Package 'RRHO'

October 8, 2014

Type Package
Title Inference on agreement between two lists
Version 1.2.0
Date 2013-06-21
Author Jonathan Rosenblatt and Jason Stein
Maintainer Jonathan Rosenblatt <john.ros.work@gmail.com></john.ros.work@gmail.com>
Description The package is aimed at inference on the amount of agreement in two sorted lists using the Rank- Rank Hypergeometric Overlap test.
Collate 'ExpressionAnalysis.R'
License GPL-2
Depends VennDiagram, grid
biocViews Genetics, SequenceMatching, Microarray, Transcription

R topics documented:

Index

RRHO-package	 		 	•			•		•					•	•				2	2
pvalRRHO	 		 	•			•		•					•	•				2	2
RRHO	 	•	 																4	4
																				5

```
RRHO-package
```

Description

The package is aimed at inference on the amount of agreement in two sorted lists using the Rank-Rank Hypergeometric Overlap test.

Details

Package:	RRHO
Type:	Package
Version:	0.3
Date:	2013-06-21
License:	GPL-2

See RRHO to get started.

Author(s)

Jason Stein and Jonathan Rosenblatt Maintainer: Jonathan Rosenblatt <john.ros.work@gmail.com>

See Also

RRHO

pvalRRH0

Compute the significance of the overlap between two lists

Description

Computes the significance of the agreements between lists as returned by RRHO using resampling.

Usage

```
pvalRRHO(RRHO.obj, replications, stepsize=RRHO.obj$stepsize, FUN= max)
```

Arguments

RRHO.obj	The output object of the RRHO function.
replications	The number of samples to be taken from the distribution of the aggregated test statistic.

pvalRRHO

stepsize	Controls the resolution of the test: how many items between any two overlap tests (i.e., netween any two \$i\$s and two \$j\$s.)
FUN	The function aggregating infomation from the whole overlap matrix into one summary statistic. Typically the min pvalue, or max on $-log(pval)$ scale.

Details

The distribution of FUN(-log(pval)) is computed using resampling.

The aggregating function will typically be the max function, corresponding to the maximal -log(pvalue), i.e., the most significant agreement over all sublists.

The distribution is computed by resampling pairs of null sequences, computing the significances of all the overlaps as done in the reference, applying the aggregating function supplied by the user, and returning the permutation based significance.

Value

pval	The FWER corrected significance of observed aggregated pvalue.
FUN.ecdf	The simulated sampling distribution of the aggregated pvalues.
FUN	The matrix aggregation function used. typicall max for minimal p-value.
n.items	Length of lists.
stepsize	See RRHO
replications	The number of simulation replications.
call	The function call.

Note

Might take a long time to run. Depending on the number of replications, the item (gene) count and the stepsize.

Also note that the significance returned is a conservative value (by a constant of 1/replications).

Author(s)

Jonathan Rosenblatt

See Also

RRHO

Examples

```
list.length <- 100
list.names <- paste(Gene,1:list.length, sep=)
gene.list1<- data.frame(list.names, sample(list.length))
gene.list2<- data.frame(list.names, sample(list.length))
RRHO.example <- RRHO(gene.list1, gene.list2)
pval.testing <- pvalRRHO(RRHO.example,50)</pre>
```

RRHO

Description

The function tests for significant overlap between two sorted lists using the method in the reference.

Usage

RRHO(list1, list2, stepsize = defaultftepSize(list1, list2), labels, plots = FALSE, outputdir = NULL, BY

Arguments

list1	data.frame. First colume is the element (possibly gene) identifier, and the second is its value.
list2	data.frame. First colume is the element (possibly gene) identifier, and the second is its value.
stepsize	Controls the resolution of the test: how many items between any two overlap tests.
labels	Character vector with two elements: the labels of the two lists.
plots	Logical. Should output plots be returned?
outputdir	Path name where plots ae returned.
ВҮ	Logical. Should Benjamini-Yekutieli FDR corrected pvalues be computed?

Details

Following the method in the reference, the function computes the number of overlapping elements in the first i and j elements of each list, and return the observed significance of this overlap using a hypergeometric test (see fisher.test). The output is returned as a list of matrices including: the overlap in the first i, j elements and the significance of this overlap. Optional outputs include plots of these matrices in .jpg format.

Value

hypermat	Matrix of $-log(pvals)$ of the test for the first i, j elements of the lists.
hypermat.counts	
	Counts of the number of agreements in the first i, j elements of the lists.
hypermat.by	An optional output of the B-Y corrected p-values of hypermat

Warning

Unlike the reference, we output the pvalues in natural log scale and not in log 10 scale.

Author(s)

Jonathan Rosenblatt and Jason Stein

RRHO

References

Plaisier, Seema B., Richard Taschereau, Justin A. Wong, and Thomas G. Graeber. "Rank-rank Hypergeometric Overlap: Identification of Statistically Significant Overlap Between Gene-expression Signatures." Nucleic Acids Research 38, no. 17(September 1, 2010)

Benjamini, Y., and D. Yekutieli. 2001. "The Control of the False Discovery Rate in Multiple Testing Under Dependency." ANNALS OF STATISTICS 29 (4): 1165-1188.

See Also

pvalRRH0

Examples

```
list.length <- 100</pre>
```

```
list.names <- paste(Gene,1:list.length, sep=)
gene.list1<- data.frame(list.names, sample(100))
gene.list2<- data.frame(list.names, sample(100))
RRHO.example <- RRHO(gene.list1, gene.list2)
image(RRHO.example$hypermat)</pre>
```

Index

*Topic **htest** pvalRRHO, 2 RRHO, 4 RRHO-package, 2

fisher.test, 4

pvalRRH0, 2, 5

RRHO, 2, 3, 4 RRHO-package, 2