Introduction to the ASSIGN Package

Ying Shen and W. Evan Johnson

May 2, 2014
Contents
1 Introduction 1
2 How to use the ASSIGN package 2
2.1 Run ASSIGN in an all-in-one way 2
2.2 Run ASSIGN in a step-by-step way 4
3 Conclusion 6

1 Introduction

This vignette provides an overview of the Bioconductor package ASSIGN for signature-
based profiling of heterogeneous biological pathways. ASSIGN (Adaptive Signature
Selection and InteGratioN) is a computational tool to evaluate the pathway dereg-
ulation/activation status in individual patient samples. ASSIGN employs a flexible
Bayesian factor analysis approach that adapts predetermined pathway signatures derived
either from knowledge-based literatures or from perturbation experiments to the cell-
/tissue-specific pathway signatures. The deregulation/activation level of each context-
specific pathway is quantified to a score, which represents the extent to which a patient
sample encompasses the pathway deregulation/activation signature.

Some distinguishable features of ASSIGN are described as follows: 1). multiple
pathways profiling: ASSIGN profiles pathway signatures simultaneously, accounting for
‘cross-talks’ between interconnected pathway components. 2). Context specificity in

baseline gene expression: Baseline gene expression levels (i.e., the gene expression level
under normal status) may vary widely due to the differences in tissue types, disease
status, or across different measurement platforms. ASSIGN can adaptively estimate
background gene expression levels across a set of samples. 3). Context specific signa-
ture estimation: ASSIGN provides the flexibility to use either the input gene list or the
magnitudes of signature genes as prior information, allowing for the adaptive refinement
of pathway signatures in specific cell or tissue samples. 4). Regularization of signa-
ture strength estimates: ASSIGN regularizes the signature strength coefficients using a
Bayesian ridge regression formulation by shrinking strength of the irrelevant signature
genes toward zero. The parameter regularization constrains the pathway signature to a
small group of genes, thus, making the results more biologically interpretable.

As input, ASSIGN requires a gene expression dataset from the samples to be profiled
(test dataset), and a pathway profiling dataset from perturbation experiments (training
dataset), or predetermined signature gene lists based on public databases (usually 50
— 200 genes). Besides the training and test datasets, ASSIGN requires training data
labels specifying the control and experimental groups each training samples associated
with to generate differentially expressed genes as pathway signatures. The user can
specify adaptive background, adaptive signature and signature strength regularization
options based on the analysis context. ASSIGN outputs a matrix of signature coefficients
(strength of each signature for each sample) and the prior/posterior signature gene lists
and magnitude changes. In addition, ASSIGN also provides the user with an internal
cross-validation on the perturbation data, MCMC posterior convergence diagnostics,
and an evaluation of classification accuracy if clinical labels are available on the profiling
dataset.

2 How to use the ASSIGN package

2.1 Run ASSIGN in an all-in-one way

We created an all-in-one assign.wrapper function to run ASSIGN in a simple and fast
way. For the purpose of fast run and basic results, the user will ONLY need to run this
assign.wrapper function. The assign.wrapper function returns the pathway signature
strength, validation plots, and signature heatmaps as output. The intermediate results
are stored in the output.rda file.

To run assign.wrapper, we first create a temporary directory "tempdir” under the
user’s current directory. The output generated in this vignette will be saved in the
“tempdir”.

Let’s first load the training dataset, test sets and the training and test data labels.

Notice that the test data labels are optional. ASSIGN outputs the validation plots to
evaluate classification accuracy when the test data labels are provided.

vV + + + v Vv v VvV

data(trainingDatal)
data(testDatal)
data(geneList1)

trainingLabell <- list(control = list(bcat=1:10, e2f3=1:10,
myc=1:10, ras=1:10, src=1:10),
bcat = 11:19, e2f3 = 20:28, myc= 29:38,
ras = 39:48, src = 49:55)
testLabell <- rep(c("subtypeA", "subtypeB"),c(53,58))

Here we illustrate how to run assign.wrapper function by three examples. For details

of parameter settings, see next section.

+ + + +VvVvy + + + + VvV VvV

+ + + +VVy

Example 1: training dataset is available;
the gene list of pathway signature is NOT available
assign.wrapper (trainingData=trainingDatal, testData=testDatal,

traininglabel=traininglabell, testLabel=testLabell,
geneList=NULL, n_sigGene=rep(200,5), adaptive_B=TRUE,
adaptive_S=FALSE, mixture_beta=TRUE, outputDir= tempdir,
iter=20, burn_in=10)

Example 2: training dataset is available;
the gene list of pathway signature is available
assign.wrapper (trainingData=trainingDatal, testData=testDatal,

traininglabel=traininglabell, testLabel=NULL,
genelList=geneListl, n_sigGene=NULL, adaptive_B=TRUE,
adaptive_S=FALSE, mixture_beta=TRUE,
outputDir=tempdir, iter=20, burn_in=10)

#Example 3: training dataset is NOT available;
#the gene list of pathway signature is available
assign.wrapper (trainingData=NULL, testData=testDatal,

traininglabel=NULL, testLabel=NULL,
genelist=genelistl, n_sigGene=NULL, adaptive_B=TRUE,
adaptive_S=TRUE, mixture_beta=TRUE,

outputDir= tempdir, iter=20, burn_in=10)

2.2 Run ASSIGN in a step-by-step way

Although assign.wrapper function generates basic results that may be sufficient for
most users, we created a series of functions: assign.preprocess, assign.mcmc, as-
sign.convergence, assign.summary, assign.cv.output, and assign.output that work
together to produce more detailed results for advanced users.

In the following example, we will illustrate how to run these functions in the ASSIGN
package in a step-by-step way.

We first run assign.preprocess function on the input datasets. When the genomic
measures (i.g., gene expression profiles) of training samples are provided, but prede-
termined pathway signature gene lists are not provided, assign.preprocess function
utilizes a Bayesian univariate regression module to select a gene set (usually 50-200 but
can be specified by the user) based on the absolute value of the regression coefficient
(fold change) and the posterior probability of the variable to be selected (statistical sig-
nificance). Since we have no predetermined gene lists to provide, we leave the geneList
option as default NULL. Here we specify 200 signature genes for each of the five path-
ways.

> # training dataset is available;
> # the gene list of pathway signature is NOT available
> processed.data <- assign.preprocess(trainingData=trainingDatal,

+ testData=testDatal,
+ traininglLabel=traininglLabell,
+ geneList=NULL, n_sigGene=rep(200,5))

Alternatively, the users can have both the training data and the curated /predetermined
pathway signatures. Some genes in the curated pathway signatures, although not sig-
nificantly differently expressed, need to be included for the prediction purpose. In this
case we specify trainingData and geneList when BOTH of the training dataset and
predetermined signature gene list are available.

> # training dataset is available;
> # the gene list of pathway signature is available
> processed.data <- assign.preprocess(trainingData=trainingDatal,

+ testData=testDatal,
+ traininglabel=traininglabell,
+ genelist=geneList1)

In some cases, the expression profiles (training dataset) is unavailable. Only the
knowledge-based gene list or gene list from the joint knowledge of some prior profiling

4

experiments is available. In this case we specify geneList and leave the trainingData
and traininglabel as default NULL.

> # training dataset is NOT available;
> # the gene list of pathway signature is available
> processed.data <- assign.preprocess(trainingData=NULL,

+ testData=testDatal,
+ traininglabel=NULL,
+ genelist=geneList1)

The assign.preprocess function returns the processed training and test dataset as
well as the prior parameters for the background vector (B_vector), signature matrix
(S_matrix) and the probability signature matrix (Pi_matrix). These parameters are the
input of the assing.mcmc function.

For the assign.mcmc function, the adaptive_B (adaptive background), adaptive_S
(adaptive signature) and mixture_beta (regularization of signature strength) can be
specified TRUE or FALSE based on the analysis context. When training and test sam-
ples are from the different cell or tissue types, we recommend the adaptive background
option to be TRUE. Notice that when the training dataset is not available, the adaptive
signature option must be set TRUE, meaning that the magnitude of the signature should
be estimated from the test dataset. The default iter (iteration) is 2000. Particularly,
when training datasets are unavailable, it is better to specify the X option in the as-
sign.mcmc using a more informative X (specify up- or down- regulated genes) to initiate
the model, rather than directly using the output from the assign.preprocess function.

> mcmc.chain <- assign.mcmc(Y=processed.data$testData_sub,

+ Bg = processed.data$B_vector,

+ X=processed.data$S_matrix,

+ Delta_prior_p = processed.data$Pi_matrix,
+ iter = 20, adaptive_B=TRUE,

+ adaptive_S=FALSE, mixture_beta=TRUE)

The assign.meme function returns the MCMC chain recording default 2000 iterations
for each parameters. We can make a trace plot to check the convergence of the model
parameters. The burn_in is set default 0, so that the trace plot starts from the first
iteration. The additional iteration can be specified if the MCMC chain is not converged
in 2000 iterations.

> trace.plot <- assign.convergence(test=mcmc.chain, burn_in=0, iter=20,
+ parameter="B", whichGene=1,
+ whichSample=NA, whichPath=NA)

We then apply the assign.summary function to compute the posterior mean of each
parameter. Typically we use the second half of the MCMC chain to compute the pos-
terior mean. We specify the default burn-in period to be the first 1000 iteration and
the default total iteration to be 2000. Those 1000 burn-in iterations are discarded when
we compute the posterior mean. The adaptive_B, adaptive_S and mixture_beta options
should be set the same as those in the assign.mcme function.

> mcmc.pos.mean <- assign.summary(test=mcmc.chain, burn_in=10,
+ iter=20, adaptive_B=TRUE,
+ adaptive_S=FALSE,mixture_beta=TRUE)

The assign.cv.output and assigm.output function outputs the cross-validation re-
sults in the training samples and the prediction results in the test samples, respectively.
The user needs to specify the output directory in the outputDir option.

> assign.output (processed.data=processed.data,

+ mcmc . pos.mean.testData=mcmc. pos.mean,

+ trainingData=trainingDatal, testData=testDatal,
+ traininglLabel=traininglLabell,

+ testLabel=testLabell, genelList=NULL,

+ adaptive_B=TRUE, adaptive_S=FALSE,

+ mixture_beta=TRUE, outputDir=tempdir)

For cross-validation, Y in the assign.mcmc function
should be specified as processed.data$trainingData_sub.
assign.cv.output (processed.data=processed.data,
mcmc . pos.mean.trainingData=mcmc. pos.mean,
trainingData=trainingDatal,
traininglabel=traininglabell, adaptive_B=FALSE,
adaptive_S=FALSE, mixture_beta=TRUE,
outputDir= tempdir)

+ + + + +VVy

3 Conclusion

Please see the ASSIGN documentation for full descriptions of functions and the various
options they support.

	Introduction
	How to use the ASSIGN package
	Run ASSIGN in an all-in-one way
	Run ASSIGN in a step-by-step way

	Conclusion

