
bam4 <- scanBam(fl, param=p4)
str(bam4[[1]1]1[["tag"11)

flag utils

flag <- scanBamFlag(isUnmappedQuery=FALSE, isMinusStrand=TRUE)

flag

bamFlagAsBitMatrix(flag)

flag4 <- bam4[[1]][["flag"]]

bamFlagAsBitMatrix(flag4[1:9], bitnames=c("isUnmappedQuery”, "isMinusStrand”))

ScanBcfParam-class Parameters for scanning BCF files

Description

Use ScanBcfParam() to create a parameter object influencing the ‘INFO’ and ‘GENO’ fields
parsed, and which sample records are imported from a BCF file. Use of which requires that a
BCF index file (<filename>.bci) exists.

Usage

ScanBcfParam(fixed=character(), info=character(), geno=character(),
samples=character(), trimEmpty=TRUE, which, ...)

S4 method for signature missing

ScanBcfParam-class

47

ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)

S4 method for signature RangeslList
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)

S4 method for signature RangedData
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)

S4 method for signature GRanges
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)

S4 method for signature GRangesList
ScanBcfParam(fixed=character(), info=character(), geno=character(),

Accessors

samples=character(), trimEmpty=TRUE, which, ...)

bcfFixed(object)
bcfInfo(object)
bcfGeno(object)

bcfSamples(object)
bcfTrimEmpty (object)

bcfWhich(object)

Arguments
fixed A logical(1) for use with ScanVcfParam only.
info A character() vector of ‘INFO’ fields (see scanVcfHeader) to be returned.
geno A character() vector of ‘GENO’ fields (see scanVcfHeader) to be returned. character(0)
returns all fields, NA_character_ returns none.
samples A character() vector of sample names (see scanVcfHeader) to be returned. character(0)
returns all fields, NA_character_ returns none.
trimEmpty A logical(1) indicating whether ‘GENO’ fields with no values should be re-
turned.
which An object, for which a method is defined (see usage, above), describing the
sequences and ranges to be queried. Variants whose POS lies in the interval(s)
[start, end) are returned.
object An instance of class ScanBcfParam.
Arguments used internally.
Objects from the Class

Objects can be created by calls of the form ScanBcfParam().

Slots

which: Object of class "RangesList"” indicating which reference sequence and coordinate variants

must overlap.

48

seqnamesTabix

info: Object of class "character” indicating portions of ‘INFO’ to be returned.

geno: Object of class "character” indicating portions of ‘GENO’ to be returned.

samples: Object of class "character” indicating the samples to be returned.

trimEmpty: Object of class "logical” indicating whether empty ‘GENO’ fields are to be returned.

fixed: Object of class "character”. For use with ScanVcfParam only.

Functions and methods

See *Usage’ for details on invocation.

Constructor:

ScanBcfParam: Returns a ScanBcfParam object. The which argument to the constructor can be
one of several types, as documented above.

Accessors:
bcfInfo, befGeno, befTrimEmpty, befWhich: Return the corresponding field from object.
Methods:

show Compactly display the object.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

scanVcf ScanVcfParam

Examples

see ?ScanVcfParam examples

segnamesTabix Retrieve sequence names defined in a tabix file.

Description

This function queries a tabix file, returning the names of the ‘sequences’ used as a key when creating
the file.

Usage

segnamesTabix(file, ...)
S4 method for signature character
segnamesTabix(file, ...)

mtmorgan@fhcrc.org

TabixFile
Arguments
file A character (1) file path or TabixFile instance pointing to a ‘tabix’ file.
Additional arguments, currently ignored.
Value

A character() vector of sequence names present in the file.

Author(s)

Martin Morgan <mtmorgan@thcrc.org>.

Examples

fl <- system.file("extdata”, "example.gtf.gz", package="Rsamtools",
mustWork=TRUE)
segnamesTabix(f1)

49

TabixFile Manipulate tabix indexed tab-delimited files.

Description

Use TabixFile() to create a reference to a Tabix file (and its index). Once opened, the reference

remains open across calls to methods, avoiding costly index re-loading.

TabixFilelList() provides a convenient way of managing a list of TabixFile instances.

Usage

Constructors

non

TabixFile(file, index = paste(file, "tbi", sep="."), ...,
yieldSize=NA_integer_)

TabixFileList(..., yieldSize=NA_integer_)

Opening / closing

S3 method for class TabixFile

open(con, ...)
S3 method for class TabixFile
close(con, ...)

accessors; also path(), index(), yieldSize()

S4 method for signature TabixFile
isOpen(con, rw="")

50 TabixFile

actions

S4 method for signature TabixFile
segnamesTabix(file, ...)

S4 method for signature TabixFile
headerTabix(file, ...)

S4 method for signature TabixFile,GRanges
scanTabix(file, ..., param)

S4 method for signature TabixFile,RangesList
scanTabix(file, ..., param)

S4 method for signature TabixFile,RangedData
scanTabix(file, ..., param)

S4 method for signature TabixFile,missing
scanTabix(file, ..., param)

S4 method for signature character,ANY
scanTabix(file, ..., param)

S4 method for signature character,missing
scanTabix(file, ..., param)

countTabix(file, ...)

Arguments

con An instance of TabixFile.

file For TabixFile(), A character(1) vector to the tabix file path; can be remote
(http://, ftp://). For countTabix, a character(1) or TabixFile instance. For
others, a TabixFile instance.

index A character(1) vector of the tabix file index.

yieldSize Number of records to yield each time the file is read from using scanTabix.
Only valid when param is unspecified. yieldSize does not alter existing yield
sizes, include NA, when creating a TabixFilelList from TabixFile instances.

param An instance of GRanges, IRangedData, or RangesList, used to select which
records to scan.

Additional arguments. For TabixFilelist, this can either be a single character
vector of paths to tabix files, or several instances of TabixFile objects.

rw character() indicating mode of file; not used for TabixFile.

Objects from the Class

Objects are created by calls of the form TabixFile().

Fields

The TabixFile class inherits fields from the RsamtoolsFile class.

TabixFile 51

Functions and methods

TabixFileList inherits methods from RsamtoolsFilelList and SimplelList.
Opening / closing:
open.TabixFile Opens the (local or remote) path and index. Returns a TabixFile instance.

yieldSize determines the number of records parsed during each call to scanTabix; NA indi-
cates that all records are to be parsed.

close.TabixFile Closes the TabixFile con; returning (invisibly) the updated TabixFile. The in-
stance may be re-opened with open.TabixFile.

Accessors:

path Returns a character(1) vector of the tabix path name.
index Returns a character(1) vector of tabix index name.

yieldSize, yieldSize<- Return or set an integer(1) vector indicating yield size.
Methods:

seqnamesTabix Visit the path in path(file), returning the sequence names present in the file.

headerTabix Visit the path in path(file), returning the sequence names, column indicies used
to sort the file, the number of lines skipped while indexing, the comment character used while
indexing, and the header (preceeded by comment character, at start of file) lines.

countTabix Return the number of records in each range of param, or the count of all records in the
file (when param is missing).

scanTabix For signature(file="TabixFile"), Visit the path in path(file), returning the re-
sult of scanTabix applied to the specified path. For signature(file="character"), call
the corresponding method after coercing file to TabixFile.

indexTabix This method operates on file paths, rather than TabixFile objects, to index tab-
separated files. See indexTabix.

show Compactly display the object.

Author(s)

Martin Morgan

Examples

fl <- system.file("extdata”, "example.gtf.gz", package="Rsamtools"”,
mustWork=TRUE)
tbx <- TabixFile(fl)

param <- GRanges(c("chr1”, "chr2"), IRanges(c(1, 1), width=100000))
countTabix(tbx)

countTabix(tbx, param=param)

res <- scanTabix(tbx, param=param)

sapply(res, length)

res[["chr1:1-100000"1][1:2]

52

TabixInput

parse to list of data.frames
dff <- Map(function(elt) {
read.csv(textConnection(elt), sep="\t", header=FALSE)

}, res)
dff[["chr1:1-100000"11[1:5,1:8]

parse 100 records at a time
length(scanTabix(tbx)[[1]1]) # total number of records
tbx <- open(TabixFile(fl, yieldSize=100))
while(length(res <- scanTabix(tbx)[[1]11))

cat("records read:"”, length(res), "\n")
close(tbx)
TabixInput Operations on ‘tabix’ (indexed, tab-delimited) files.
Description

Scan compressed, sorted, tabix-indexed, tab-delimited files.

Usage

scanTabix(file, ..., param)

S4 method for signature character,RangeslList
scanTabix(file, ..., param)

S4 method for signature character,RangedData
scanTabix(file, ..., param)

S4 method for signature character,GRanges
scanTabix(file, ..., param)

Arguments

file The character() file name(s) of the tabix file be processed, or more flexibly an
instance of class TabixFile.

param A instance of GRanges, RangedData, or RangesList provide the sequence names
and regions to be parsed.

Additional arguments, currently ignored.

Value

scanTabix returns a list, with one element per region. Each element of the list is a character vector
representing records in the region.

yieldReduce 53

Error
scanTabix signals errors using signalCondition. The following errors are signaled:

scanTabix_param yieldSize(file) must be NA when more than one range is specified.
scanTabix_io A read error occured while inputing the tabix file. This might be because the file is
corrupt, or of incorrect format (e.g., when path points to a plain text file but index is present,
implying that path should be a bgziped file.
Author(s)

Martin Morgan <mtmorgan @fhcrc.org>.

References

http://samtools.sourceforge.net/tabix.shtml

Examples
example(TabixFile)
yieldReduce Iterate through a BAM (or other) file, reducing output to a single re-
sult.
Description

Rsamtools files can be created with a ‘yieldSize’ argument that influences the number of records
(chunk size) input at one time (see, e.g,. BamFile). yieldReduce iterates through the file, process-
ing each chunk and reducing it with previously input chunks. This is a memory efficient way to
process large data files, especially when the final result fits in memory.

Usage
yieldReduce(X, MAP, REDUCE, DONE, ..., init, ITERATE = TRUE)
Arguments
X A BamFile instance (or other class for which isOpen, open, close methods are
defined, and which support input of sequential chunks).
MAP A function of one or more arguments, X, ..., returning a VALUE passed to DONE
and REDUCE.
REDUCE A function of one (ITERATE=FALSE or two (ITERATE=TRUE) arguments, return-

ing the reduction (e.g., addition) of the argument(s). If missing, REDUCE is ¢
(when ITERATE=TRUE) or identity when (when ITERATE=FALSE).

DONE A function of one argument, the VALUE of the most recent call to MAP(X, ...).
If missing, DONE is function(VALUE) length(VALUE) == 0.

http://samtools.sourceforge.net/tabix.shtml

54 yieldReduce

Additional arguments, passed to MAP.
init (Optional) Initial value used for REDUCE when ITERATE=TRUE.

ITERATE logical(1) determining whether the call to REDUCE is iterative (ITERATE=TRUE)
or cumulative (ITERATE=FALSE).

Details

When ITERATE=TRUE, REDUCE is initially invoked with either the init value and the value of the
first call to MAP or, if init is missing, the values of the first two calls to MAP.

When ITERATE=FALSE, REDUCE is invoked with a list containing a list with as many elements as
there were calls to MAP. Each element the result of an invocation of MAP.

Value

The return value is the value returned by the final invocation of REDUCE, or init if provided and no
data were yield’ed, or 1list() if init is missing and no data were yield’ed.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

BamFile, TabixFile, RsamtoolsFile.

Examples

fl <- system.file(package="Rsamtools”, "extdata”, "ex1.bam")

nucleotide frequency of mapped reads
bf <- BamFile(fl, yieldSize=500) ## typically, yieldSize=1e6
param <- ScanBamParam(
flag=scanBamFlag(isUnmappedQuery=FALSE),
what="seq")
MAP <- function(X, param) {
value <- scanBam(X, param=param)[[1]]1[["seq"]1]
if (length(value))
alphabetFrequency(value, collapse=TRUE)
else value # will be integer(0)
3
REDUCE <- + # add successive alphabetFrequency matrices
yieldReduce(bf, MAP, REDUCE, param=param)

coverage
if (require(GenomicAlignments)) {
MAP <- function(X)
coverage(readGAlignments (X))
REDUCE <- +
DONE <- function(VALUE)
coverage() on zero GAlignments returns an Rlelist,
each element of which has 0 coverage

mtmorgan@fhcrc.org

yieldReduce

sum(sum(VALUE)) == OL
yieldReduce(bf, MAP, REDUCE, DONE)

55

Index

*Topic classes
BamFile, 5
BamSampler, 15
BamViews, 16
BcfFile, 19
FaFile, 25
PileupFiles, 32
PileupParam, 34
RsamtoolsFile, 39
RsamtoolsFilelist, 41
ScanBamParam, 42
ScanBcfParam-class, 46
TabixFile, 49

+Topic manip
applyPileups, 3
BamInput, 10
BcfInput, 22
Compression, 24
deprecated, 25
FaInput, 28
headerTabix, 30
indexTabix, 30
quickBamFlagSummary, 37
readPileup, 38
segnamesTabix, 48
TabixInput, 52
yieldReduce, 53

+Topic package
Rsamtools-package, 2

[,BamViews,ANY,ANY-method (BamViews), 16

[,BamViews,ANY,missing-method

(BamViews), 16
[,BamViews,missing, ANY-method
(BamViews), 16

AAStringSet, 29

applyPileups, 3, 33, 36

applyPileups,PileupFiles,missing-method
(PileupFiles), 32

56

applyPileups,PileupFiles,PileupParam-method

(PileupFiles), 32
asBam (BamInput), 10
asBam, character-method (BamInput), 10
asBcf (BcfInput), 22
asBcf,character-method (BcfInput), 22
asMates (BamFile), 5
asMates,BamFile-method (BamFile), 5
asMates,BamFilel ist-method (BamFile), 5
asMates<- (BamFile), 5
asMates<-,BamFile-method (BamFile), 5
asMates<-,BamFileList-method (BamFile),
5
asSam (BamInput), 10
asSam, character-method (BamInput), 10

bamDirname<- (BamViews), 16

bamExperiment (BamViews), 16

BamFile, 5,6, 9, 12, 15, 16, 33, 38—40, 53, 54

BamFile-class (BamFile), 5

BamFilelList, 9, 41

BamFilelList (BamFile), 5

BamFilelList-class (BamFile), 5

bamFlag (ScanBamParam), 42

bamFlag<- (ScanBamParam), 42

bamF1agAND (ScanBamParam), 42

bamFlagAsBitMatrix (ScanBamParam), 42

bamFlagTest (ScanBamParam), 42

bamIndicies (BamViews), 16

BamInput, 10

bamPaths (BamViews), 16

bamRanges (BamViews), 16

bamRanges<- (BamViews), 16

bamReverseComplement (ScanBamParam), 42

bamReverseComplement<- (ScanBamParam),
42

BamSampler, 15

BamSampler-class (BamSampler), 15

bamSamples (BamViews), 16

bamSamples<- (BamViews), 16

INDEX

bamSimpleCigar (ScanBamParam), 42

bamSimpleCigar<- (ScanBamParam), 42

bamTag (ScanBamParam), 42

bamTag<- (ScanBamParam), 42

BamViews, 16

BamViews,GRanges-method (BamViews), 16

BamViews,missing-method (BamViews), 16

BamViews,RangedData-method (BamViews),
16

BamViews-class (BamViews), 16

bamWhat (ScanBamParam), 42

bamWhat<- (ScanBamParam), 42

bamWhich (ScanBamParam), 42

bamWhich<- (ScanBamParam), 42

bamWhich<-,ScanBamParam,ANY-method
(ScanBamParam), 42

bamWhich<-,ScanBamParam,GRanges-method
(ScanBamParam), 42

bamWhich<-,ScanBamParam,RangedData-method
(ScanBamParam), 42

bamWhich<-,ScanBamParam,RangesList-method
(ScanBamParam), 42

BcfFile, 19, 22, 23

BcfFile-class (BcfFile), 19

BcfFileList (BcfFile), 19

BcfFilelList-class (BcfFile), 19

bcfFixed (ScanBcfParam-class), 46

bcfGeno (ScanBcfParam-class), 46

bcfInfo (ScanBcfParam-class), 46

BcfInput, 22

bcfMode (BcfFile), 19

bcfSamples (ScanBcfParam-class), 46

bcfTrimEmpty (ScanBcfParam-class), 46

bcfWhich (ScanBcfParam-class), 46

bgzip (Compression), 24

bzfile-class (Rsamtools-package), 2

close.BamFile (BamFile), 5

close.BcfFile (BcfFile), 19

close.FaFile (FaFile), 25

close.PileupFiles (PileupFiles), 32

close.RsamtoolsFilelList
(RsamtoolsFilelList), 41

close.TabixFile (TabixFile), 49

Compression, 24

connection, 38

countBam, 8

countBam (BamInput), 10

countBam,BamFile-method (BamFile), 5

57

countBam,BamFileList-method (BamFile), 5
countBam,BamViews-method (BamViews), 16
countBam, character-method (BamInput), 10
countFa (Falnput), 28

countFa, character-method (Falnput), 28
countFa,FaFile-method (FaFile), 25
countTabix (TabixFile), 49

DataFrame, 17, 18

deprecated, 25

dim,BamViews-method (BamViews), 16

dimnames,BamViews-method (BamViews), 16

dimnames<-,BamViews,ANY-method
(BamViews), 16

DNAStringSet, 27, 29

FaFile, 24, 25

FaFile-class (FaFile), 25

FaFilelList (FaFile), 25

FaFileList-class (FaFile), 25

FaInput, 28

fifo-class (Rsamtools-package), 2

filterBam, 8

filterBam (BamInput), 10

filterBam,BamFile-method (BamFile), 5

filterBam,character-method (BamInput),
10

FilterRules, 7, 11

findSpliceOverlaps-methods, 9

FLAG_BITNAMES (ScanBamParam), 42

getSeq,FaFile-method (FaFile), 25
getSeq,FaFileList-method (FaFile), 25
GRanges, 17, 18, 26, 27, 29, 38, 43
gzfile-class (Rsamtools-package), 2

headerTabix, 30

headerTabix, character-method
(headerTabix), 30

headerTabix,TabixFile-method
(TabixFile), 49

index (RsamtoolsFile), 39

indexBam, 8

indexBam (BamInput), 10
indexBam,BamFile-method (BamFile), 5
indexBam, character-method (BamInput), 10
indexBcf (BcfInput), 22
indexBcf,BcfFile-method (BcfFile), 19

58

indexBcf, character-method (BcfInput), 22
indexFa (Falnput), 28
indexFa,character-method (Falnput), 28
indexFa,FaFile-method (FaFile), 25
indexTabix, 30, 51
isIncomplete,BamFile-method (BamFile), 5
isOpen,BamFile-method (BamFile), 5
isOpen,BcfFile-method (BcfFile), 19
isOpen,FaFile-method (FaFile), 25
isOpen,PileupFiles-method
(PileupFiles), 32
isOpen,RsamtoolsFile-method
(RsamtoolsFile), 39
isOpen,RsamtoolsFileList-method
(RsamtoolsFilelList), 41
isOpen,TabixFile-method (TabixFile), 49

mergeBam, 9

mergeBam (BamInput), 10
mergeBam,BamFilelList-method (BamFile), 5
mergeBam, character-method (BamInput), 10

names,BamViews-method (BamViews), 16

names,RsamtoolsFilelList-method
(RsamtoolsFilelList), 41

names<-,BamViews-method (BamViews), 16

obeyQname (BamFile), 5

obeyQname,BamFile-method (BamFile), 5

obeyQname,BamFilelList-method (BamFile),
5

obeyQname<- (BamFile), 5

obeyQname<-,BamFile-method (BamFile), 5

obeyQname<-,BamFilelList-method
(BamFile), 5

open.BamFile (BamFile), 5

open.BcfFile (BcfFile), 19

open.FaFile (FaFile), 25

open.PileupFiles (PileupFiles), 32

open.RsamtoolsFilelList
(RsamtoolsFilelList), 41

open.TabixFile (TabixFile), 49

path (RsamtoolsFile), 39
path,RsamtoolsFile-method
(RsamtoolsFile), 39
path,RsamtoolsFileList-method
(RsamtoolsFilelList), 41
PileupFiles, 3, 32

INDEX

PileupFiles,character-method
(PileupFiles), 32
PileupFiles,list-method (PileupFiles),
32
PileupFiles-class (PileupFiles), 32
PileupParam, 4, 33, 34
PileupParam-class (PileupParam), 34
pipe-class (Rsamtools-package), 2
plpFiles (PileupFiles), 32
plpFlag (PileupParam), 34
plpFlag<- (PileupParam), 34
plpMaxDepth (PileupParam), 34
plpMaxDepth<- (PileupParam), 34
plpMinBaseQuality (PileupParam), 34
plpMinBaseQuality<- (PileupParam), 34
plpMinDepth (PileupParam), 34
plpMinDepth<- (PileupParam), 34
plpMinMapQuality (PileupParam), 34
plpMinMapQuality<- (PileupParam), 34
plpParam (PileupFiles), 32
plpWhat (PileupParam), 34
plpWhat<- (PileupParam), 34
plpWhich (PileupParam), 34
plpWhich<- (PileupParam), 34
plpYieldAll (PileupParam), 34
plpYieldAll<- (PileupParam), 34
plpYieldBy (PileupParam), 34
plpYieldBy<- (PileupParam), 34
plpYieldSize (PileupParam), 34
plpYieldSize<- (PileupParam), 34

quickBamFlagSummary, 7, 37
quickBamFlagSummary,BamFile-method
(BamFile), 5
quickBamFlagSummary, character-method
(quickBamFlagSummary), 37
quickBamFlagSummary,list-method
(quickBamFlagSummary), 37

RangedData, 17, 26, 29, 43

RangeslList, 26, 29, 43

razip (Compression), 24

readGAlignmentPairsFromBam, 9

readGAlignmentsFromBam, 9

readGAlignmentsListFromBam, 9

readPileup, 38

readPileup, character-method
(readPileup), 38

INDEX

readPileup, connection-method
(readPileup), 38
RNAStringSet, 29
Rsamtools (Rsamtools-package), 2
Rsamtools-package, 2
RsamtoolsFile, 7, 21, 27, 39, 50, 54
RsamtoolsFile-class (RsamtoolsFile), 39
RsamtoolsFilelist, 8, 21, 27,41, 51
RsamtoolsFileList-class
(RsamtoolsFilelList), 41

scan, 12

scanBam, 2, 8, 16, 37, 38, 43,45

scanBam (BamInput), 10

scanBam,BamFile-method (BamFile), 5

scanBam,BamSampler-method (BamSampler),
15

scanBam,BamViews-method (BamViews), 16

scanBam, character-method (BamInput), 10

scanBamFlag, 14, 34, 36

scanBamFlag (ScanBamParam), 42

scanBamHeader, 8

scanBamHeader (BamInput), 10

scanBamHeader ,BamFile-method (BamFile),
5

scanBamHeader,character-method
(BamInput), 10

ScanBamParam, 7, 12—15, 18, 37, 38, 42

ScanBamParam, ANY-method (ScanBamParam),
42

ScanBamParam, GRanges-method
(ScanBamParam), 42

ScanBamParam,missing-method
(ScanBamParam), 42

ScanBamParam,RangedData-method
(ScanBamParam), 42

ScanBamParam,RangesList-method
(ScanBamParam), 42

ScanBamParam-class (ScanBamParam), 42

scanBamWhat, 12, 14

scanBamWhat (ScanBamParam), 42

scanBcf, 21

scanBcf (BcfInput), 22

scanBcf,BcfFile-method (BcfFile), 19

scanBcf, character-method (BcfInput), 22

scanBcfHeader (BcfInput), 22

scanBcfHeader ,BcfFile-method (BcfFile),
19

59

scanBcfHeader, character-method
(BcfInput), 22
ScanBcfParam, 20, 22
ScanBcfParam (ScanBcfParam-class), 46
ScanBcfParam, GRanges-method
(ScanBcfParam-class), 46
ScanBcfParam, GRangesList-method
(ScanBcfParam-class), 46
ScanBcfParam,missing-method
(ScanBcfParam-class), 46
ScanBcfParam,RangedData-method
(ScanBcfParam-class), 46
ScanBcfParam,RangesList-method
(ScanBcfParam-class), 46
ScanBcfParam-class, 46
ScanBVcfParam-class
(ScanBcfParam-class), 46
scanFa (Falnput), 28
scanFa, character,GRanges-method
(Falnput), 28
scanFa,character,missing-method
(FaInput), 28
scanFa, character,RangedData-method
(Falnput), 28
scanFa, character,RangesList-method
(Falnput), 28
scanFa,FaFile,GRanges-method (FaFile),
25
scanFa,FaFile,missing-method (FaFile),
25
scanFa,FaFile,RangedData-method
(FaFile), 25
scanFa,FaFile,RangesList-method
(FaFile), 25
scanFalndex (Falnput), 28
scanFalndex,character-method (Falnput),
28
scanFalndex,FaFile-method (FaFile), 25
scanFalndex,FaFileList-method (FaFile),
25
scanTabix, 51
scanTabix (TabixInput), 52
scanTabix,character,ANY-method
(TabixFile), 49
scanTabix,character,GRanges-method
(TabixInput), 52
scanTabix,character,missing-method
(TabixFile), 49

60

scanTabix,character,RangedData-method
(TabixInput), 52

scanTabix,character,RangesList-method
(TabixInput), 52

scanTabix,TabixFile,GRanges-method
(TabixFile), 49

scanTabix,TabixFile,missing-method
(TabixFile), 49

scanTabix,TabixFile,RangedData-method
(TabixFile), 49

scanTabix, TabixFile,RangesList-method
(TabixFile), 49

scanVcf, 48

scanVcfHeader, 47

ScanVcfParam, 48

Seqinfo, 8

seginfo,BamFile-method (BamFile), 5

seqginfo,FaFile-method (FaFile), 25

segnamesTabix, 48

segnamesTabix,character-method
(seqnamesTabix), 48

segnamesTabix,TabixFile-method
(TabixFile), 49

show,BamFile-method (BamFile), 5

show,BamFilelList-method (BamFile), 5

show,BamSampler-method (BamSampler), 15

show,BamViews-method (BamViews), 16

show,PileupFiles-method (PileupFiles),
32

show,PileupParam-method (PileupParam),
34

show,RsamtoolsFile-method
(RsamtoolsFile), 39

show, ScanBamParam-method
(ScanBamParam), 42

show, ScanBVcfParam-method
(ScanBcfParam-class), 46

Simplelist, 8, 21, 27,41, 51

sink, 37

sortBam, 7, 9

sortBam (BamInput), 10

sortBam,BamFile-method (BamFile), 5

sortBam, character-method (BamInput), 10

summarizeOverlaps, 9

TabixFile, 23, 24, 30, 49, 49, 52, 54
TabixFile-class (TabixFile), 49
TabixFilelList (TabixFile), 49
TabixFileList-class (TabixFile), 49

INDEX

TabixInput, 52

unz-class (Rsamtools-package), 2
url-class (Rsamtools-package), 2

yieldReduce, 53
yieldSize (RsamtoolsFile), 39
yieldSize,RsamtoolsFile-method
(RsamtoolsFile), 39
yieldSize,RsamtoolsFilelList-method
(RsamtoolsFilelist), 41
yieldSize<- (RsamtoolsFile), 39
yieldSize<-,RsamtoolsFile-method
(RsamtoolsFile), 39
yieldSize<-,RsamtoolsFilelList-method
(RsamtoolsFilelist), 41
yieldTabix (deprecated), 25
yieldTabix,TabixFile-method
(deprecated), 25

	Rsamtools-package
	applyPileups
	BamFile
	BamInput
	BamSampler
	BamViews
	BcfFile
	BcfInput
	Compression
	deprecated
	FaFile
	FaInput
	headerTabix
	indexTabix
	PileupFiles
	PileupParam
	quickBamFlagSummary
	readPileup
	RsamtoolsFile
	RsamtoolsFileList
	ScanBamParam
	ScanBcfParam-class
	seqnamesTabix
	TabixFile
	TabixInput
	yieldReduce
	Index

