
Introduction to Variant Calling

Michael Lawrence

June 24, 2014



Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization



Outline

Introduction

Calling variants vs. reference

Downstream of variant calling

VariantTools package

Visualization



Variant calls

Definition
I A variant call is a conclusion that there is a nucleotide

difference vs. some reference at a given position in an
individual genome or transcriptome,

I Usually accompanied by an estimate of variant frequency and
some measure of confidence.



Use cases

DNA-seq: variants

I Genetic associations with disease
I Mutations in cancer
I Characterizing heterogeneous cell populations

RNA-seq: allele-specific expression

I Allelic imbalance, often differential
I Association with isoform usage (splicing QTLs)
I RNA editing (allele absent from genome)

ChIP-seq: allele-specific binding



Variant calls are more general than genotypes
Genotypes make additional assumptions

I A genotype identifies the set of alleles present at each locus.
I The number of alleles (the ploidy) is decided and fixed.
I Most genotyping algorithms output genotypes directly, under a

blind diploid assumption and special consideration of SNPs
and haplotypes.

Those assumptions are not valid in general

I Non-genomic input (RNA-seq) does not represent a genotype.
I Cancer genome samples are subject to:

I Copy number changes
I Tumor heterogeneity
I Tumor/normal contamination

So there is a mixture of potentially non-diploid genotypes, and
there is no interpretable genotype for the sample
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Sources of technical error

Errors can occur at each stage of data generation:
I Library prep
I Sequencing
I Alignment



Variant information for filtering

Information we know about each variant, and how it is useful:

Information Utility
Base Qualities Low quality indicates sequencing error
Read Positions Bias indicates mapping issues
Genomic Strand Bias indicates mapping issues
Genomic Position PCR dupes; self-chain, homopolymers
Mapping Info Aligner-dependent quality score/flags



Typical QC filters

10.1038/nbt.2514

These filters are heuristics
that aim to reduce the
FDR; however, they will
also generate false
negatives and are best
applied as soft filters
(annotations).

10.1038/nbt.2514


Whole-genome sequencing and problematic regions

I Many genomic regions are inherently difficult to interpret.
I Including homopolymers, simple repeats

I These will complicate the analysis with little compensating
benefit and should usually be excluded.
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VariantTools pipeline
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UCSC self-chain as indicator of mappability

I UCSC publishes the self-chain score as a generic indicator of
intragenomic similarity that is independent of any aligner

I About 6% of the genome fits this definition
I Virtually all (GSNAP) multi-mapping is in self-chains
I Lower unique coverage in self-chains



Aligner matters: coverage and mappability
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Aligning indels is error prone
Resolved by indel realignment



Homopolymers are problematic
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Choosing the homopolymer length cutoff

I We fit two logistic regressions to find the optimal length cutoff
for our filter

I Response, TP: whether the variant call is a true positive
I Length as linear predictor:

I TP ~ I(hp.dtn <= 1) + hp.length
I Indicator for when length exceeds 7:

I TP ~ I(hp.dtn <= 1) + I(hp.length > 7)



Logistic regression results
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Effect of coverage extremes on frequencies
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Coverage extremes and self-chained regions
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Variant density filter performance
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Downstream of variant calling
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Calling mutations through filtering

I We have two sets of variant calls (vs. reference) and need to
decide which are specific to one (i.e., the tumor)

I We have to decide whether the variant frequency is:
I Non-zero in tumor but
I Zero in normal

I Variant frequencies are a function of:
I Copy number changes
I Tumor/normal contamination
I Sub-clonality (tumor heterogeneity)
I Mutations

I Mutations often present at low frequency and may even show
up in the normal data due to contamination



VariantTools mutation calling algorithm

A mutation must pass the following filters:
I The variant was only called in the tumor
I There was sufficient coverage in normal to detect a variant,

assuming the likelihood ratio model and given a power cutoff
I The raw frequency in normal is sufficiently lower than the

frequency in tumor (avoids near-misses in normal)



Functional annotations with VariantAnnotation

The VariantAnnotation package

I Handles import/export of variants from/to VCF
I Defines central data structures for representing variants

I VCF objects represent full complexity of VCF as a derivative of
SummarizedExperiment

I VRanges extends GRanges for special handling of variants
I Annotates variants with:

I Genomic context: locateVariants()
I Coding consequences: predictCoding()
I SIFT/PolyPhen

I Filters VCF files as a stream (filterVcf())

Learn more
Thursday lab on annotating variants
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Overview

I Convenient interface for tallying mismatches and indels
I Several built-in variant filters
I Combines filters into a default calling algorithm
I Other utilities: call wildtype, ID verification
I Integrates:

I VRanges data structure from VariantAnnotation
I Tallying with bam_tally via gmapR
I FilterRules framework from IRanges



Tallying

The underlying bam_tally from Tom Wu’s GSTRUCT accepts a
number of parameters, which we specify as a TallyVariantsParam
object. The genome is required; we also mask out the repeats.

library(VariantTools)
data(repeats, package = "VariantToolsTutorial")
param <- TallyVariantsParam(TP53Genome(), mask = repeats)

Tallies are generated via the tallyVariants function:
tallies <- tallyVariants(bam, param)



VRanges

I The tally results are stored in a VRanges object
I Extension of GRanges to describe variants
I One element/row per position + alt combination
I Adds these fixed columns:

ref ref allele
alt alt allele
totalDepth total read depth
refDepth ref allele read depth
altDepth alt allele read depth
sampleNames sample identifiers
softFilterMatrix FilterMatrix of filter results
hardFilters FilterRules used to subset object



VRanges features

I Rough, lossy, two-way conversion between VCF and VRanges
I Matching/set operations by position and alt (match, %in%)
I Recurrence across samples (tabulate)
I Provenance tracking of applied hard filters
I Convenient summaries of soft filter results (FilterMatrix)
I Lift-over across genome builds (liftOver)
I VRangesList, stackable into a VRanges by sample
I All of the features of GRanges (overlap, etc)



Tally statistics

In addition to the alleles and read depths, tallyVariants provides:

Raw counts Count before quality filter for alt/ref/total
Mean quality Mean base quality for alt/ref
Strand counts Plus/minus counts for alt/ref
Uniq read pos Number of unique read positions for alt/ref
Mean read pos Mean read position (cycle) for alt/ref
Var read pos Variance in read position for alt/ref
MDFNE Median distance from nearest end for alt/ref
Read pos bins Counts in user-defined read pos bins for alt



Filtering framework

VariantTools implements its filters within the FilterRules framework
from IRanges. The default variant calling filters are constructed by
VariantCallingFilters:
calling.filters <- VariantCallingFilters()

Post-filters are filters that attempt to remove anomalies from the
called variants:
post.filters <- VariantPostFilters()



Filter tallies into variant calls

The filters are then passed to the callVariants function:
variants <- callVariants(tallies, calling.filters,

post.filters)

Or more simply in this case:
variants <- callVariants(tallies)



Interoperability via VCF

We can export the variant calls to a VCF file:
writeVcf(variants, "variants.vcf", index = TRUE)
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Visualizing variants with IGV SRAdb

Creating a connection to IGV

library(SRAdb)
startIGV("lm")
sock <- IGVsocket()

Exporting our calls as VCF

vcf <- writeVcf(variants, "variants.vcf", index = TRUE)



Creating an IGV session

Create an IGV session with our VCF, BAMs and custom p53
genome:
rtracklayer::export(genome, "genome.fa")
session <- IGVsession(c(bam.paths, vcf), "session.xml",

"genome.fa")

Load the session:
IGVload(sock, session)



Browsing regions of interest

IGV will (manually) load BED files as a list of bookmarks:
rtracklayer::export(interesting.variants, "bookmarks.bed")



IGV section, from R



VariantExplorer package

I The VariantExplorer package by Julian Gehring is an
unreleased package for visually diagnosing variant calls

I Produces static ggbio plots and interactive web-based plots
based on epivizr

I The epivizr package (Hector Corrada Bravo) is a
browser-based genomic visualization platform that pulls data
directly from a running R session

I Get epivizr:
devtools::install_github("epivizr", "epiviz")
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