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Tasks	and	packages	

•  Dimensionality	reducDon	with	zinbwave.	
– bioconductor.org/packages/zinbwave	

•  Cluster	analysis	with	clusterExperiment.	
– bioconductor.org/packages/clusterExperiment	

•  Lineage	inference	and	trajectory	analysis	with	
slingshot.	
– github.com/kstreet13/slingshot	
	

Workshop	material:	
	github.com/fperraudeau/bioc2017singlecell	
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Adult stem cells maintain and regenerate tissues


Bond, Ming, Song (2015) Cell Stem Cell 




Fletcher et al. (2017)

 Cell Stem Cell 




Useful	links	

•  ZINB-WaVE	preprint:		
– hYps://doi.org/10.1101/125112	

•  Slingshot	preprint:	
– hYps://doi.org/10.1101/128843	

•  Please	submit	bug	reports	and	other	issues	at:	
– github.com/drisso/zinbwave/issues	
– github.com/epurdom/clusterExperiment/issues	
– github.com/kstreet13/slingshot/issues	



Contact	us!	

•  E-mail	
–  fperraudeau@berkeley.edu	
– kstreet@berkeley.edu	
–  risso.davide@gmail.com	

•  TwiYer:		
– @fannyperraudeau	
– @KStreetBerkeley	
– @drisso1893	



RSEC:	Resampling-based	SequenDal	
Ensemble	Clustering	

•  Use	a	clustering	rouDne	that	finds	a	large	number	of	
small,	coherent	clusters:	
–  Subsampling	of	data	to	find	robust	clusters	
–  SequenDal	clustering	à	find	a	group	of	coherent	samples,	
remove	them,	start	over	

•  Perform	this	rouDne	over	many	different	parameters	
•  Find	a	single	consensus	over	the	clusterings	
•  Merge	together	non-differenDal	clusters	
•  Find	biomarkers	via	differenDal	expression	with	
targeted	comparisons		

•  Implemented	with	visualizaDon	tools	in	
clusterExperiment package	



What	mean	by	subsample	clustering?	

•  Pick	an	underlying	clustering	strategy		
(e.g.	kmeans	or	PAM	with	parDcular	choice	of	
K)	

•  Repeat	the	following:	
– Subsample	the	data,	e.g.	70%	of	samples	
– Find	clusters	on	the	subsample	

•  Create	coClustering	matrix	D:	%	of	subsamples	
where	samples	were	in	same	cluster	



Examples	of	matrix	D	

Note,	here	forced	the	samples	in	order	given	by	PAM		
Also	used	kmeans	in	resampling,	rather	than	PAM	

K=3	 K=7	



What	mean	by	subsample	clustering?	

•  Pick	an	underlying	clustering	strategy		
(e.g.	kmeans	or	PAM	with	parDcular	choice	of	K)	

•  Repeat	the	following:	
–  Subsample	the	data,	e.g.	70%	of	samples	
–  Find	clusters	on	the	subsample	

•  Create	coClustering	matrix	D:	%	of	subsamples	where	
samples	were	in	same	cluster	

•  Cluster	matrix	D	for	final	clustering	
–  Could	be	with	original	clustering	strategy,	or	different	one	
–  “Right”	K	may	not	be	the	K	used	in	original	clustering	(e.g.	
kmeans)	

–  We	use	a	more	flexible	approach	of	hierarchical	clustering	and	
picking	clusters	so	have	at	least	1-α	similarity	

–  Change	from	picking	K	to	picking	α,	more	intuiDve	choice	
–  Not	all	samples	get	clustered	



What	mean	by	sequenDal	clustering?	

•  Over	range	of	starDng	parameters,	do	clustering	
•  The	cluster	that	stays	at	least	β	similar,	idenDfy	as	cluster	

and	remove	
•  Repeat	unDl	no	more	such	clusters	found,	or	not	enough	

samples	len	
•  Draws	on	ideas	of	“Dght	clustering”	of	genes	of	Tseng	and	

Wong	(2005)	

Specifically,	
•  We	range	over	K	in	underlying	PAM	in	subsampling	
•  We	find	clusters	based	on	results	of	subsample	clustering	

(so	may	not	be	same	K	as	input	parameter)	



Because	of	subsampling,	changing	K	is	more	a	perturbaDon	

K=4	 K=5	

K=6	 K=7	



Find	consensus	cluster	

•  Create	a	co-Clustering	
matrix	D	of	how	many	
Dmes	co-cluster	together	
and	cluster	D	
– Like	with	subsampling,	only	
now	across	different	
parameters	

– Again,	important	that	
clusters	are	largely	
perturbaDons,	not	radically	
different	clusters	



Bioconductor	workflow	for	single-cell	
RNA-seq	data	analysis:		

dimensionality	reduc<on,	clustering,	
and	pseudo<me	ordering.	

Fanny	Perraudeau,	Davide	Risso,	Kelly	Street	
BioC2017	

July	28th,	2017	



Clustered	data	in	low-
dimensional	space.	
	
We	consider	
dimensionality	reduc<on	
and	clustering	to	be	
separate	problems,	but	
generally	prefer	PCA	and	
RSEC.	
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Step	0:	Input	
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Step	1:	Cluster	MST	

Construct	minimum	
spanning	tree	(MST)	on	
clusters.	
	
The	nodes	are	clusters,	
not	cluster	centers.	
Requires	a	distance	
metric.	
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4 

Step	1:	Cluster	MST	

Construct	minimum	
spanning	tree	(MST)	on	
clusters.	
	
Select	star<ng	cluster	
based	on	marker	genes	or	
parsimony.	
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5 

Step	1:	Cluster	MST	

Specify	known	terminal	
clusters	for	addi<onal	
supervision.	
	
This	results	in	the	
construc<on	of	a	
constrained	MST.	
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Step	1:	Cluster	MST	

Construct	minimum	
spanning	tree	(MST)	on	
clusters.	
	
Select	star<ng	cluster	
based	on	marker	genes	or	
parsimony.	
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Step	1.5:	Principal	Curves	

Highly	stable,	nonlinear	
generaliza<on	of	principal	
components.	Fits	a	curve	
to	the	“middle”	of	the	
data.	
	
Inconsistent,	fails	to	
reflect	underlying	biology	
(ie.	branching).		



●
●

●
● ●

●

●

●
●

●

●
●●

●

● ●
●

●

●

●

●

●
●

●

●●
●

●
● ●●●

●

●

●●

●
●●

●●

●

● ●
●●

●

●

●

●●●
●

●
●

●

●

●● ●

●

●
●

●●
● ●

●

●
●

●●

●

●
●

●

●● ●● ●

●● ●
●

●

●●

●

●

●

●●
● ●

●
●
●●

● ● ●

●

●

●

●

●

●
●
●

●
●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
● ●

●●

8 

Step	2:	Simultaneous	Principal	Curves	

S<ll	highly	stable	and	
nonlinear.	Extends	the	
concept	of	principal	
curves	to	mul<ple,	
branching	curves	with	
common	origin	(smooth	
tree	structures).	
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Step	2:	Simultaneous	Principal	Curves	

S<ll	highly	stable	and	
nonlinear.	Extends	the	
concept	of	principal	
curves	to	mul<ple,	
branching	curves	with	
common	origin	(smooth	
tree	structures).	



10 

Step	2:	Simultaneous	Principal	Curves	

Project	cells	onto	curves	
to	obtain	pseudo<me	
values.	
	
Like	linear	principal	
components,	the	curves	
seek	to	minimize	squared	
projec<on	distance	
(subject	to	some	
constraints).	
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