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Our goal: what is airway transcriptome
response to glucocorticoid hormone?

extract mRNA
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I~ treat with

. L dexamethasone —>
airway epithelial cells

f
D D our human donors
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Glucocorticoid mechanism of action

Glucocorticoid receptor

Nudclear membrane

synthesis

(C) CSLS / University of Tokyo http://csls-text3.c.u-tokyo.ac.jp/
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Compare gene expression
across treatment,
cDNA libraries within cell line

control v Visualize differences
between samples

v’ Test for differences in
gene expression,

onhe gene at a time

treated with v Visualize differences
dexamethasone  across all genes
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cDNA
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Compare gene expression

across treatment,
within cell line
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PC2: 26% variance

PCA plot
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PC1: 42% variance
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2. FPKM/TPM vs counts

FPKM: fragments per kilobase W
per million mapped reads . I B
TPM: transcripts per million N ;

FPKM/TPM oc gene expression
comparable across genes ©

cummeRbund

Counts have extra information:
useful for statistical modeling

/>
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MRNAs to RNA-seq fragments

colors: different genes
K;; = count of fragments

aligned to gene i, sample |

is proportional to:

* expression of RNA

— 1 . Iength of gene
SE reads or PE fragments * sequencing depth
/‘( mRNA transcript * lib. prep. factors (PCR)
—————— * in silico factors (alighment)
C———— *
——————
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sample 1

Sequencing depth

sample 2

7/11/16
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Variance of counts

Consider one gene:
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Variance of counts

Consider one gene: . . . o .
* Binomial sampling distribution
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* With millions of reads &
small proportion for each gene
—> Poisson sampling distribution
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Raw counts vs. normalized counts

Raw count with mean of 100
Poisson sampling, so SD=10

Raw count mean = 1000
Scaled by 1/10
SD="7

Raw count mean =10
Scaled by 10
SD="
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Raw counts vs normalized counts

raw count for gene i, sample j normalization factor oC gene expression

| \

KZ] ™ E(MZ,] — Squz_]) «@== inference "for free"

edgeR, DESeq2
]L&J

can be made to work

Y L /’LZ] — qZ]) = with extra modeling

/ \ e.g. limma-voom

some distribution mean parameter
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Biological replicates

If the proportions of mMRNA stays exactly constant But realistically, biological variation
("technical replicate") we can expect Poisson dist. across sample units is expected

||||||||m||||u
”||”|||H”||H
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Biological replicates

Biological variation for the abundance Negative Binomial =
of a given gene produces "over-dispersion” Poisson with a varying mean
relative to the Poisson dist. Poisson / NB, disp=0

400
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Dispersion parameter

200

Var(Kij) = pij + aip;

150

100

50

Poisson part: Extra variation
sampling fragments due to biological variance

O
for large counts: 4/ (X5 ~ — — CV (coefficient of variation)

disp =0.01 —> CV 10%
disp =0.25 -> CV 50%
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3. Shrinkage estimation

/‘\ distribution of 1000
/ \ darts players' ability:
/’ %, not observed

each throws 3 darts:
sample variance
of the average

l observed distribution:
averages of 3 throws from
each of 1000 players

shrink the averages

towards a center defined

shrunken® estimates by the observed distribution

less error overall
than individual estimates
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Shrinkage estimation

population LN | dashed = unobserved |
distribution ol .

empirical |
distribution

the center defines
the prior mean

l<—I\/ILE

maximum likelihood estimates

shrunken
estimates or

T~ MAP

maximum a posteriori
7/11/16 M. Love: RNA-seq data analysis 18




7/11/16

Shrinkage estimation

2™
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Shrinkage estimators in genomics

Lonnstedt and Speed 2002: microarray

Smyth 2004: limma for microarray

Robinson and Smyth 2007:
edgeR for SAGE and then applied to RNA-seq

Many adaptations: DSS and DESeg?2 are a similar
approach, data-driven strength of shrinkage




Shrinkage of dispersion for RNA-seq

all genes (Pasilla) a subset of genes (Pickrell)
o
= = * MLE
e ] * prior mean
- o
m ~—
IS
c 7] E
o 7
- ®
@ o c
g o @ =
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® gene-est 2
o s fitted
=) ¢ final o
@ Lo S
- | 1 | | o | | |
1e-01 1e+01 1e4+03 1e+05 1 100 10000
mean of normalized counts mean of normalized counts

1. Gene estimate = maximum likelihood estimate (MLE)
2. Fitted dispersion trend = the mean of the prior
3. Final estimate = maximum a posteriori (MAP)
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Shrinkage of fold changes for RNA-seq

unshrunken log: fold changes DESeq2

log fold change
0
|

log fold change
0
|

1e-01 1e+01 1e+03

mean expression

1e+05 1e-01 1e+01 1e+03 1e+05

mean expression

noisy estimates due to low counts shrinkage is not equal. almost no
large FDR from the statistical model, strong moderation for low shrinkage
but we shouldn't trust the estimate itself information genes: low counts

22
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Why shrink fold changes?

A
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MLE log. fold change

Split a dataset into two equal parts, compare LFC
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Why shrink fold changes?

Retinoic Acid

Comparison of log fold changes

across two experiments.

"A new two-step high-throughput -

approach: 5
2
3]
1. gene expression screeningofa  §
large number of conditions -

Spearman: 0.73, p=0

W Al (108,910)
B Both (7,799)
@ Deeponly (7,214)
@ Shallow only (921)

2. deep sequencing of the most | . | | | |
relevant conditions" oo e 0

Shallow loga( fold change )

G. A. Moyerbrailean et al. "A high-throughput RNA-seq approach to profile
transcriptional responses" http://dx.doi.org/10.1101/018416
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log fold change

Two paths in RNA-seq analysis

Count matrix

/

Differential expression

testing, p-values, FDR
\
DESeq()

results () - DESeq2

7
\
g1lmLRT ()

topTags () - edgeR

o

mean expression

aaaaaaaa

\ Transformations and

Exploratory Data Analysis (EDA)

clustering, heatmaps,
sample-sample distances

DESeq2 { vst(), rlog(), plotPCA()

edgeR { cpm(), plotMDS()

st
2
0o 5.0
lue

8
treated : paired-end % group
treated  pairec-end § 25 treated : paired-end
frmated : singler-road © ® treated : single-read
untreated : paired-end ?_ .
) o 0.0- ® untreated : paired-end
untreated : paired-end L
untreated : single-read 8 untreated : single-read
untreated : single-read o -2.5-
bbbbbbb ’
EEFEER G
& 5838 233 @
§f1afszx S — :
2333333 - 7 e
g3 88388 PC1: 52% variance
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10

sample 2

Regularized logarithm, "rlog”

similar idea as fold change shrinkage,
now sample-to-sample fold changes

log2(x + 1) "rlog"

7/11/16

sample 1 sample 1

Poisson noise from low counts, when squared
a big contribution to Euclidean distance between samples
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standard deviation

™

rlog stabilizes variance along the mean

log2(x + 1)
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corrects systematic
dependencies,
doesn't force all
variances equal.

Improving
distances,
clustering,
visualizations
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Also in DESeqg?2: VST

00

« Variance stabilizing transformation:
calculate the dependence of variance .
on the mean (using the dispersion trend) .

T
1e-01 1e+01 1e+03 1e+05

e-04

1

e-08

mean of normalized counts

« Closed-form expression f(x) for stabilizing

« vst() is a faster implementation
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4. Testing steps

count matrix (from featureCounts,
summarizeOverlaps,
htseq, tximport, etc.)

1. size factors (sequencing depth)
2. dispersion (additional variance)
3. Wald test or likelihood ratio test

4. build a results table



Statistical power

« False positive rate (1 - specificity):
under the null (no differences),
how many called positives?

* Precision (1 - false discovery rate):
of the positives (called DE),
how many are true positives?

« Power (sensitivity):
under the alternative to the null,
how many called positive?



Statistical power
Why not use a simple t-test on log normalized counts?
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Factors influencing power

Range of count

— Sequencing depth
— Expression

— Gene length
Sample size
Dispersion

True fold change



power
0.4

Bioc pkg: RNASegPower

n=6, disp=.2, alpha=0.01

“1-©— count =100
—e— count =10
—— count=5

1.0

0.8
|

0.6

0.2

0.0
|

1.5
LFC

varying the count
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/

/o —o— disp = 0.01
o _° —e— disp = 0.1
o o/o —6— disp=0.2
o— —o— disp=0.5
I | | |
0.5 1.0 1.5 2.0 2.5
LFC

varying the dispersion
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log fold change

Power depends on range of counts
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By excluding some tests, e.g. genes with mean normalized count < 5,

we reduce the penalty on adjusted p-values from multiple test correction.
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Power depends on range of counts
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« Filter on a statistic which is:
— independent of the test statistic under the null
— correlated under the alternate hypothesis

Bourgon, Gentleman and Huber, PNAS 2010.
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Independent Hypothesis Weighting

« Wolfgang will teach later this week...



Testing against a threshold

Hwe get too many DEGS"'" using 'lfcThreshold' in results()

log fold change
log fold change
0
1

1e-01 1e+01 1e+03 1e+05 1e-01 1e+01 1e+03 1e+05

mean expression mean expression

null hypothesis: fold change = 1 null hypothesis: fold changeis<2 or>1/2

"For well-powered experiments, however, a statistical test against the conventional null
hypothesis of zero LFC may report genes with statistically significant changes that are so weak
in effect strength that they could be considered irrelevant or distracting.”
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Bioconductor help

* Vignettes:

> browseVignettes("DESeqg2")
> vignette("DESeqg2")

« Type ? then the function name:

> ?results



Bioconductor help

results package:DESeq2 R Documentation
Extract results from a DESeq analysis
Description:

‘results’ extracts a result table from a DESeq analysis giving
base means across samples, log2 fold changes, standard errors,
test statistics, p-values and adjusted p-values; ‘resultsNames’
returns the names of the estimated effects (coefficents) of the
model; ‘removeResults’ returns a ‘DESegDataSet’ object with
results columns removed.

Usage:

results(object, contrast, name, lfcThreshold = 0,
altHypothesis = c("greaterAbs", "lessAbs", "greater", "less"),
listvValues = c(l1, -1), cooksCutoff, independentFiltering = TRUE,
alpha = 0.1, filter, theta, pAdjustMethod = "BH",
format = c("DataFrame", "GRanges", "GRangesList"), test, addMLE = FALSE,
tidy = FALSE, parallel = FALSE, BPPARAM = bpparam())

Arguments:

object: a DESegDataSet, on which one of the following functions has
already been called: ‘DESeq’, ‘nbinomWaldTest’, or
‘nbinomLRT’

contrast: this argument specifies what comparison to extract from the
‘object’ to build a results table. one of either:

e a character vector with exactly three elements: the name
of a factor in the design formula, the name of the
numerator level for the fold change, and the name of the
denominator level for the fold change (simplest case)
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Bioconductor help

Value:

For ‘results’: a ‘DESedgResults’ object, which is a simple subclass
of DataFrame. This object contains the results columns:
‘baseMean’, ‘log2FoldChange’, ‘lfcSE’, ‘stat’, ‘pvalue’ and
‘padj’, and also includes metadata columns of variable
information....

References:
Richard Bourgon, Robert Gentleman, Wolfgang Huber: Independent
filtering increases detection power for high-throughput
experiments. PNAS (2010), <URL:
http://dx.doi.org/10.1073/pnas.0914005107>

See Also:
‘DESeq’

Examples:

## Example 1l: simple two-group comparison

dds <- makeExampleDESegDataSet (m=4)
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Looking up help for objects

> class(dds)

[1] "DESegDataSet"
attr(, "package")
[1] "DESeq2"

> ?DESegDataSet

> help(package="DESeqg2", help type="html")



Bioconductor support site

All questions about Bioconductor software post to:
support.bioconductor.org

ASK QUESTION LATEST NEWS JoBs TAGS USERS

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

Search

Questioi Similar posts * Search »

emove X and Y chromosome genes in RNA-seq data using DESeq2 pipeline
« Using DESeq2 on CEL-Seq data
I'd like to remove the genes on the X and Y chromosomes from my human RNA-seq data before doing

” Hello all, | am working on CEL-Seq data,
differential analysis using DESeq2. I've looked through the RNA-seq Workflow and DESeq2 manuals but didn't 3 which is a protocol that allows working
see this as an option. Any help in performing this step and still using the DESeq2 or RNA-seq Workdlow pipeline with small star.

(Q  Vould be much appreciated. Thanks. + GAGE/Pathview RNA-Seq Data Pathway
) [ - 4. and Gene-set Analysis Workflows
days ago by We just added a new vignette to the gage

anpham - 0 package (2.11.4), "RNA-Seq Data
Pathway and Gene-set Ana.
modified 2 days ago - written 2 days agoby anpham 0+ Update in the gage RNA-seq pathway
analysis joint workflow
Dear gage users: There were some typos
ge 11 of the 7ANA-seq Data
Pathway and Gene-set Analy.
+ questions about gage
First, You may want to read a few similar
questions on GAGE, which explain how
GAGE works: http:/
AETZIETO0E « pre-ranked GSEA within R? + Best
United States DESeq2/limma-voom metric?
Hi Jose, Doing a one-sample t-test of the
IogFCs for a gene set is very similar to
the test prop...
+ Gene filtering for ANA-seq data
1 am writing to inquire about independent
fitering for my large RNA- seq dataset. |
have around,
DESeq2 with GAGE
Hi Aric, You mapped your reads to

+link + edit  moderate +  Follow via email +

edit posts ——>

It's perfectly valid to do this, but you might have to do some legwork. How did you make the count matrix? If
you used summarizeOverlaps, the chromosomes are right at hand [edit: see Martin's comment for
GRangesList]

in

seqnames (rowbata(dds))

- AL
2 days ago by

. Or for the most recent release of Bioconductor (3.1):
votin g
Then just subset the dds:

dds.sub <- dds[ ! segnames(rowRanges(dds)) %in% c("chrX","chrY"), ]

+link + edit  moderate modified 2 days ago + written 2 days ago by Michael Love ¢ 4.2k

(and hence DESeqDataSet) 'knows' that it has ranges as rows, so seqnames (dds) is enough. For

O a GRangesList, | guess the assumption i that that all element ranges have the same chromosome, so
1 dds[ all(!seqnames(dds) %in% c("chrX", "chrY")), 1.Unpackinga bit, seqnames() ona GRangesList
retuns an RleList of seqnames, one element of the list for each element of the GRangesList. %in% retums an RleList of
logical values, again retaining the geometry. And al1() is applied to each element of the lst, returning a logical vector of the

Ensembl genes instead of Entrez Gene.
Therefore, you gene ID lo,

DE analysis with reference transcriptome
Dear Bioconductor users, I'm working on

‘same length as the original GRangesList

comment / reply

+link + edit - moderate

always provide:

anovel organism (no genome, only a
reference transcri
modified 2 days ago - written 2 days ago by Martin Morgan ++ 15k « Testing for no change in RNA-seq data?

Hi all, So, we have several great

biological question
* all code, any errors/warnings
* sessionInfo()
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