
edgeR: differential expression analysis
of digital gene expression data

Mark Robinson
mrobinson@wehi.edu.au

Davis McCarthy
dmccarthy@wehi.edu.au

Yunshun Chen
yuchen@wehi.edu.au

Gordon K. Smyth

14 Oct 2010

1 Introduction

This document gives an introduction and overview of the R Bioconductor package edgeR [Robinson
et al., 2010], which provides statistical routines for determining differential expression in digital
gene expression data. The package implements methods developed by Robinson and Smyth [2007,
2008]. The routines can be applied equally to RNA-seq, Tag-seq, SAGE, CAGE, Illumina/Solexa,
454 or ABI SOLiD experiments. In fact, the methods may be useful in other experiments where
counts are observed.

2 How to get help

Most questions about edgeR will hopefully be answered by the documentation or references. Every
function mentioned in this guide has its own help page. For example, a detailed description
of the arguments and output of the exactTest function can be read by typing ?exactTest or
help(exactTest) at the R prompt.

The authors of the package always appreciate receiving reports of bugs in the package functions
or in the documentation. The same goes for well-considered suggestions for improvements. Other
questions about how to use edgeR are best sent to the Bioconductor mailing list bioconductor@

stat.math.ethz.ch. To subscribe to the mailing list, see https://stat.ethz.ch/mailman/

listinfo/bioconductor. Please send requests for general assistance and advice to the mailing list
rather than to the individual authors. Users posting to the mailing list for the first time may find it
helpful to read the helpful posting guide at http://www.bioconductor.org/doc/postingGuide.
html.

1

3 Reading data

edgeR requires three pieces of information:

1. counts: a matrix of counts where each row represents a gene/exon (or whatever genomic
feature is being tracked) and each column is a different sample. The row names are transcript
IDs.

2. group: a factor (with length equal to the number of columns of counts) denoting the exper-
imental group.

3. lib.size: vector of the same length as group giving the total number of reads sequenced
for each sample.

We assume that the counts are stored in one of two formats. Either there is a single file containing
a table of counts with the first column containing the tag identifiers and the remaining columns
containing the tag counts for each library sequenced, or there is an individual file for each library,
each with first column for tag identifiers and second column for counts.

If the counts for all libraries are stored in a single file, then an appriopriate in-built R function
(such as read.delim or read.csv) can be used to read the table of counts into R. The library
sizes can be the column sums from the table of counts, and thus easily obtained, or the user can
specify the the library sizes throught lib.size argument of the DGEList() constructor. See the
help documentation (?DGEList or ?"DGEList-class") or the examples below for further details.

If the counts are stored in separate files, then, given a vector containing the filenames the
edgeR function readDGE will read in the data from the individual files, collate the counts into a
table and compute the library sizes and return a DGEList object. See the help documentation
(?readDGE) or the examples below for further details.

4 Normalization issues for digital counts

4.1 General comments

The edgeR methodology needs to work with the original digital expression counts, so these should
not be transformed in any way by users prior to analysis. edgeR automatically takes into account
the total size (total read number) of each library in all calculations of fold-changes, concentration
and statistical significance. For some datasets, no other normalization is required for evaluating
differential expression.

It bears emphasizing that RPKM values should not be used for assessing differential expression
of genes between samples in edgeR. We use the raw counts, because the methods implemented
in edgeR are based on the negative binomial distribution, a discrete distribution. To be able to
perform good inference on differential expression it is very important to model the mean-variance
relationship in the data appropriately. There are good reasons why the NB model is appropriate
for the raw count data, but transforming the data using RPKM (or FPKM or similar) renders our

2

distributional assumptions invalid and we cannot guarantee that our methods will be reliable for
such transformed data.

There are methods implemented in edgeR to normalize the counts for compositional bias in
sequenced libraries and for differences between libraries in sequencing depth. These adjustments
are offsets in the models used for testing DE and do not transform the counts in any way.

The reason we do not worry about gene length bias, GC bias and so on when conducting DE
analysis of the same genes between samples is that we expect (and hope) that the biases will affect
the same gene in the same way in different samples. This being the case, then it is OK to test for
DE gene between samples because such biases in effect “cancel out” when making the comparison
between samples. This reasoning does not hold for comparing the expression level of different genes
in one sample—to do this you would probably need to account for gene length and other biases,
but this is not what edgeR is designed to do.

4.2 Calculating normalization factors

Recently, Robinson and Oshlack [2010] described a method to account for a bias introduced by what
they call RNA composition. In brief, there are occasions when comparing different DGE libraries
where a small number of genes are very highly expressed in one sample, but not in another. Because
these highly expressed genes consume a substantial proportion of the sequencing “real estate”, the
remaining genes in the library are undersampled. Similarly, this situation may occur when the
two tissues being compared have transcriptomes of different sizes, i.e. when there are noticeably
more transcripts expressed in one tissues than the other. Robinson and Oshlack [2010] show that
in comparing kidney and liver RNA, there are a large number of genes expressed in kidney but not
in liver, causing the remaining genes to be undersampled and skewing the differential expression
calls. To account for this, the authors developed an empirical approach to estimate the bias and
proposed to build that into the library size (or, an offset in a generalized linear model), making it
an effective library size. We demonstrate this below on the Marioni et al. [2008] RNA-seq dataset.

Given a table counts or a DGEList object, one can calculate normalization factors using the
calcNormFactors() function.

> head(D)

R1L1Kidney R1L2Liver R1L3Kidney R1L4Liver

10 0 0 0 0

15 4 35 7 32

17 0 2 0 0

18 110 177 131 135

19 12685 9246 13204 9312

22 0 1 0 0

> g <- gsub("R[1-2]L[1-8]", "", colnames(D))

> d <- DGEList(counts = D, group = substr(colnames(D), 5, 30))

> d$samples

3

group lib.size norm.factors

R1L1Kidney Kidney 1804977 1

R1L2Liver Liver 1691734 1

R1L3Kidney Kidney 1855190 1

R1L4Liver Liver 1696308 1

> d <- calcNormFactors(d)

> d$samples

group lib.size norm.factors

R1L1Kidney Kidney 1804977 1.209

R1L2Liver Liver 1691734 0.821

R1L3Kidney Kidney 1855190 1.225

R1L4Liver Liver 1696308 0.823

By default, calcNormFactors uses the TMM method and the sample whose 75%-ile (of library-
scale-scaled counts) is closest to the mean of 75%-iles as the reference. Alternatively, the reference
can be specified through the refColumn argument. Also, you can specify different levels of trimming
on the log-ratios or log-concentrations, as well as a cutoff on the log-concentrations (See the help
documentation for further details, including other specification of estimating the normalization
factors).

To see the bias and normalization visually, consider a smear plot between the first (kidney)
and second (liver) sample. In the left panel of Figure 1, we show a smear plot (X-axis: log-
concentration, Y-axis: log fold-change of liver over kidney, those with 0 in either sample are shown
in the smear on the left) of the raw data (Note: the argument normalize=TRUE only divides by
the sum of counts in each sample and has nothing to do with the normalization factors mentioned
above). One should notice a shift downward in the log-ratios, presumably caused by the genes
highly expressed in liver that are taking away sequencing capacity from the remainder of the genes
in the liver RNA sample. The red line signifies the estimated TMM (trimmed mean of M values)
normalization factor, which in this case represents the adjustment applied to the library size to
account for the compositional bias. The right panel of Figure 1 simply shows the M and A values
after correction. Here, one should find that the bulk of the M-values are centred around 0.

> par(mfrow = c(1, 2))

> maPlot(d$counts[, 1], d$counts[, 2], normalize = TRUE, pch = 19,

+ cex = 0.4, ylim = c(-8, 8))

> grid(col = "blue")

> abline(h = log2(d$samples$norm.factors[2]/d$samples$norm.factors[1]),

+ col = "red", lwd = 4)

> eff.libsize <- d$samples$lib.size * d$samples$norm.factors

> maPlot(d$counts[, 1]/eff.libsize[1], d$counts[, 2]/eff.libsize[2],

+ normalize = FALSE, pch = 19, cex = 0.4, ylim = c(-8, 8))

> grid(col = "blue")

4

Figure 1: Smear plots before (left) and after (right) composition normalization.

5 Negative binomial models

The basic model we use for DGE data is based on the negative binomial distribution. The model
is very flexible. For example, if Y is distributed as NB(µ, φ), then the expected value of Y is µ
and the variance is µ+µ2 ·φ, thus giving sufficient flexibility for many scenarios in observing count
data.

The observed data can be denoted as Ygij where g is the gene (tag, exon, etc.), i is the experi-
mental group and j is the index of the replicate. We can model the counts as

Ygij ∼ NB(Mj · pgi, φg)

where pgi represents the proportion of the sequenced sample for group i that is tag g and Mj

represents the library size.
It is of interest to find genes where, for example, pg1 is significantly different from pg2. The

parameter φg is the overdispersion (relative to the Poisson) and represents the biological, or sample-
to-sample variability. The methods we developed moderate the dispersion estimates towards a
common dispersion, much like how the limma package moderates the variances in the analysis of
microarray data. It is also possible to analyse DGE data using a common dispersion for each tag

5

using edgeR.

6 Estimating dispersions

6.1 Two ways of estimating dispersions

When a negative binomial model is fitted, we need to estimate the dispersion(s) before we carry
out the analysis. edgeR provides two ways of estimating the dispersion(s), the quantile-adjusted
conditional maximum likelihood (qCML) method and the Cox-Reid profile-adjusted likelihood
(CR) method. In general, we apply the qCML method to experiments with single factor and the
CR method to experiments with multiple factors.

6.2 Experiment with single factor

Compared against several other estimators (e.g. maximum likelihood estimator, Quasi-likelihood
estimator etc.) using an extensive simulation study, qCML is the most reliable in terms of bias on
a wide range of conditions and specifically performs best in the situation of many small samples
with a common dispersion, the model which is applicable to Next-Gen sequencing data. We have
deliberately focused on very small samples due to the fact that DNA sequencing costs prevent large
number of replicates for SAGE and RNA-seq experiments.

For a single tag with a small number of libraries, all estimators offer mediocre performance and
here is no clear winner. As the number of tags used to estimate the common dispersion increases
while holding the number of libraries at a small number, qCML is clearly the best estimator. With
more libraries, CR method performs about as well as qCML.

The qCML method calculates the likelihood conditioning on the total counts for each tag, and
uses pseudo counts after adjusted for library sizes. Given a table counts or a DGEList object, the
qCML common dispersion can be calculated using the estimateCommonDisp() function, and the
qCML tagwise dispersions can be calculated using the estimateTagwiseDisp() function.

However, the qCML method is only applicable on dataset with single factor design since it fails
to take into account the effects from multiple factors in a more complicated experiment. Therefore,
the qCML method (i.e. the estimateCommonDisp() and estimateTagwiseDisp() function) is
recommended for a study with single factor. When experiment has more than one factor involved,
we need to seek a new way of estimating dispersions.

For more detailed examples, see the case studies in section 8 (Zhang’s data), section 9 (’t Hoen’s
data) and section 10 (Li’s data)

6.3 Experiment with multiple factors

The CR method is derived to overcome the limitations of the qCML method as mentioned above.
It takes care of multiple factors by fitting generalized linear models (GLM) with a design matrix.

The CR method is based on the idea of approximate conditional likelihood which reduces to
residual maximum likelihood. Given a table counts or a DGEList object and the design matrix of

6

the experiment, generalized linear models are fitted. This allows valid estimation of the dispersion,
since all systematic sources of variation are accounted for. The CR common dispersion and tagwise
dispersions can be calculated using the estimateCRDisp() function (for tagwise dispersions, set
‘tagwise = TRUE’ within the function), and it is strongly recommended in multi-factor experiment
cases.

For more detailed examples, see the case study in section 11 (Tuch’s data).

6.4 Tagwise dispersion or common dispersion

edgeR can estimate a common dispersion for all the tags or it can estimate separate dispersions
for individual tags. As individual tags typically don’t provide enough data to estimate the disper-
sion reliably, edgeR implements an empirical Bayes strategy for squeezing the tagwise dispersions
towards the common dispersion. The amount of shrinkage is determined by the prior weight given
to the common dispersion and the precision of the tagwise estimates. The prior can be thought of
arising from a number of prior observations, equivalent to prior.n tags with common dispersion
and the same number of libraries per tag as in the current experiment. The prior number of tags
prior.n can be set by the user. The precision of the tagwise estimators is roughly proportion to
the per-tag degrees of freedom, equal to the number of libraries minus the number of groups or the
number of GLM coefficients. We generally recommend choosing prior.n so that the total degrees
of freedom (prior.n*df) associated with the prior is about 50, subject to prior.n not going below
1. For example, if there are four libraries and two groups, the tagwise degrees of freedom are 2,
so we would recommend prior.n=25. This is an empirical rule of thumb borne out of experience
with a number of datasets.

7 Testing for DE genes/tags

7.1 Two ways of testing for differential expression

For all the Next-Gen squencing data analyses we consider here, people are most interested in
finding differentially expressed genes/tags between two (or more) groups.

Once negative binomial models are fitted and dispersion estimates are obtained, we can proceed
with testing procedures for determing differential expression. edgeR provides two ways of testing
differential expression, the exact test and the generalized linear model (GLM) likelihood ratio test.

7.2 Experiment with single factor

The exact test is based on the qCML methods. Knowing the conditional distribution for the sum
of counts in a group, we can compute exact p-values by summing over all sums of counts that have
a probability less than the probability under the null hypothesis of the observed sum of counts.
The exact test for the negative binomial distribution has strong parallels with Fisher’s exact test.

7

As we dicussed in the previous section, the exact test is only applicable to experiments with a
single factor. The testing can be done by using the function exactTest(), and the function allows
both common dispersion and tagwise dispersion approaches.

For more detailed examples, see the case studies in section 8 (Zhang’s data), section 9 (’t Hoen’s
data) and section 10 (Li’s data).

7.3 Experiment with multiple factors

The GLM likelihood ratio test is based on the idea of fitting negative binomial GLMs with the Cox-
Reid dispersion estimates. By doing this, it automatically takes all known sources of varations into
account. Therefore, the GLM likelihood ratio test is recommended for experiment with multiple
factors.

The testing can be done by using the functions glmFit() and glmLRT(). Given raw counts, a
fixed value for the dispersion parameter and a design matrix, the function glmFit() fits the negative
binomial GLM for each tag and produces an object of class DGEGLM with some new components.

Then this DGEGLM object can be passed to the function glmLRT() to carry out the likelihood
ratio test. User can select coefficient(s) to drop from the full design matrix. This gives the null
model against which the full model is compared with in the likelihood ratio test. Tags can then be
ranked in order of evidence for differential expression, based on the p-value computed for each tag.

For more detailed examples, see the case study in section 11 (Tuch’s data).

8

8 Case study: SAGE data

8.1 Introduction

This section provides a detailed analysis of data from a SAGE experiment to illustrate the data
analysis pipeline for edgeR. The data come from a very early study using SAGE technology to
analyse gene expression profiles in human cancer cells [Zhang et al., 1997].

8.2 Source of the data

At the time that Zhang et al. [1997] published their paper, no comprehensive study of gene ex-
pression in cancer cells had been reported. Zhang et al. [1997] designed a study to address the
following issues:

1. How many genes are expressed differentially in tumour versus normal cells?

2. Are the majority of those differences cell-autonomous rather than dependent on the tumour
micro-environment?

3. Are most differences cell type-specific or tumour-specific?

They used normal and neoplastic gastro-intestinal tissue as a prototype and analysed global profiles
of gene expression in human cancer cells. The researchers derived transcripts from human colorectal
(CR) epithelium, CR cancers or pancreatic cancers. The data that we analyse in this case study
are Zhang et al. [1997]’s SAGE results for the comparison of expression patterns between normal
colon epithelium and primary colon cancer.

They report that the expression profiles revealed that most transcripts were expressed at similar
levels, but that 289 transcripts were expressed at significantly different levels [P -value < 0.01] and
that 181 of these 289 were decreased in colon tumours as compared with normal colon tissue.
Zhang et al. [1997] used Monte Carlo simulation to determine statistical significance. In this case
study we will use the edgeR package, based around the negative binomial model, to identify genes
differentially expressed in the normal and cancer samples.

8.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into a
DGEList object that the functions in the package can recognise. The library size is usually the total
sum of all of the counts for a library, and that is how library size is defined in this analysis. The
easiest way to construct an appropriate DGEList object for these data is described below.

In this case, the tag counts for the four individual libraries are stored in four separate plain text
files, GSM728.txt, GSM729.txt, GSM755.txt and GSM756.txt. In each file, the tag IDs and counts
for each tag are provided in a table. It is best to create a tab-delimited, plain-text ‘Targets’ file,
which, under the headings ‘files’, ‘group’ and ‘description’, gives the filename, the group and a
brief description for each sample.

9

The targets object is produced when the ‘Targets.txt’ file is read into the R session. This
object makes a convenient argument to the function readDGE which reads the tables of counts into
our R session, calculates the sizes of the count libraries and produces a DGEList object for use by
subsequent functions.

> library(edgeR)

> path <- getwd()

> setwd("/Users/dmccarthy/Documents/DGE/ZhangData")

> targets <- read.delim(file = "Targets.txt", stringsAsFactors = FALSE)

> targets

files group description

1 GSM728.txt NC Normal colon

2 GSM729.txt NC Normal colon

3 GSM755.txt Tu Primary colonrectal tumour

4 GSM756.txt Tu Primary colonrectal tumour

> d <- readDGE(targets, skip = 5, comment.char = "!")

> dim(d)

[1] 57448 4

> d

An object of class "DGEList"

$samples

files group description lib.size norm.factors

1 GSM728.txt NC Normal colon 50179 1

2 GSM729.txt NC Normal colon 49593 1

3 GSM755.txt Tu Primary colonrectal tumour 57686 1

4 GSM756.txt Tu Primary colonrectal tumour 49064 1

$counts

1 2 3 4

CCCATCGTCC 1288 1380 1236 0

CCTCCAGCTA 719 458 148 142

CTAAGACTTC 559 558 248 199

GCCCAGGTCA 520 448 22 62

CACCTAATTG 469 472 763 421

57443 more rows ...

> setwd(path)

10

We will filter out very lowly expressed tags. Those which have fewer than 5 tags in total cannot
possibly achieve statisical significance for DE, so we filter out these tags.

> d <- d[rowSums(d$counts) >= 5,]

> dim(d)

[1] 5012 4

> d$samples$lib.size

[1] 50179 49593 57686 49064

> colSums(d$counts)

1 2 3 4

34970 35764 36940 30325

> d$samples$lib.size <- colSums(d$counts)

> d <- calcNormFactors(d)

> d$samples

files group description lib.size norm.factors

1 GSM728.txt NC Normal colon 34970 0.9757300

2 GSM729.txt NC Normal colon 35764 0.9654074

3 GSM755.txt Tu Primary colonrectal tumour 36940 0.9706259

4 GSM756.txt Tu Primary colonrectal tumour 30325 1.0937243

We see that the vast majority of tags sequenced in this experiment are detected at very low
levels. This filtering step reduces the dataset from over 50,000 tags to just over 5000. While
this may seem drastic, there is simply no information for DE in the tags we have filtered out.
Nevertheless, the filtering reduces the library sizes (total counts in each library) by about 30%.

In the output above we also show the application of TMM normalization to these data using
the function calcNormFactors. The normalization factors here are all very close to one, which
indicates that the four libraries are very similar in composition.

This DGEList is now ready to be passed to the functions that do the calculations to determine
differential expression levels for the genes. Note that when we ‘see’ the DGEList object d, the counts
for just the first five genes in the table are shown, as well as the library sizes and groups for the
samples.

11

8.4 Analysis using common dispersion

8.4.1 Estimating the common dispersion

The first major step in the analysis of DGE data using the NB model is to estimate the dispersion
parameter for each tag. The most straight-forward analysis of DGE data uses the common disper-
sion estimate as the dispersion for all tags. For many applications this will be adequate and it may
not be necessary to estimate tagwise dispersions, i.e. estimate the dispersion parameter separately
for each tag. Using the common dispersion allows the user to obtain DE results very quickly and
in few steps, and so makes a good place to start with any analysis of DGE data.

Estimating the common dispersion is done using the function estimateCommonDisp. In order to
do this, the function first needs to generate the ‘pseudocounts’ under the alternative hypothesis
(that there really is a difference in expression level between the groups). The conditional maximum
likelihood method assumes that the library sizes are equal, which is certainly not true in general
for DGE data.

The pseudocounts are calculated using a quantile-to-quantile method for the negative binomial
distribution so that the library sizes for the pseudocounts are equal to the geometric mean of
the original library sizes. These pseudocounts are then used as the count data for the common
conditional negative binomial likelihood function, which is maximised over the dispersion parameter
to obtain our estimate of the common dispersion.

> d <- estimateCommonDisp(d)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size"

The output of estimateCommonDisp is a DGEList object with several new elements. The element
common.dispersion, as the name suggests, provides the estimate of the common dispersion, and
pseudo.alt gives the pseudocounts calculated under the alternative hypothesis. The element genes
contains the information about gene/tag identifiers. The element conc gives the estimates of the
overall concentration of each tag across all of the original samples (conc$conc.common) and the
estimate of the concentration of each tag within each group (conc$conc.group). The element
common.lib.size gives the library size to which the original libraries have been adjusted in the
pseudocounts.

We see in the output below that the total number of counts in each library of the pseudocounts
agrees well with the common library size, as desired.

> d$samples$lib.size

[1] 34970 35764 36940 30325

> d$common.lib.size

12

[1] 34404.07

> colSums(d$pseudo.alt)

1 2 3 4

35261.11 35637.21 35443.58 31458.46

Under the negative binomial model, the square root of the common dispersion gives the coeffi-
cient of variation of biological variation. Here, as seen in the code below, the coefficient of variation
of biological variation is found to be 0.44. We also note that a common dispersion estimate of 0.2
means that there is a lot more variability in the data that can be accounted for by the Poisson
model—if a tag has just 200 counts on average in each library, then the estimate of the tag’s
variance under the NB model is over 40 times greater than it would be under the Poisson model.

> d$common.dispersion

[1] 0.1968823

> sqrt(d$common.dispersion)

[1] 0.4437142

8.4.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for
determining differential expression. The edgeR package uses an exact test for the negative binomial
distribution, which has strong parallels with Fisher’s exact test, to compute exact p-values that
can be used to assess differential expression. The function exactTest allows the user to conduct
the NB exact test for pairwise comparisons of groups. Here there are only two groups, so the pair
need not be specified—the function by default compares the two groups present.

> de.com <- exactTest(d)

Comparison of groups: Tu - NC

> names(de.com)

[1] "table" "comparison" "genes"

> names(de.com$table)

[1] "logConc" "logFC" "p.value"

13

The object produced by exactTest contains three elements: table, comparison and genes. The
element de.com$comparison contains a vector giving the names of the two groups compared. The
tablede.com$table contains the elements logConc, which gives the overall concentration for a tag
across the two groups being compared, logFC, which gives the log-fold change difference for the
counts between the groups and p.value gives the exact p-values computed.

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The user can specify the number, n, of tags for
which they would like to see the differential expression information, ranked by p-value (default) or
fold change. As the same test is conducted for many thousands of tags, adjusting the p-values for
multiple testing is recommended. The desired adjustment method can be supplied by the user, with
the default method being Benjamini and Hochberg’s approach for controlling the false discovery
rate (FDR) [Benjamini and Hochberg, 1995]. The table below shows the top 10 DE genes ranked
by p-value.

The output below shows that the edgeR package identifies a good deal of differential expression
between the normal colon cell group and the primary CR cancer cell group. The top DE genes
are given very small p-values, even after adjusting for multiple testing. Furthermore, all of the
top genes have a large fold change, indicating that these genes are more likely to be biologically
meaningful. A Gene Ontology analysis could be carried out using the list of top genes and p-values
provided by topTags in order to obtain more systematic and functional information about the
differentially expressed genes.

> options(digits = 4)

> topTags(de.com)

Comparison of groups: Tu-NC

logConc logFC PValue FDR

AGCTGTTCCC -27.95 44.129 7.653e-20 3.836e-16

CTTGGGTTTT -29.59 40.859 2.612e-10 6.545e-07

TACAAAATCG -29.97 40.102 2.788e-08 4.530e-05

CCCAACGCGC -12.20 -5.766 3.615e-08 4.530e-05

GCCACCCCCT -30.04 39.961 5.832e-08 5.846e-05

CCAGTCCGCC -30.14 39.761 1.972e-07 1.632e-04

GTCATCACCA -30.15 -39.732 2.280e-07 1.632e-04

CGCGTCACTA -11.70 4.732 4.842e-07 2.752e-04

TCACCGGTCA -10.54 -4.144 4.942e-07 2.752e-04

TAAATTGCAA -10.81 -4.170 6.750e-07 3.383e-04

The table below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed. For these genes there seems to be very large differences between the
groups, suggesting that the DE genes identified are truly differentially expressed, and not false
positives.

> detags.com <- rownames(topTags(de.com)$table)

> d$counts[detags.com,]

14

1 2 3 4

AGCTGTTCCC 0 0 119 1011

CTTGGGTTTT 0 0 21 97

TACAAAATCG 0 0 14 56

CCCAACGCGC 106 1 2 0

GCCACCCCCT 0 0 5 58

CCAGTCCGCC 0 0 6 49

GTCATCACCA 35 20 0 0

CGCGTCACTA 1 3 88 21

TCACCGGTCA 118 75 6 5

TAAATTGCAA 103 59 3 6

If we order the genes by fold change instead of p-value, as in the table below, we see that the
genes with the largest fold changes have very small concentrations. This ranking is dominated by
genes that have zero total counts in one group and is less informative than ranking by p-value.

> topTags(de.com, sort.by = "logFC")

Comparison of groups: Tu-NC

logConc logFC PValue FDR

AGCTGTTCCC -27.95 44.13 7.653e-20 3.836e-16

CTTGGGTTTT -29.59 40.86 2.612e-10 6.545e-07

TACAAAATCG -29.97 40.10 2.788e-08 4.530e-05

GCCACCCCCT -30.04 39.96 5.832e-08 5.846e-05

CCAGTCCGCC -30.14 39.76 1.972e-07 1.632e-04

GTCATCACCA -30.15 -39.73 2.280e-07 1.632e-04

GTGCGCTGAG -30.36 39.31 2.232e-06 7.458e-04

GTGTGTTTGT -30.42 39.20 3.922e-06 1.035e-03

CTTGACATAC -30.42 -39.20 3.922e-06 1.035e-03

GGGGGGGGGG -30.44 39.15 4.767e-06 1.138e-03

Zhang et al. [1997] identified 289 genes as significantly differentially expressed with p-values less
than 0.01. We can look at the genes that are given an exact p-value less than 0.01 by edgeR before
adjusting for multiple testing, and less than 0.05 after adjustment.

We see in the output below that 243 genes are significantly differentially expressed according
to edgeR when using the common dispersion estimate. Of those genes, 101 are up-regulated in
the cancer cells compared with the normal cells and 142 are down-regulated in the cancer cells
compared with normal cells. These proportions of up- and down-regulated tags are very similar to
those found by Zhang et al. [1997].

> sum(de.com$table$p.value < 0.01)

[1] 243

15

> top243 <- topTags(de.com, n = 243)

> sum(top243$table$logFC > 0)

[1] 101

> sum(top243$table$logFC < 0)

[1] 142

Furthermore, we see below that 99 tags (2% of the total number of genes after filtering) have
a p-value of less than 0.05 after adjusting for multiple testing using the Benjamini and Hochberg
[1995] method for controlling the FDR, which is strong evidence for differential expression.

> summary(decideTestsDGE(de.com, p.value = 0.05))

[,1]

-1 57

0 4913

1 42

8.4.3 Visualising DGE results

The function plotSmear can be used to generate a plot of the log-fold change against the log-
concentration for each tag (analogous to an MA-plot in the microarray context). We can easily
identify the top DE tags and highlight them on the plot. The code for producing the default
fold-change plot is shown below, and the result of this code is shown in Figure 2.

> detags243 <- rownames(top243$table)

> png(file = "edgeR_case_study_Zhang-015.png", height = 600, width = 600)

> plotSmear(d, de.tags = detags243, main = "FC plot using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue")

> dev.off()

null device

1

Figure 2 shows the default fold change-plot for these data—the ‘smear plot’. Plotting DGE
data poses some challenges, as when the total counts in one group are zero, the log-fold change
is technically infinite, and the log-concentration is negative infinity. With the algorithm used by
topTags, we see very high log-fold changes and very small values for log-concentration for such
tags, but plotting these values directly causes problems with the scale of the graph. To get around
this problem, edgeR produces a ‘smear’ of points at the left-most edge of the plot for tags which
have zero counts in one of the groups. Although this is still slightly artificial, it has the advantage
that the expression level of all tags can be visualised and interpreted simultaneously.

16

The ‘lines’ of points we see at smaller log-concentration values arise from the discrete nature
of the count data. When the sum all of the counts in one of the groups is one, we see the lines of
points furthest away from the main body of points, and other lines of points correspond to when
the total sum of counts in one of the groups is 2, 3, 4 and so on.

In Figure 2, the 264 tags identified as differentially expressed (i.e. those identified as significant
(p-value less than 0.01) by edgeR using the common dispersion) are outlined in red.

Figure 2: Plot of the log-fold change against the log-concentration for each tag. The 243 most
differentially expressed tags as identified by edgeR using the common dispersion are outlined in
red.

8.5 Analysing the data using moderated tagwise dispersions

8.5.1 Moderating the tagwise dispersion

An extension to simply using the common dispersion for each tag is to estimate the dispersion
separately for each tag, while ‘squeezing’ these estimates towards the common dispersion estimate
in order to improve inference by sharing information between tags. This type of analysis can also
be carried out in few steps using the edgeR package.

As noted earlier, the dispersion parameter is the overdispersion relative to the Poisson, and
represents the biological, or sample-to-sample variability. The methods we developed moderate the

17

dispersion estimates towards a common dispersion, much like how the limma package moderates
the variances in the analysis of microarray data.

The amount of moderation done is determined by the value of a weight parameter prior.n.
The value for prior.n corresponds to the number of individual tags equivalent to the weight given
to the common likelihood. Thus, the higher prior.n, the more strongly the individual dispersion
estimates are moderated, or ‘squeezed’, towards the common value. To run the moderated analysis,
we need to determine how much moderation is necessary. How best to do this is still an open
research question, but we currently recommend selecting a value for the weight parameter prior.n

a priori and have found that very good results can be obtained this way.
In an experiment such as that we consider here, in which we have just four samples, two in

each group, and thus two degrees of freedom for estimating the dispersion parameter. Standard
tagwise dispersion estimates are likely to be unreliable, so we want to give a reasonable weight
to the common likelihood. We need to choose a value for prior.n such that individual tagwise
dispersion estimates are ‘squeezed’ quite strongly towards the common dispersion. Here, we choose
a moderate amount of smoothing—we let prior.n be 10. This means that the common likelihood
receives the weight of 10 individual tags, so there will be a reasonable degree of ‘squeezing’, but
there is still ample scope to estimate an individual dispersion for each gene.

The function estimateTagwiseDisp produces a DGEList object that contains all of the elements
present in the object produced by estimateCommonDisp, as well as the value for prior.n used
(d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as we see below.

> d <- estimateTagwiseDisp(d, prior.n = 10)

Using grid search to estimate tagwise dispersion.

> names(d)

[1] "samples" "common.dispersion" "prior.n"

[4] "tagwise.dispersion" "counts" "pseudo.alt"

[7] "genes" "all.zeros" "conc"

[10] "common.lib.size"

> head(d$tagwise.dispersion)

[1] 1.0945 0.1317 0.0944 0.2144 0.1381 0.1580

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can
see from the output below, the tagwise dispersion estimates range from a minimum of 0.09 to a
maximum of 1.09. The range of dispersions is therefore large, but the tags in the middle two quar-
tiles of the tagwise dispersion estimates have dispersion estimates close to the common dispersion
estimate.

> summary(d$tagwise.dispersion)

18

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0944 0.1720 0.1850 0.1990 0.2070 1.0900

> d$common.dispersion

[1] 0.1969

8.5.2 Testing

The testing procedures when using tagwise dispersion estimates are carried out exactly as for the
common dispersion, as described above, but we add the argument common.disp=FALSE to the call to
exactTest. Here we carry out the testing using the tagwise dispersion estimates calculated using
a prior.n value of ten.

> de.tgw <- exactTest(d, common.disp = FALSE)

Comparison of groups: Tu - NC

The output below shows that when using tagwise dispersions, the edgeR package still identifies
a lot of differential expression between the normal colon cell group and the primary CR cancer
cell group—indeed the p-values of the top tags are even smaller than the top tags based on the
common dispersion. This arises because the moderated tagwise dispersions can be much smaller
than the common dispersion, and tags with smaller dispersions will have smaller p-values than
the same tags with p-values computed using a common dispersion. As with the analysis using the
common dispersion, all of the top tags have a large fold change, indicating that these changes in
expression are likely to be biologically meaningful. We note that the ranking is different, however,
and not all of the top ten tags according to using the common dispersion are found to be among
the top ten tags using tagwise dispersions.

> topTags(de.tgw)

Comparison of groups: Tu-NC

logConc logFC PValue FDR

AGCTGTTCCC -27.95 44.129 1.571e-10 7.872e-07

TCACCGGTCA -10.54 -4.144 2.009e-08 5.033e-05

GTCATCACCA -30.15 -39.732 1.439e-07 1.950e-04

CTTGGGTTTT -29.59 40.860 1.557e-07 1.950e-04

TAAATTGCAA -10.81 -4.171 2.311e-07 2.317e-04

TAATTTTTGC -13.15 5.840 5.265e-07 4.398e-04

GTGCGCTGAG -30.36 39.306 7.671e-07 5.036e-04

ATTTCAAGAT -13.16 -5.812 8.209e-07 5.036e-04

CTTGACATAC -30.42 -39.197 9.042e-07 5.036e-04

TACAAAATCG -29.96 40.103 1.484e-06 7.440e-04

19

The table below shows the raw counts for the tags that edgeR has identified as the most
differentially expressed using tagwise dispersions. For these genes there seems to be very large
differences between the groups, suggesting that the DE genes identified are truly differentially
expressed, and not false positives.

We note that in general, when using tagwise dispersions, the counts are more consistent within
groups, as using tagwise dispersions instead of the common dispersion penalises tags which are
highly variable within groups. The smaller the value selected for prior.n, the more highly variable
tags will be penalised, as there is less ‘squeezing’ of the tagwise dispersions towards the common
value. This effect is seen clearly in the table below (compare this with the corresponding table for
the analysis using the common dispersion).

> detags.tgw <- rownames(topTags(de.tgw)$table)

> d$counts[detags.tgw,]

1 2 3 4

AGCTGTTCCC 0 0 119 1011

TCACCGGTCA 118 75 6 5

GTCATCACCA 35 20 0 0

CTTGGGTTTT 0 0 21 97

TAAATTGCAA 103 59 3 6

TAATTTTTGC 0 1 37 21

GTGCGCTGAG 0 0 18 23

ATTTCAAGAT 35 21 0 1

CTTGACATAC 18 20 0 0

TACAAAATCG 0 0 14 56

Of course, we can sort the top table differently, as we did earlier.
We see in the output below that 225 genes are significantly differentially expressed according

to edgeR when using the tagwise dispersion estimates (ten fewer than when using the common
dispersion). Of those tags, 84 are up-regulated in the cancer cells compared with the normal cells
and 141 are down-regulated in the cancer cells compared with normal cells. These proportions of
up- and down-regulated tags are similar to those found using the common dispersion, but there
is a slightly higher proportion of down-regulated tags in those identified as DE using tagwise
dispersions.

> sum(de.tgw$table$p.value < 0.01)

[1] 225

> toptgw <- topTags(de.tgw, n = sum(de.tgw$table$p.value < 0.01))

> sum(toptgw$table$logFC > 0)

[1] 84

20

> sum(toptgw$table$logFC < 0)

[1] 141

Furthermore, we see below that 76 tags (1.5% of the total number) have a p-value of less
than 0.05 after adjusting for multiple testing using the Benjamini and Hochberg [1995] method for
controlling the FDR, which is strong evidence for differential expression.

> summary(decideTestsDGE(de.tgw, p.value = 0.05))

[,1]

-1 47

0 4936

1 29

8.5.3 Visualising DGE results

Shown below is the code for producing the default fold-change plot using plotSmear with the DE
tags as determined using tagwise dispersions highlighted, and the result of this code is shown in
Figure 3.

> detags.tgw <- rownames(topTags(de.tgw, n = sum(de.tgw$table$p.value <

+ 0.01))$table)

> png(file = "edgeR_case_study_Zhang-028.png", height = 600, width = 600)

> plotSmear(d, de.tags = detags.tgw, main = "FC plot using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue")

> dev.off()

null device

1

In Figure 3, the 225 tags identified as differentially expressed (i.e. those identified as significant
(p-value less than 0.01) by edgeR using the tagwise dispersions) are highlighted in red. We see
that the pattern of differential expression using tagwise dispersions that we see in Figure 3 is very
similar to that obtained using the common dispersion that we saw in Figure 2.

8.6 Setup

This analysis of Zhang et al. [1997]’s SAGE data was conducted on:

> sessionInfo()

21

Figure 3: Plot of the log-fold change against the log-concentration for each tag. The 225 most
differentially expressed tags as identified by edgeR are outlined in red.

R version 2.13.0 beta (2011-03-30 r55205)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:

[1] C/UTF-8/C/C/C/C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_2.1.16

loaded via a namespace (and not attached):

[1] limma_3.7.26

and took 2–3 minutes to carry out on an Apple MacBook with a 2.8 Ghz Intel Core 2 Duo processor
and 8 Gb of 1067 MHz DDR3 memory.

22

9 Case Study: deep-sequenced short tags

9.1 Introduction

This section provides a detailed analysis of data from an experiment seeking to compare deep-
sequenced tag-based expression profiling to the microarray platforms that had been previously
used to conduct such studies [’t Hoen et al., 2008].

9.2 Source of the data

’t Hoen et al. [2008] address both biological and technical questions in their study. The biological
question addressed was the identification of transcripts differentially expressed in the hippocampus
between wild-type mice and transgenic mice overexpressing a splice variant of the δC-doublecortin-
like kinase-1 (Dclk1) gene. The splice variant, DCLK-short, makes the kinase constitutively active
and causes subtle behavioural phenotypes.

On the technical side, the researchers compare the robustness, resolution and inter-lab porta-
bility of Solexa/Illumina’s DGE tag profiling approach and five microarray platforms [’t Hoen
et al., 2008]. The tag-based gene expression technology in this experiment could be thought of as a
hybrid between SAGE and RNA-seq—like SAGE it uses short sequence tags (∼ 17bp) to identify
transcripts, but it uses the deep sequencing capabilities of Solexa/Illumina 1G Genome Analyzer
to greatly increase the number of tags that can be sequenced. For our purposes we will concentrate
solely on the DGE data generated in the experiment.

The RNA samples came from wild-type male C57/BL6j mice and transgenic mice overexpressing
DCLK-short with a C57/BL6j background. Tissue samples were collected from four individuals
in each of the two groups by dissecting out both hippocampi from each mouse. Total RNA was
isolated and extracted from the hippocampus cells and sequence tags were prepared using Illumina’s
Digital Gene Expression Tag Profiling Kit according to the manufacturer’s protocol.

Sequencing was done using Solexa/Illumina’s Whole Genome Sequencer. RNA from each bi-
ological sample was supplied to an individual lane in one Illumina 1G flowcell. The instrument
conducted 18 cycles of base incorporation, then image analysis and basecalling were performed
using the Illumina Pipeline. Sorting and counting the unique tags followed, and the raw data (tag
sequences and counts) are what we will analyze here. ’t Hoen et al. [2008] went on to annotate
the tags by mapping them back to the genome. In general, the mapping of tags is an important
and highly non-trivial part of a DGE experiment, but we shall not deal with this task in this case
study.

The researchers obtained ∼ 2.4 million sequence tags per sample, with tag abundance spanning
four orders of magnitude. They found the results to be highly reproducible, even across laborato-
ries. Using a dedicated Bayesian model, they found 3179 transcripts to be differentially expressed
with a FDR of 8.5%. This is a much higher figure than was found for the microarrays. ’t Hoen
et al. [2008] conclude that deep-sequencing offers a major advance in robustness, comparability
and richness of expression profiling data.

23

9.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into an object
that the functions in the package can recognise. In this case, the tag counts for the eight individual
libraries are stored in eight separate plain text files, GSM272105.txt, GSM272106.txt, GSM272318.txt,
GSM272319.txt, GSM272320.txt, GSM272321.txt, GSM272322.txt and GSM272323.txt.

In each file, the tag IDs and counts for each tag are provided in a table. It is best to create a
tab-delimited, plain-text ‘Targets’ file, which, under the headings ‘files’, ‘group’ and ‘description’,
gives the filename, the group and a brief description for each sample.

The targets object is produced when the ‘Targets.txt’ file is read into the R session. This
object makes a convenient argument to the function readDGE which reads the tables of counts into
our R session, calculates the sizes of the count libraries and produces a DGEList object for use by
subsequent functions.

> path <- getwd()

> setwd("/Users/dmccarthy/Documents/DGE/Long_SAGE_Data")

> library(edgeR)

> targets <- read.delim(file = "targets.txt", stringsAsFactors = FALSE)

> targets

files group description

1 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus

2 GSM272106.txt WT wild-type mouse hippocampus

3 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus

4 GSM272319.txt WT wild-type mouse hippocampus

5 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus

6 GSM272321.txt WT wild-type mouse hippocampus

7 GSM272322.txt DCLK transgenic (Dclk1) mouse hippocampus

8 GSM272323.txt WT wild-type mouse hippocampus

> d <- readDGE(targets, skip = 5, comment.char = "!")

> d

An object of class "DGEList"

$samples

files group description lib.size

1 GSM272105.txt DCLK transgenic (Dclk1) mouse hippocampus 2685418

2 GSM272106.txt WT wild-type mouse hippocampus 3517977

3 GSM272318.txt DCLK transgenic (Dclk1) mouse hippocampus 3202246

4 GSM272319.txt WT wild-type mouse hippocampus 3558260

5 GSM272320.txt DCLK transgenic (Dclk1) mouse hippocampus 2460753

6 GSM272321.txt WT wild-type mouse hippocampus 294909

7 GSM272322.txt DCLK transgenic (Dclk1) mouse hippocampus 651172

24

8 GSM272323.txt WT wild-type mouse hippocampus 3142280

norm.factors

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

$counts

1 2 3 4 5 6 7 8

CATCGCCAGCGGGCACC 1 0 0 0 0 0 0 0

AAGGTCGACTCTGAAGT 1 1 0 0 0 0 0 0

CCTTCCTGGCTCTATGG 1 0 0 0 0 0 0 0

TCTGCTGAGCGTCTGTT 1 0 0 0 0 0 0 0

CCCCAGAGCGAATCAGG 1 1 2 1 1 0 2 1

844311 more rows ...

> colnames(d) <- c("DCLK1", "WT1", "DCLK2", "WT2", "DCLK3", "WT3",

+ "DCLK4", "WT4")

> setwd(path)

This DGEList is now ready to be passed to the functions that do the calculations to determine
differential expression levels for the genes. Note that when we ‘see’ the DGEList object d, the counts
for just the first five genes in the table are shown, as well as the samples element, which is a data
frame constructed from the ‘Targets.txt’ file and provides the filenames, groups, descriptions and
library sizes for the samples.

However, for this dataset, there were over 800 000 unique tags sequenced, most of which have a
very small number of counts in total across all libraries. Since it is not possible to achieve statistical
significance with fewer than six counts in total for a tag, we filter out tags which have fewer than
one count per million in five or more libraries. This reduces our chances of finding spurious DE
(that is, DE driven by large counts in only a handful of libraries) and also helps to speed up the
calculations we need to perform. The subsetting capability of DGEList objects makes such filtering
very easy to carry out.

> d <- d[rowSums(1e+06 * d$counts/expandAsMatrix(d$samples$lib.size,

+ dim(d)) > 1) >= 3,]

> dim(d)

[1] 53842 8

Now the dataset is ready to be analysed for differential expression, with just over 53000 tags
remaining with sufficient expression for meaningful DE analysis.

25

9.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to produce a
plot showing the sample relations based on multidimensional scaling. The function plotMDS.dge

produces an MDS plot for the samples when provided with the DGEList object and other usual
graphical parameters as arguments, as shown below.

> pdf(file = "edgeR_case_study_longSAGE_MDSplot.pdf", height = 6,

+ width = 6)

> plotMDS.dge(d, main = "MDS Plot for 't Hoen Data", xlim = c(-2,

+ 1))

Using grid search to estimate tagwise dispersion.

> dev.off()

null device

1

This function is a variation on the usual multdimensional scaling (or principle coordinate) plot,
in that a distance measure particularly appropriate for the digital gene expression (DGE) context
is used. The distance between each pair of samples (columns) is the square root of the common
dispersion for the top n (default is n = 500) genes which best distinguish that pair of samples.
These top n genes are selected according to the tagwise dispersion of all the samples. The resulting
plot for the ‘t Hoen data is shown in 4.

9.5 Analysis using common dispersion

9.5.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the NB
model is to estimate the dispersion parameter for each tag. Like in the earlier case study, we begin
by estimating the common dispersion using the function estimateCommonDisp.

> system.time(d <- estimateCommonDisp(d))

user system elapsed

24.835 16.578 42.269

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size"

26

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−0
.4

−0
.2

0.0
0.2

0.4
0.6

0.8

MDS Plot for 't Hoen Data

Dimension 1

Di
me

ns
ion

 2 DCLK1

WT1

DCLK2

WT2

DCLK3

WT3

DCLK4

WT4

Figure 4: Multidimensional scaling (MDS) plot for the ‘t Hoen data, showing the relations between
the samples in two dimensions. Dimension 1 separates the DCLK and WT samples quite nicely.

We see in the output below that the total counts in each library of the pseudocounts agrees
well with the common library size, as desired.

> d$samples$lib.size

[1] 2685418 3517977 3202246 3558260 2460753 294909 651172 3142280

> d$common.lib.size

[1] 1885653

> colSums(d$pseudo.alt)

DCLK1 WT1 DCLK2 WT2 DCLK3 WT3 DCLK4 WT4

1730559 1730394 1722869 1717904 1724596 1736061 1758558 1730391

Here the coefficient of variation of biological variation (square root of the common dispersion)
is found to be 0.40. We also note that a common dispersion estimate of 0.16 means that there is
a lot more variability in the data that can be accounted for by the Poisson model—if a tag has
just 200 counts in total (average of 25 counts per sample), then the estimate of the tag’s variance
under the NB model is over 10 times greater than it would be under the Poisson model.

27

> d$common.dispersion

[1] 0.161519

> sqrt(d$common.dispersion)

[1] 0.4018942

9.5.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for
determining differential expression. As for the SAGE data, there are only two groups here, so the
pair need not be specified in the call to exactTest.

> system.time(de.common <- exactTest(d))

Comparison of groups: WT - DCLK

user system elapsed

26.713 7.991 34.932

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The table below shows the top 10 DE genes ranked
by p-value.

The table in the output from topTags shows that the edgeR package identifies a good deal of
differential expression between the wild-type and the DCLK-transgenic groups. The top DE tags
are given very small p-values, even after adjusting for multiple testing. Furthermore, all of the top
tags have a large fold change, indicating that these tags are likely to be biologically meaningful.
As suggested in the SAGE case study, a Gene Ontology analysis could be carried out using the list
of top tags and p-values provided by topTags in order to obtain more systematic and functional
information about the differentially expressed genes.

> topTags(de.common)

Comparison of groups: WT-DCLK

logConc logFC PValue FDR

AATTTCTTCCTCTTCCT -17.29940 11.605637 3.740474e-43 2.013946e-38

CCGTCTTCTGCTTGTCG -10.57557 5.566736 1.246162e-28 3.354793e-24

TCTGTACGCAGTCAGGC -18.46446 -9.732358 8.588672e-26 1.232375e-21

CCGTCTTCTGCTTGTAA -14.44493 5.425811 9.155493e-26 1.232375e-21

CCGTCTTCTGCTTGTCA -15.46499 5.469611 1.008337e-23 1.085818e-19

AAGACTCAGGACTCATC -32.26560 35.500911 1.338780e-22 1.201377e-18

CCGTCTTCTGCTTGTAG -15.58127 4.761123 6.560131e-20 5.045866e-16

AGTGTGACGTGACCGGG -19.05893 8.075424 2.546566e-19 1.713903e-15

AAATTCTTCCTCTTCCT -19.14120 7.922030 2.439687e-18 1.459529e-14

CATAAGTCACAGAGTCG -32.76212 -34.507864 1.573506e-15 8.472070e-12

28

The table below shows the raw counts for the tags that edgeR has identified as the most
differentially expressed. For these tags there seem to be very large differences between the groups,
suggesting that the DE genes identified are truly differentially expressed, and not false positives.
We do see, however, that when a common dispersion value is used, tags which have just one large
count in one sample can appear as highly DE. If we wish to give less significance to such tags then
we can use tagwise dispersion estimates as described below.

> detags.com <- rownames(topTags(de.common)$table)

> d$counts[detags.com, order(d$samples$group)]

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

AATTTCTTCCTCTTCCT 1 0 0 0 44 1 76 3487

CCGTCTTCTGCTTGTCG 106 268 601 5 1485 420 5156 242

TCTGTACGCAGTCAGGC 160 101 440 33 0 1 0 0

CCGTCTTCTGCTTGTAA 12 21 31 1 87 28 352 14

CCGTCTTCTGCTTGTCA 2 8 19 1 42 17 183 17

AAGACTCAGGACTCATC 0 0 0 0 6 2 4 461

CCGTCTTCTGCTTGTAG 9 11 17 0 61 20 133 9

AGTGTGACGTGACCGGG 0 0 1 0 249 2 5 85

AAATTCTTCCTCTTCCT 1 0 0 0 6 0 2 288

CATAAGTCACAGAGTCG 67 77 58 7 0 0 0 0

If we order the tags by fold change instead of p-value, as in the table below, we see that the
genes with the largest fold changes have very small concentrations, and in general the p-values are
not as small as when ranked by p-value (not surprisingly). This ranking is dominated by genes
that have zero total counts in one group and is less informative than ranking by p-value.

> topTags(de.common, sort.by = "logFC")

Comparison of groups: WT-DCLK

logConc logFC PValue FDR

AAGACTCAGGACTCATC -32.26560 35.50091 1.338780e-22 1.201377e-18

CATAAGTCACAGAGTCG -32.76212 -34.50786 1.573506e-15 8.472070e-12

ACTCTGTGTATTACTCC -32.88687 34.25837 9.030305e-15 4.420088e-11

AAAAGAAATCACAGTTG -32.96478 -34.10256 3.081569e-13 9.759871e-10

GAAATTCTCCATTGATT -33.13284 33.76643 2.687253e-13 9.042941e-10

TAAAGTTTTTTTTTTCT -33.27022 33.49168 9.120874e-12 1.888793e-08

CGCTGTCTGAGAATGAG -33.30217 33.42777 1.728567e-11 3.323911e-08

CAAACTAGAAGACAGAA -33.33060 -33.37091 2.741087e-10 3.513944e-07

CTGGCCAGCCTTTGTTG -33.37249 33.28713 5.210910e-11 9.050510e-08

AGTTTGTGGACGTTGTG -33.42512 33.18187 2.664817e-10 3.513944e-07

Using their dedicated Bayesian model, ’t Hoen et al. [2008] found 3179 transcripts to be dif-
ferentially expressed with a FDR of 8.5%. We can compare ’t Hoen et al. [2008]’s results with the

29

results from edgeR by applying the topTags function to help look at the tags that have a FDR of
less than 0.085 after adjusting for multiple testing using Benjamini and Hochberg [1995]’s method
for controlling the FDR.

We see in the output below that 2270 tags (4.2% of the total number analysed) are significantly
differentially expressed according to edgeR using the common dispersion estimate. Of those tags,
783 (34% of the DE tags) are up-regulated in the wild-type compared with the transgenic samples
and 1487 (66%) are down-regulated in the wild-type compared with transgenic mice.

> summary(decideTestsDGE(de.common, p.value = 0.085))

[,1]

-1 1487

0 51572

1 783

9.5.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags highlighted
in red, is shown below, and the result of this code is shown in Figure 5. In Figure 5, we see
that the 500 tags identified as most differentially expressed have large fold changes—almost all of
the 500 tags in red fall outside the blue lines at log FC = −2 and log FC = 2. This means that
most of these tags show at least a 4-fold change in expression level between the samples. This plot
suggests strongly that the tags identified by edgeR as differentially expressed are truly differentially
expressed, and, given the large changes in expression level, are likely to be biologically meaningful.

> detags500.com <- rownames(topTags(de.common, n = 500)$table)

> png(file = "edgeR_case_study_longSAGE-015.png", height = 600,

+ width = 600)

> plotSmear(de.common, de.tags = detags500.com, main = "FC plot using common dispersion",

+ cex = 0.6)

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

9.6 Analysis using moderated tagwise dispersions

9.6.1 Moderating the tagwise dispersion

An extension to simply using the common dispersion for each tag is to estimate the dispersion
separately for each tag, while ‘squeezing’ these estimates towards the common dispersion estimate

30

Figure 5: Plot of the log-fold change against the log-concentration for each tag. The 500 most
differentially expressed tags as identified by edgeR using the common dispersion are outlined in
red.

in order to improve inference by sharing information between tags. This type of analysis can also
be carried out in few steps using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary. As
discussed in the SAGE case study, above, we currently recommend choosing a value for prior.n

a priori that will provide an appropriate balance between the common and tagwise dispersion
values. This moderation can improve the analysis by giving higher levels of significance to tags
which have more consistent counts within groups (and therefore lower within-group variance) and
reducing the significance of tags which have one extremely large count in one library, which can
otherwise dominate the statistical assessment of differential expression.

In an experiment such as that we consider here, in which we have eight samples and thus six
degrees of freedom for estimating the dispersion parameter, setting the prior.n to be ten should
be appropriate. This means that the common likelihood receives the weight of ten individual tags,
so there will be a reasonable degree of ‘squeezing’ towards the common dispersion estimate, but
there is still enough scope to estimate an individual dispersion for each tag.

The function estimateTagwiseDisp produces a DGEList object that contains all of the elements
present in the object produced by estimateCommonDisp, as well as the value for prior.n used
(d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as we see below. By

31

setting the argument trend=TRUE in the call to estimateTagwiseDisp below we can also add an
expression-dependent trend to the “common” dispersion values to which we squeeze the tagwise
dispersions, by including only tags with a similar expression level in the common likelihood for the
estimation of each tagwise dispersion.

> system.time(d <- estimateTagwiseDisp(d, prior.n = 8, prop.used = 0.3,

+ trend = TRUE, grid.length = 500))

Using grid search to estimate tagwise dispersion.

user system elapsed

75.149 18.466 95.544

> names(d)

[1] "samples" "common.dispersion" "prior.n"

[4] "tagwise.dispersion" "counts" "pseudo.alt"

[7] "genes" "all.zeros" "conc"

[10] "common.lib.size"

> d$prior.n

[1] 8

> head(d$tagwise.dispersion)

[1] 0.2062726 0.2180268 0.1947431 0.2642225 0.1248594 0.2033694

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can
see from the output below, the tagwise dispersion estimates range from a minimum of 0.09 to
a maximum of 0.68, and the common dispersion estimate lies in between the median and mean
values for the tagwise dispersion estimates. Figure 6 shows the relationship between the estimated
tagwise dispersions and tag abundance (log-concentration) for this dataset.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1001 0.1587 0.2092 0.2046 0.2392 0.7212

> d$common.dispersion

[1] 0.161519

> png(file = "edgeR_case_study_tHoen_tgw_disp_vs_logconc.png",

+ height = 600, width = 600)

> plot(log(d$conc$conc.common), d$tagwise.dispersion, panel.first = grid(),

+ ylab = "tagwise dispersion", xlab = "logConc")

> abline(h = d$common.dispersion, col = "dodgerblue", lwd = 3)

> dev.off()

null device

1

32

Figure 6: Plot of the tagwise dispersions against tag abundance (log-concentration).

9.6.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise dispersions,
we can proceed with testing procedures for determining differential expression using exactTest.
Here we carry out the testing using the tagwise dispersion estimates calculated using a prior.n

value of ten.
By default, exactTest uses the common dispersion, but by adding the argument common.disp=FALSE,

tagwise dispersion estimates will be used instead.

> de.tagwise <- exactTest(d, common.disp = FALSE)

Comparison of groups: WT - DCLK

Just as we saw earlier, the object produced by exactTest contains two elements. The first is
a data frame (table) that contains the elements logConc, logFC and p.value and the second is a
vector (comparison) that lists the names of the groups being compared.

The output below shows that when using tagwise dispersions, the edgeR package still identifies
a lot of differential expression between the wild-type group and the DCLK-transgenic group. The
top DE tags are given very small p-values, even after adjusting for multiple testing. However, We

33

see immediately that the p-values for the top tags are many orders of magnitude greater than those
for the top tags identified using the common dispersion.

As with the analysis using the common dispersion, all of the top tags have a large fold change,
indicating that these changes in expression are likely to be biologically meaningful, although inter-
estingly we see more tags (7 out of 10) that are down-regulated in the wild-type group compared
with the DCLK group, which contrasts with using the common dispersion. We note that the rank-
ing of the tags is different, too, and only three of the top ten tags according to using the common
dispersion are found to be among the top ten tags using tagwise dispersions.

> topTags(de.tagwise)

Comparison of groups: WT-DCLK

logConc logFC PValue FDR

TCTGTACGCAGTCAGGC -18.46414 -9.732521 9.086167e-27 4.892174e-22

AATTTCTTCCTCTTCCT -17.30162 11.604816 3.581428e-20 9.641562e-16

CATAAGTCACAGAGTCG -32.75991 -34.512294 5.033695e-16 9.034140e-12

GCTAATAAATGGCAGAT -14.90218 -3.275617 1.446410e-15 1.946941e-11

ATACTGACATTTCGTAT -16.76738 4.163641 2.654657e-15 2.858640e-11

TCTGTATGTTCTCGTAT -16.12021 4.106937 3.934108e-15 3.530338e-11

AGTGTGACGTGACCGGG -19.06518 8.058516 6.122453e-15 4.709216e-11

CCTATTTTTCTCTCGTA -14.63299 -3.188797 3.485921e-14 2.346112e-10

TATTTTGTTTTGTCGTA -17.03685 3.883049 1.427754e-13 8.541459e-10

AAGACTCAGGACTCATC -32.28255 35.467000 1.666800e-13 8.974385e-10

The tables below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed, using the common dispersion and tagwise dispersions. For these tags,
using both methods, there seem to be very large differences between the groups, suggesting that
the DE genes identified are truly differentially expressed, and not false positives.

Particularly noteworthy, however, is how much more consistent the counts within groups are for
the top tags identified using tagwise dispersions compared with those identified using the common
dispersion. This is to be expected, as allowing tagwise dispersions penalises highly variable tags,
so those that have greater variability within groups (especially one or two libraries with extremely
high counts) will appear far lower in the ranking using tagwise dispersions than they would using
the common dispersion. This difference in the rankings provided by the two approaches to the
dispersion parameter could yield valuable information.

In the table below we see one tag, “AATTTCTTCCTCTTCCT” which is dominated by one
very large count. We see that the dispersion estimate (the last column in the table) is 0.43 for
this tag, much higher than the common dispersion value of 0.16. Accordingly, the p-value for DE
is larger than when using the common dispersion. Even with larger dispersion value the tag still
appears as highly DE, but we do conclude that the tag has less evidence for DE than we did using
the common dispersion. We see a similar story for the tag “AAGACTCAGGACTCATC”.

> detags.tgw <- rownames(topTags(de.tagwise)$table)

> detags.com <- rownames(topTags(de.common)$table)

34

> tgw.disp <- d$tagwise.dispersion

> names(tgw.disp) <- rownames(d)

> cbind(d$counts[detags.tgw, order(d$samples$group)], tgw.disp[detags.tgw])

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

TCTGTACGCAGTCAGGC 160 101 440 33 0 1 0 0 0.1534025

AATTTCTTCCTCTTCCT 1 0 0 0 44 1 76 3487 0.4265335

CATAAGTCACAGAGTCG 67 77 58 7 0 0 0 0 0.1402509

GCTAATAAATGGCAGAT 387 321 132 71 45 32 1 38 0.1198208

ATACTGACATTTCGTAT 5 5 8 1 113 228 4 104 0.1350738

TCTGTATGTTCTCGTAT 8 12 7 3 94 427 6 177 0.1507480

AGTGTGACGTGACCGGG 0 0 1 0 249 2 5 85 0.2453300

CCTATTTTTCTCTCGTA 225 463 472 33 55 55 1 37 0.1325028

TATTTTGTTTTGTCGTA 10 5 3 0 88 171 4 67 0.1428571

AAGACTCAGGACTCATC 0 0 0 0 6 2 4 461 0.3793103

> d$counts[detags.com, order(d$samples$group)]

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

AATTTCTTCCTCTTCCT 1 0 0 0 44 1 76 3487

CCGTCTTCTGCTTGTCG 106 268 601 5 1485 420 5156 242

TCTGTACGCAGTCAGGC 160 101 440 33 0 1 0 0

CCGTCTTCTGCTTGTAA 12 21 31 1 87 28 352 14

CCGTCTTCTGCTTGTCA 2 8 19 1 42 17 183 17

AAGACTCAGGACTCATC 0 0 0 0 6 2 4 461

CCGTCTTCTGCTTGTAG 9 11 17 0 61 20 133 9

AGTGTGACGTGACCGGG 0 0 1 0 249 2 5 85

AAATTCTTCCTCTTCCT 1 0 0 0 6 0 2 288

CATAAGTCACAGAGTCG 67 77 58 7 0 0 0 0

> topTags(de.common)

Comparison of groups: WT-DCLK

logConc logFC PValue FDR

AATTTCTTCCTCTTCCT -17.29940 11.605637 3.740474e-43 2.013946e-38

CCGTCTTCTGCTTGTCG -10.57557 5.566736 1.246162e-28 3.354793e-24

TCTGTACGCAGTCAGGC -18.46446 -9.732358 8.588672e-26 1.232375e-21

CCGTCTTCTGCTTGTAA -14.44493 5.425811 9.155493e-26 1.232375e-21

CCGTCTTCTGCTTGTCA -15.46499 5.469611 1.008337e-23 1.085818e-19

AAGACTCAGGACTCATC -32.26560 35.500911 1.338780e-22 1.201377e-18

CCGTCTTCTGCTTGTAG -15.58127 4.761123 6.560131e-20 5.045866e-16

AGTGTGACGTGACCGGG -19.05893 8.075424 2.546566e-19 1.713903e-15

AAATTCTTCCTCTTCCT -19.14120 7.922030 2.439687e-18 1.459529e-14

CATAAGTCACAGAGTCG -32.76212 -34.507864 1.573506e-15 8.472070e-12

35

We might also be interested in comparing the top-ranking genes as identified by edgeR using
the common dispersion and tagwise dispersions. The output below shows, firstly, that there are
three tags that appear in the top ten most DE tags using both common and tagwise dispersions.
Secondly, we see that of the top 1000 most DE tags as identified using tagwise dispersions, 79% of
these tags are also in the list of the 1000 most DE tags as identified using the common dispersion.
This shows that although we do get quite different results depending on which method we use,
there is still a great deal of agreement as to which tags are DE.

> sum(rownames(topTags(de.tagwise)$table) %in% rownames(topTags(de.common)$table))

[1] 5

> sum(rownames(topTags(de.tagwise, n = 1000)$table) %in% rownames(topTags(de.common,

+ n = 1000)$table))/1000 * 100

[1] 78.5

Using their dedicated Bayesian model, ’t Hoen et al. [2008] found 3179 transcripts to be differen-
tially expressed with a FDR of 8.5%. The output below shows that using Benjamini and Hochberg
[1995]’s approach for controlling the FDR at 8.5%, edgeR identifies 2270 tags as DE using common
dispersion and 1929 tags as DE using tagwise dispersions. This means that we determine 4.2% and
3.6% of tags to be DE using common and tagwise dispersions, respectively. The decideTestsDGE

function provides a useful way to summarize DE results after testing, as shown below.

> sum(p.adjust(de.common$table$p.value, method = "BH") < 0.085)

[1] 2270

> mean(p.adjust(de.common$table$p.value, method = "BH") < 0.085) *

+ 100

[1] 4.21604

> sum(p.adjust(de.tagwise$table$p.value, method = "BH") < 0.085)

[1] 1929

> mean(p.adjust(de.tagwise$table$p.value, method = "BH") < 0.085) *

+ 100

[1] 3.582705

> summary(decideTestsDGE(de.tagwise, p = 0.085))

36

[,1]

-1 1235

0 51913

1 694

Of the 1929 tags identified as DE using tagwise dispersions, 694 (36%) are up-regulated in
wild-type and 1235 (64%) are up-regulated in the transgenic mice. The proportions of up- and
down-regulated genes identified using the two approaches to modeling the dispersion are similar,
but using the common dispersion identifies slightly more tags down-regulated in wild-type mice as
DE.

9.6.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold change
against the log-concentration for each tag (analogous to an MA-plot in the microarray context).
We identify the top 500 most DE tags using both common dispersion and tagwise dispersions so we
can highlight them on the plots and compare what we see. The code for producing the fold-change
plots is shown below, and the result of this code is shown in Figure 7.

> detags500.com <- rownames(topTags(de.common, n = 500)$table)

> detags500.tgw <- rownames(topTags(de.tagwise, n = 500)$table)

> png(file = "edgeR_case_study_longSAGE-30.png", height = 800,

+ width = 600)

> par(mfcol = c(2, 1))

> plotSmear(de.common, de.tags = detags500.com, main = "Using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> plotSmear(de.tagwise, de.tags = detags500.tgw, main = "Using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

In Figure 7, the top 500 most differentially expressed tags (those identified as significant by
edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are highlighted in red.
Looking at Figure 7, we see that, generally speaking, the pattern of differential expression looks
similar using the two different methods, and the tags identified as DE have convincingly large fold
changes.

9.7 Setup

This analysis of ’t Hoen et al. [2008]’s tag-based DGE data was conducted on:

> sessionInfo()

37

R version 2.13.0 beta (2011-03-30 r55205)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:

[1] C/UTF-8/C/C/C/C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_2.1.16

loaded via a namespace (and not attached):

[1] limma_3.7.26

and took roughly 8 minutes to carry out on an Apple MacBook with a 2.8 Ghz Intel Core 2 Duo
processor and 8 Gb of 1067 MHz DDR3 memory.

38

Figure 7: Plots of the log-fold change against the log-concentration for each tag, using the common
dispersion (upper), and tagwise dispersions (lower). Tags with positive fold-change here are up-
regulated in wild-type compared with transgenic mice. The 500 most differentially expressed tags
according to each method are highlighted in red on both plots.

39

10 Case Study: RNA-seq data

10.1 Introduction

This section provides a detailed analysis of data from a study by Li et al. [2008] designed to address
a range of practical issues in RNA-seq experiments:

1. How many annotated genes are detected in a single cell type?

2. What is the number of tags that is necessary for the analysis of differentially regulated genes
under different experimental conditions?

3. To what extent can different mRNA isoforms be detected?

4. How can one quantify alternative splicing by using a single or combination of existing tech-
nologies?

Li et al. [2008] attempt to address all of these issues on an androgen-sensitive prostate cancer
cell model. We are interested primarily in the second question, and the challenge of identifying
differentially regulated genes under different experimental conditions. We will demonstrate the use
of the edgeR package for analyzing RNA-seq data for differential gene expression.

10.2 Source of the data

Li et al. [2008] sequenced poly(A)+ RNA from mock-treated or androgen sensitive LNCaP cells
(a cell line of human cells commonly used in the field of oncology) on the Illumina 1G Genome
Analyzer. The researchers used a double-random priming approach that was capable of generating
strand-specific information, although this is not of relevance to our analysis here. The raw RNA-
seq data provided by Li et al. consists of 7 ‘lanes’ of 35bp reads. 1 Approximately 10 million
sequence tags were generated from both control and hormone-treated cells (treated with DHT),
and Li et al. [2008]’s analysis suggests that this tag density is sufficient for quantitative analysis of
gene expression.

The 10 million sequenced tags arise from four libraries from control cells and three libraries
for hormone-treated cells, giving a total of seven libraries to analyse. From Li et al. [2008] and
its companion paper [Li et al., 2006] it is unclear as to whether the treatments are independent
or not. The following analysis shows how a quantitative analysis of gene expression, focusing on
identifying differentially expressed genes, can be conducted for these seven libraries using edgeR.

10.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package and read the data into R. In this case, the tag counts
for the libraries are stored in a single table in a plain text file pnas_expression.txt, in which the
rows of the table represent tags and the columns represent the different libraries.

1The Illumina instrument requires samples to be placed in a ‘flow cell’ which contains eight ‘lanes’—each lane
has a sample of cDNA and generates a library of sequence counts for that sample.

40

To turn the raw RNA-seq data into a table of counts, reads were mapped to the NCBI36
build of the human genome using bowtie, allowing up to two mismatches. Reads which did not
map uniquely were discarded. The number of mapped reads that overlapped ENSEMBL gene
annotations (version 53) was then counted. In counting reads associated with genes, reads which
mapped to non-coding gene regions, such as introns, were included in the count.

Unlike in the other datasets we have look at, counts here are aggregated at the gene, not at
the tag, level.

The files object provides the name of the data file, and makes a convenient argument to the
function read.delim which reads the table of counts into our R session.

> path <- getwd()

> setwd("/Users/dmccarthy/Documents/DGE/LiData")

> library(edgeR)

> raw.data <- read.delim("pnas_expression.txt")

> names(raw.data)

[1] "ensembl_ID" "lane1" "lane2" "lane3" "lane4"

[6] "lane5" "lane6" "lane8" "len"

> setwd(path)

The raw data is stored in a table with columns representing the gene names, the counts for the
seven libraries and a column giving the length of each gene. The gene length is not currently used
by edgeR, but this information could be used in future versions of the package. In the code below,
we assign the counts matrix to an object d with the appropriate rownames, define the groups to
which the samples belong, and then pass these arguments to DGEList, which calculates the library
sizes and constructs a DGEList containing all of the data we require for the analysis. We filter out
lowly expressed tags and those which are only expressed in a small number of samples. We keep
only those tags that have at least one count per million in at least three samples.

> d <- raw.data[, 2:8]

> rownames(d) <- raw.data[, 1]

> group <- c(rep("Control", 4), rep("DHT", 3))

> d <- DGEList(counts = d, group = group)

> dim(d)

[1] 37435 7

> d <- d[rowSums(1e+06 * d$counts/expandAsMatrix(d$samples$lib.size,

+ dim(d)) > 1) >= 3,]

> d <- calcNormFactors(d)

> d

41

An object of class "DGEList"

$samples

group lib.size norm.factors

lane1 Control 978576 1.0296636

lane2 Control 1156844 1.0372521

lane3 Control 1442169 1.0362662

lane4 Control 1485604 1.0378383

lane5 DHT 1823460 0.9537095

lane6 DHT 1834335 0.9525624

lane8 DHT 681743 0.9583181

$counts

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000124208 478 619 628 744 483 716 240

ENSG00000182463 27 20 27 26 48 55 24

ENSG00000124201 180 218 293 275 373 301 88

ENSG00000124207 76 80 85 97 80 81 37

ENSG00000125835 132 200 200 228 280 204 52

16489 more rows ...

$all.zeros

ENSG00000124208 ENSG00000182463 ENSG00000124201 ENSG00000124207 ENSG00000125835

FALSE FALSE FALSE FALSE FALSE

16489 more elements ...

This DGEList is now ready to be passed to the functions that do the calculations to determine
differential expression levels for the genes.

10.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to produce a plot
showing the sample relations based on multidimensional scaling, as demonstrated for the Tag-seq
data above. We can produce an MDS plot for the Li Data using the command below.

> pdf(file = "edgeR_case_study_Li_MDSplot.pdf", height = 6, width = 6)

> plotMDS.dge(d, main = "MDS Plot for Li Data", xlim = c(-1, 1),

+ labels = c("Control1", "Control2", "Control3", "Control4",

+ "DHT1", "DHT2", "DHT3"))

Using grid search to estimate tagwise dispersion.

> dev.off()

42

null device

1

The resulting plot for the Li data is shown in 8. In this plot, Dimension 1 clearly separates the
Control from the DHT-treated samples. This shows that the replicates are reasonably similar to
each other and that we can expect to find lots of DE genes. Having now investigated some of the
relationships between the samples we can proceed to the DE analysis of the data.

−1.0 −0.5 0.0 0.5 1.0

−0
.3

−0
.2

−0
.1

0.0
0.1

0.2

MDS Plot for Li Data

Dimension 1

Di
me

ns
ion

 2

Control1

Control2

Control3

Control4

DHT1DHT2

DHT3

Figure 8: Multidimensional scaling (MDS) plot for the Li data, showing the degree of similarity
between the samples in two dimensions. We see that Dimension 1 strongly separates the Control
from the DHT-treated samples. There are no outliers on this plot.

10.5 Analysis using common dispersion

10.5.1 Estimating the common dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the NB
model is to estimate the dispersion parameter for each tag. Like in the earlier case study, we begin
by estimating the common dispersion using the function estimateCommonDisp, and analysing the
data using the common dispersion.

43

> d <- estimateCommonDisp(d)

> names(d)

[1] "samples" "common.dispersion" "counts"

[4] "pseudo.alt" "genes" "all.zeros"

[7] "conc" "common.lib.size"

The output of estimateCommonDisp is a DGEList object with several new elements. The ele-
ment common.dispersion, as the name suggests, provides the estimate of the common dispersion.
The pseudocounts calculated under the alternative hypothesis are given by pseudo.alt. The el-
ement conc gives the estimates of the overall concentration of each tag across all of the original
samples (conc$conc.common) and the estimate of the concentration of each tag within each group
(conc$conc.group). The element common.lib.size gives the library size to which the original li-
braries have been adjusted in the pseudocounts.

We see in the output below that the total counts in each library of the pseudocounts agrees
well with the common library size, as desired.

> d$samples$lib.size

[1] 978576 1156844 1442169 1485604 1823460 1834335 681743

> d$common.lib.size

[1] 1276768

> colSums(d$pseudo.alt)

lane1 lane2 lane3 lane4 lane5 lane6 lane8

1237867 1228722 1229837 1227950 1336999 1338589 1332297

Here the coefficient of variation of biological variation (square root of the common dispersion)
is found to be 0.142. We also note that although a common dispersion estimate of 0.02 may seem
‘small’, if a tag has just an average of just 200 counts per sample, then the estimate of the tag’s
variance is 5 times greater than it would be under the Poisson model.

> d$common.dispersion

[1] 0.0199892

> sqrt(d$common.dispersion)

[1] 0.1413832

44

10.5.2 Testing

Once we have an estimate of the common dispersion, we can proceed with testing procedures for
determining differential expression. As for the SAGE data, there are only two groups here, so the
pair need not be specified in the call to exactTest.

> de.com <- exactTest(d)

Comparison of groups: DHT - Control

> names(de.com)

[1] "table" "comparison" "genes"

The results of the NB exact test can be accessed conveniently using the topTags function
applied to the object produced by exactTest. The table below shows the top 10 DE genes ranked
by p-value.

The table in the output from topTags shows that the edgeR package identifies a great deal of
differential expression, and gives the top genes extremely small p-values, even after adjusting for
multiple testing. Furthermore, all of the top genes have a very large fold change (indicating that
these tags are likely to be biologically meaningful), and all are up-regulated in the DHT-treatment
group compared to the control group.

Of course, for many applications the ranking for differential expression is more important than
the p-value, and topTags provides such a ranking. As suggested in the SAGE case study, a Gene
Ontology analysis could be carried out using the list of top gene and p-values provided by topTags

in order to obtain more systematic and functional information about the differentially expressed
genes.

> topTags(de.com)

Comparison of groups: DHT-Control

logConc logFC PValue FDR

ENSG00000151503 -11.93976 5.822268 6.514565e-193 1.074512e-188

ENSG00000096060 -11.32470 5.010054 1.234621e-162 1.018192e-158

ENSG00000127954 -15.62463 8.236128 2.431779e-153 1.336992e-149

ENSG00000166451 -12.27934 4.687187 1.046604e-134 4.315670e-131

ENSG00000131016 -14.42053 5.307517 4.117750e-110 1.358363e-106

ENSG00000113594 -12.82529 4.117312 5.314184e-102 1.460869e-98

ENSG00000116285 -13.55908 4.205334 4.633316e-93 1.091742e-89

ENSG00000123983 -12.08741 3.661336 1.192773e-92 2.459200e-89

ENSG00000166086 -15.23730 5.508111 1.912744e-90 3.505422e-87

ENSG00000162772 -10.80873 3.318935 7.148502e-86 1.179074e-82

45

The table below shows the raw counts for the genes that edgeR has identified as the most
differentially expressed. For these genes there seems to be very large differences between the
groups, suggesting that the DE genes identified are truly differentially expressed.

> detags.com <- rownames(topTags(de.com)$table)

> d$counts[detags.com,]

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 35 35 49 59 3307 3439 1224

ENSG00000096060 65 79 105 113 3975 3727 1451

ENSG00000127954 0 0 3 3 607 602 220

ENSG00000166451 41 52 57 57 1750 1654 728

ENSG00000131016 9 5 18 6 564 377 213

ENSG00000113594 37 36 57 43 936 959 418

ENSG00000116285 18 28 23 32 645 630 218

ENSG00000123983 62 76 94 108 1354 1258 628

ENSG00000166086 9 2 3 6 296 298 121

ENSG00000162772 172 204 250 304 2972 3269 1112

If we order the genes by fold change instead of p-value, we see that the genes with the largest
fold changes have very small concentrations. This ranking is dominated by genes that have zero
total counts in one group and is less informative than ranking by p-value.

> topTags(de.com, n = 10, sort.by = "logFC")

Comparison of groups: DHT-Control

logConc logFC PValue FDR

ENSG00000091972 -31.78321 -36.46569 1.239501e-54 5.525493e-52

ENSG00000164120 -32.24356 35.54500 3.118964e-45 1.049881e-42

ENSG00000100373 -32.95621 -34.11968 1.066402e-16 5.729392e-15

ENSG00000118513 -33.03119 -33.96974 3.349294e-15 1.551777e-13

ENSG00000081237 -33.18303 -33.66604 1.411324e-12 4.646384e-11

ENSG00000196660 -33.24828 -33.53555 1.698009e-11 4.870776e-10

ENSG00000117245 -33.26382 -33.50448 2.846526e-11 7.928600e-10

ENSG00000019549 -33.36137 33.30938 2.364783e-13 8.388116e-12

ENSG00000059804 -33.40584 33.22043 1.021413e-12 3.403471e-11

ENSG00000018625 -33.41264 33.20683 2.131755e-12 6.814179e-11

We can see how many genes are identified as differentially expressed between the control group
(untreated LNCaP cells) and the DHT-treated LNCaP cells, for a given threshold for the exact
p-value or for the adjusted p-value.

As the output below shows, edgeR detects a huge number of differentially expressed genes in
this dataset. Over 3000 genes are given a p-value less than 0.01.

46

> summary(decideTestsDGE(de.com, p.value = 0.01))

[,1]

-1 1620

0 13110

1 1764

The output below shows that 4936 genes are given an adjusted p-value of less than 0.05. This
means that if we set our control the FDR for differential expression at 5%, then edgeR identifies
30% of all the genes in the dataset as differentially expressed.

> summary(decideTestsDGE(de.com, p.value = 0.05))

[,1]

-1 2463

0 11558

1 2473

Of the genes identified as DE above, 2463 (49.9% of the DE genes) are up-regulated in DHT-
treated compared with control cells, and 2473 (50.1%) are up-regulated in the control cells com-
pared with DHT-treated cells. It is interesting to note that although we detect far more genes as
DE that are up-regulated in the control group, all of the top ten genes were up-regulated in the
DHT-treated group.

10.5.3 Visualising DGE results

The code for producing the default fold-change plot, with the top 500 most DE tags highlighted
in red, is shown below, and the result of this code is shown in Figure 9. In Figure 9, we see
that the 500 tags identified as most differentially expressed have large fold changes—almost all of
the 500 tags in red fall outside the blue lines at log FC = −2 and log FC = 2. This means that
most of these tags show at least a 4-fold change in expression level between the samples. This plot
suggests strongly that the tags identified by edgeR as differentially expressed are truly differentially
expressed, and, given the large changes in expression level, are likely to be biologically meaningful.

> detags500.com <- rownames(topTags(de.com, n = 500)$table)

> png(file = "edgeR_case_study_Li-017.png", height = 600, width = 600)

> plotSmear(de.com, de.tags = detags500.com, main = "FC plot using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

47

Figure 9: Plot of the log-fold change against the log-concentration for each tag. The 500 most
differentially expressed tags as identified by edgeR using the common dispersion are outlined in
red.

10.6 Analysis using moderated tagwise dispersions

10.6.1 Moderating the tagwise dispersion

As discussed in the previous case studies, an extension to simply using the common dispersion for
each tag is to estimate the dispersion separately for each tag, while ‘squeezing’ these estimates
towards the common dispersion estimate. The goal of this moderation of the dispersion estimates
is to improve inference by sharing information between tags. This type of analysis can be carried
out in few steps using the edgeR package.

To run the moderated analysis, we need to determine how much moderation is necessary. As
discussed above, we currently prefer to choose a sensible value for the smoothing parameter a
priori, although we do have an algorithm developed by Robinson and Smyth [2007] for estimating
the smoothing parameter as an approximate eBayes rule.

As we only have seven libraries, a small sample size, we should not be too confident about the
accuracy of the tagwise dispersions. Therefore it is recommended to use a larger value for prior.n,
which can be selected a priori, instead of being estimated. In an experiment such as this, the seven
samples mean that we have five degrees of freedom for estimating the dispersion parameter. Thus,
setting the prior.n to be ten (as we have done previously) should be appropriate. This means

48

that the common likelihood receives the weight of ten individual tags. Therefore, there will be a
reasonable degree of ‘squeezing’ towards the common dispersion estimate, but still enough scope
to allow flexibility when estimatig the individual dispersion for each gene.

The function estimateTagwiseDisp produces a DGEList object that contains all of the elements
present in the object produced by estimateCommonDisp, as well as the value for prior.n used
(d$prior.n) and the tagwise dispersion estimates (d$tagwise.dispersion), as we see below. Here
we set grid.length=500 for greater precision in the tagwise dispersion estimates.

> system.time(d <- estimateTagwiseDisp(d, prior.n = 10, trend = TRUE,

+ prop.used = 0.3, grid.length = 500))

Using grid search to estimate tagwise dispersion.

user system elapsed

18.796 4.798 23.795

> names(d)

[1] "samples" "common.dispersion" "prior.n"

[4] "tagwise.dispersion" "counts" "pseudo.alt"

[7] "genes" "all.zeros" "conc"

[10] "common.lib.size"

> d$prior.n

[1] 10

> head(d$tagwise.dispersion)

[1] 0.01317123 0.02774923 0.01317123 0.01729400 0.01729400 0.01936799

It is interesting to consider the distribution of the tagwise dispersion estimates. As we can
see from the output below, the tagwise dispersion estimates range from a minimum of 0.005 to
a maximum of 0.236, and the common dispersion estimate lies in between the median and mean
values for the tagwise dispersion estimates. Here we have also allowed for a mean-dependent trend
on the tagwise dispersion values, which can be inspected in Figure 10.

> summary(d$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.009082 0.021450 0.040580 0.062720 0.097690 0.383100

> d$common.dispersion

[1] 0.0199892

49

> png(file = "Li_tgw-disp_vs_logconc.png", height = 600, width = 600)

> plot(log2(d$conc$conc.common), d$tagwise.dispersion, panel.first = grid())

> abline(h = d$common.dispersion, col = "dodgerblue", lwd = 3)

> dev.off()

null device

1

Figure 10: Plot of the tagwise dispersion estimates against abundance (overall expression, here
expressed log-concentration).

50

10.6.2 Testing

Once we have an estimate of the common dispersion and/or estimates of the tagwise dispersions,
we can proceed with testing procedures for determining differential expression using exactTest.
Here we carry out the testing using the tagwise dispersion estimates calculated using a prior.n

value of ten.
By default, exactTest uses the common dispersion, but by adding the argument common.disp=FALSE,

tagwise dispersion estimates will be used instead.

> de.tgw <- exactTest(d, common.disp = FALSE)

Comparison of groups: DHT - Control

The output below shows that when using tagwise dispersions, the edgeR package still identifies
a huge amount of differential expression between the control group and the DHT-treated group.
The top DE tags are given even smaller p-values than using the common dispersion—many, many
orders of magnitude smaller.

As with the analysis using the common dispersion, all of the top genes have large fold changes,
indicating that these changes in expression are likely to be biologically meaningful. Again, all of
the top genes are up-regulated in the DHT-treated group compared with the control group. We
note that the ranking of the tags is similar, with seven of the top ten genes using the common
dispersion to be found among the top ten genes using tagwise dispersions.

> topTags(de.tgw)

Comparison of groups: DHT-Control

logConc logFC PValue FDR

ENSG00000151503 -11.939036 5.821195 2.293898e-312 3.783556e-308

ENSG00000096060 -11.323877 5.008347 3.665392e-270 3.022849e-266

ENSG00000166451 -12.280842 4.687419 1.226009e-213 6.740597e-210

ENSG00000127954 -15.623488 8.234753 1.513030e-191 6.238980e-188

ENSG00000113594 -12.827228 4.115718 1.548851e-156 5.109350e-153

ENSG00000162772 -10.808134 3.318367 5.949118e-145 1.635412e-141

ENSG00000123983 -12.088039 3.658343 1.201183e-129 2.830329e-126

ENSG00000116133 -11.732849 3.245566 1.432267e-126 2.952976e-123

ENSG00000115648 -8.823139 2.598576 1.601912e-124 2.935770e-121

ENSG00000116285 -13.558669 4.207240 2.656142e-122 4.381040e-119

Of course, we can also rank the top tags using the fold change instead of the p-value, as described
above.

The tables below shows the quantile-adjusted counts (i.e. counts for equalised library sizes)
for the genes that edgeR has identified as the most differentially expressed, using the common
dispersion and tagwise dispersions. For these tags, using both methods, there seem to be very

51

large differences between the groups, suggesting that the DE genes identified are truly differentially
expressed, and not false positives.

We saw for ’t Hoen et al. [2008]’s data how much more consistent the counts within groups
are for the top tags identified using tagwise dispersions compared with those identified using the
common dispersion. This effect is not nearly as pronounced here, as the differences between groups
for the top ten tags are so profound (these are after all not true biological replicate samples), but
we do note that there is a great deal of consistency in the counts within groups for these top tags.

> detags.tgw <- rownames(topTags(de.tgw)$table)

> detags.com <- rownames(topTags(de.com)$table)

> round(d$pseudo.alt[detags.tgw,])

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 44 37 42 49 2428 2513 2393

ENSG00000096060 83 84 90 94 2919 2723 2836

ENSG00000166451 52 55 49 47 1285 1208 1421

ENSG00000127954 0 0 3 3 446 440 430

ENSG00000113594 47 38 49 35 687 700 814

ENSG00000162772 218 217 213 252 2182 2389 2174

ENSG00000123983 79 81 80 90 994 918 1223

ENSG00000116133 123 114 132 118 1198 1177 1086

ENSG00000115648 1191 1153 1125 1114 7144 7265 6396

ENSG00000116285 23 30 19 27 474 460 427

> round(d$pseudo.alt[detags.com,])

lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000151503 44 37 42 49 2428 2513 2393

ENSG00000096060 83 84 90 94 2919 2723 2836

ENSG00000127954 0 0 3 3 446 440 430

ENSG00000166451 52 55 49 47 1285 1208 1421

ENSG00000131016 11 5 16 5 415 274 414

ENSG00000113594 47 38 49 35 687 700 814

ENSG00000116285 23 30 19 27 474 460 427

ENSG00000123983 79 81 80 90 994 918 1223

ENSG00000166086 11 2 2 5 217 218 235

ENSG00000162772 218 217 213 252 2182 2389 2174

We might also be interested in comparing the top-ranking genes as identified by edgeR using
the common dispersion and tagwise dispersions. We see in the output below that of the top 1000
most DE tags as identified using tagwise dispersions, 86% of these tags are also in the list of the
1000 most DE tags as identified using the common dispersion. This shows that for this dataset
there is a great deal of agreement between the common and tagwise dispersion approaches as to
which tags are DE.

52

> sum(rownames(topTags(de.tgw, n = 1000)$table) %in% rownames(topTags(de.com,

+ n = 1000)$table))/1000 * 100

[1] 85.9

Using the common dispersion we found that 4936 genes (30% of the total number) are given an
adjusted p-value of less than 0.05. In the output below, we see that using tagwise dispersions we
obtain slightly fewer DE genes, namely 4438, or 27% of all of the genes in the (filtered) dataset.

> summary(decideTestsDGE(de.tgw, p.value = 0.05))

[,1]

-1 2120

0 12056

1 2318

Of the 4438 tags identified as DE using tagwise dispersions, 2318 (52%) are up-regulated in
DHT-treated cells and 2120 (48%) are up-regulated in the control cells. The proportions of up- and
down-regulated genes identified using the two approaches to modeling the dispersion are practically
equal.

10.6.3 Visualising DGE results

As discussed earlier, the function plotSmear can be used to generate a plot of the log-fold change
against the log-concentration for each tag. We identify the top 500 most DE tags using both
common dispersion and tagwise dispersions so we can highlight them on the plots and compare
what we see. The code for producing the fold-change plots (in the one frame for purposes of
comparison) is shown below, and the result of this code is shown in Figure 11.

> detags500.com <- rownames(topTags(de.com, n = 500)$table)

> detags500.tgw <- rownames(topTags(de.tgw, n = 500)$table)

> png(file = "edgeR_case_study_Li-032.png", height = 800, width = 600)

> par(mfcol = c(2, 1))

> plotSmear(d, de.tags = detags500.com, main = "Using common dispersion")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> plotSmear(d, de.tags = detags500.tgw, main = "Using tagwise dispersions")

> abline(h = c(-2, 2), col = "dodgerblue", lwd = 2)

> dev.off()

null device

1

53

In Figure 11, the top 500 most differentially expressed genes (those identified as significant by
edgeR using the common dispersion (top) and tagwise dispersions (bottom)) are highlighted in red.
Looking at Figure 11, we see that, generally speaking, the pattern of differential expression looks
similar using the two different methods, and the genes identified as DE have convincingly large
fold changes.

We can also look at how well we are modeling the variance in the data by looking at a mean-
variance plot. Figure 12 shows the mean-variance plot produced by the plot below.

> png(file = "edgeR_case_study_Li-meanvarplot.png", height = 600,

+ width = 600)

> mv <- plotMeanVar(d, show.raw.vars = TRUE, show.tagwise.vars = TRUE,

+ dispersion.method = "qcml", NBline = TRUE)

> dev.off()

null device

1

10.7 Setup

This analysis of Li et al. [2008]’s RNA-seq data was conducted on:

> sessionInfo()

R version 2.13.0 beta (2011-03-30 r55205)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:

[1] C/UTF-8/C/C/C/C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_2.1.16

loaded via a namespace (and not attached):

[1] limma_3.7.26

and took 2–3 minutes to carry out on an Apple MacBook with a 2.8 Ghz Intel Core 2 Duo processor
and 8 Gb of 1067 MHz DDR3 memory.

54

Figure 11: Plots of the log-fold change against the log-concentration for each tag, using the common
dispersion (top), and tagwise dispersions (bottom). Tags with positive fold-change here are up-
regulated in DHT-treated cells compared with control cells. The 500 most differentially expressed
tags according to each method are highlighted in red on both plots.

55

Figure 12: Mean-variance plot showing the raw tagwise variances (grey dots) against tag abun-
dance. The red crosses show the average of raw variance for tags grouped into 100 bins based on
overall abundance (averaging is done on the square-root scale to avoid upward bias when these
are displayed on the log scale). The light blue dots show the estimated variance for each gene,
computed from the tagwise dispersion values. The solid blue line shows the estimated variance
using the common dispersion. Overall, the tagwise dispersion estimates look to do a good job of
capturing the mean-variance relationship for these data. The black line shows the Poisson vari-
ance (variance equals mean). Even for these samples, which are not true biological replicates, the
Poisson variance model is inadequate.

56

11 Case study: Oral carcinomas vs matched normal tissue

11.1 Introduction

This section provides a detailed analysis of data from a paired design RNA-seq experiment, fea-
turing oral squamous cell carcinomas and matched normal tissue from three patients [Tuch et al.,
2010]. For a paired design, as we discussed before, we have to apply the Cox-Reid (CR) method
in estimating dispersions and the GLM method in detecting DE tags.

11.2 Source of the data

The dataset is obtained from the NCBI’s Gene Expression Omnibus (GEO) (http://www.ncbi.
nlm.nih.gov/geo/). It was produced using the Applied Biosystems (AB) SOLiD System 3.0, and
is described in Tuch et al. [2010]. The raw reads had been mapped by Tuch et al. [2010] to the
UCSC hg18 reference genome. The raw counts, summarised at the level of refSeq transcripts were
made available as a supplementary table in their paper. In order to analyse these data in R it is
necessary to manipulate the data a little further.

The table that Tuch et al. [2010] provide contains approximately 15000 refSeq transcripts.
Many transcripts can map to the same gene, which is not ideal for our analysis in edgeR. It may
upset the modeling of the mean-variance relationship for these data if we have several entries for
each gene. To get around this problem we have used only the transcipt with the greatest number
of exons for each gene, the idea being that this will provide a reasonable summary of the overall
expression level for the gene. If the counts were summarised at the exon level, then there are other
methods that could be used to find genes with differential isoform expression (or splice variants)
from the data.

11.3 Reading in the data and creating a DGEList object

Our first task is to load the edgeR package, read the data into R and organise the data into a
DGEList object that the functions in the package can recognise. The library size is usually the total
sum of all of the counts for a library, and that is how library size is defined in this analysis. One
way to construct an appropriate DGEList object for these data is described below. In this case, the
tag counts for the six individual libraries are stored in one table, which is a trimmed version (some
irrelevant columns dropped) of the supplementary table from Tuch et al. [2010].

It is usually straight-forward to produce a DGEList object from a table of counts, but the task
is complicated here because we have many transcripts mapping to the same gene and also the gene
symbols provided in the table do not all match exactly to official gene symbols. The commands
below show how to ensure that all genes have the official gene symbol (using alias2SymbolTable

from the limma package) and that we use only the transcript with the greatest number of exons to
represent each gene.

Furthermore, not all of the refSeq IDs provided match the refSeq IDs currently in use—a
result of the original study being undertaken several years ago. To avoid potential problems in

57

downstream analysis (particularly in GO or gene set analysis) we retain in our dataset only those
transcripts that match to refSeq IDs in the current Entrez database, which is provided by the
org.HS.eg.db package from Bioconductor.

The output below shows the commands for manipulating the dataset to produce a neat DGE-

List object for use by subsequent functions for the DE analysis. We also compute the TMM
normalization factors for these libraries in the third last command below.

> path <- getwd()

> library(edgeR)

> library(limma)

> setwd("/Users/dmccarthy/Documents/DGE/TuchData")

> rawdata <- read.csv(file = "tuch_counts.csv", stringsAsFactors = FALSE)

> head(rawdata)

X X.1 X.2 X8N X8T X33N X33T X51N X51T

1 counts counts counts counts counts counts

2 idRefSeq nameOfGene numberOfExons sum sum sum sum sum sum

3 NM_182502 TMPRSS11B 10 2592 3 7805 321 3372 9

4 NM_003280 TNNC1 6 1684 0 1787 7 4894 559

5 NM_152381 XIRP2 10 9915 15 10396 48 23309 7181

6 NM_022438 MAL 3 2496 2 3585 239 1596 7

> library(org.Hs.eg.db)

> rawtable <- rawdata[-c(1, 2),]

> refseqid <- as.character(rawtable[, 1])

> head(refseqid)

[1] "NM_182502" "NM_003280" "NM_152381" "NM_022438" "NM_001100112"

[6] "NM_017534"

> idfound <- refseqid %in% mappedRkeys(org.Hs.egREFSEQ)

> table(idfound)

idfound

FALSE TRUE

313 15355

> rawtable <- rawtable[idfound,]

> head(rawtable)

X X.1 X.2 X8N X8T X33N X33T X51N X51T

3 NM_182502 TMPRSS11B 10 2592 3 7805 321 3372 9

4 NM_003280 TNNC1 6 1684 0 1787 7 4894 559

58

5 NM_152381 XIRP2 10 9915 15 10396 48 23309 7181

6 NM_022438 MAL 3 2496 2 3585 239 1596 7

7 NM_001100112 MYH2 40 4389 7 7944 16 9262 1818

8 NM_017534 MYH2 40 4402 7 7943 16 9244 1815

> dim(rawtable)

[1] 15355 9

> genes <- rawtable[, 2]

> genes.sym <- alias2SymbolTable(genes, species = "Hs")

> genes <- genes.sym[!is.na(genes.sym)]

> head(genes)

[1] "TMPRSS11B" "TNNC1" "XIRP2" "MAL" "MYH2" "MYH2"

> length(genes)

[1] 15317

> nexons <- as.numeric(rawtable[!is.na(genes.sym), 3])

> head(nexons)

[1] 10 6 10 3 40 40

> length(nexons)

[1] 15317

> counts <- matrix(as.numeric(unlist(rawtable[!is.na(genes.sym),

+ -c(1, 2, 3)])), nrow = sum(!is.na(genes.sym)), ncol = 6)

> rownames(counts) <- rawtable[!is.na(genes.sym), 1]

> colnames(counts) <- c("N8", "T8", "N33", "T33", "N51", "T51")

> head(counts)

N8 T8 N33 T33 N51 T51

NM_182502 2592 3 7805 321 3372 9

NM_003280 1684 0 1787 7 4894 559

NM_152381 9915 15 10396 48 23309 7181

NM_022438 2496 2 3585 239 1596 7

NM_001100112 4389 7 7944 16 9262 1818

NM_017534 4402 7 7943 16 9244 1815

> dim(counts)

59

[1] 15317 6

> o <- order(nexons, decreasing = TRUE)

> counts.ord <- counts[o,]

> genes.ord <- genes[o]

> keep <- !duplicated(genes.ord)

> sum(keep)

[1] 10464

> counts.uniq <- counts.ord[keep,]

> genes.uniq <- genes.ord[keep]

> o2 <- order(genes.uniq)

> d.tuch <- DGEList(counts.uniq[o2,], group = rep(c("normal",

+ "tumour"), 3), genes = genes.uniq[o2])

> d.tuch <- calcNormFactors(d.tuch)

> d.tuch

An object of class "DGEList"

$samples

group lib.size norm.factors

N8 normal 7795290 1.1570441

T8 tumour 7205310 1.0908009

N33 normal 15761188 0.6618443

T33 tumour 14070267 0.9575164

N51 normal 21083214 1.0386291

T51 tumour 14819300 1.2037661

$counts

N8 T8 N33 T33 N51 T51

NM_000014 2242 261 2285 597 15121 1991

NM_144670 11731 912 13308 3071 6944 1160

NM_017436 162 296 111 362 751 182

NM_015665 199 81 215 344 512 342

NM_023928 470 710 573 1112 690 728

10459 more rows ...

$genes

[1] "A2M" "A2ML1" "A4GALT" "AAAS" "AACS"

10459 more rows ...

$all.zeros

NM_000014 NM_144670 NM_017436 NM_015665 NM_023928

60

FALSE FALSE FALSE FALSE FALSE

10459 more elements ...

> setwd(path)

This DGEList is now ready to be passed to the functions that do the calculations to determine
differential expression levels for the genes. Note that when we ‘see’ the DGEList object d.tuch, the
counts for just the first five genes in the table are shown, as well as the samples element, which is
a data frame containing information about groups, descriptions and library sizes for the samples.

For this dataset (after our tweaking of it), there are over 10 000 unique tags (genes) sequenced,
some of which may have a very small number of counts in total across all libraries. It is not possible
to achieve statistical significance with fewer than ten counts in total for a tag, and we also do not
want to waste effort finding spurious DE (such as when a gene is only expressed in one library), so
we filter out tags with fewer than 1 count per million in four or more libraries—this also helps to
speed up the calculations we need to perform. The subsetting capability of DGEList objects makes
such filtering very easy to carry out (as shown below). Interestingly, no genes are filtered out for
this dataset, indicating that some filtering of low expression transcripts may have been done by
Tuch et al. [2010] in producing the table of counts that we have used here.

> d.tuch <- d.tuch[rowSums(1e+06 * d.tuch$counts/expandAsMatrix(d.tuch$samples$lib.size,

+ dim(d.tuch)) > 1) >= 2,]

> nrow(d.tuch)

[1] 10464

Now the dataset is ready to be analysed for differential expression.

11.4 Producing an MDS plot

Before proceeding with the computations for differential expression, it is possible to produce a plot
showing the sample relations based on multidimensional scaling. The function plotMDS.dge pro-
duces an MDS plot for the samples when provided with the DGEList object, as shown in Figure 13.

> pdf(file = "edgeR_case_study_Tuch_MDSplot.pdf", height = 6, width = 6)

> plotMDS.dge(d.tuch, main = "MDS Plot for Tuch Data")

Using grid search to estimate tagwise dispersion.

> dev.off()

null device

1

> tools::compactPDF("edgeR_case_study_Tuch_MDSplot.pdf")

From the MDS plot, it can be seen that the libraries T33 and T8 (tumour samples from patients
33 and 8 respectively) are most different from the other samples, but we will not remove them
from the analysis as we will just be demonstrating the use of edgeR.

61

−1.0 −0.5 0.0 0.5

−0
.2

0.0
0.2

0.4
0.6

MDS Plot for Tuch Data

Dimension 1

Di
me

ns
ion

 2

N8

T8

N33
T33

N51

T51

Figure 13: Multidimensional scaling (MDS) plot for the Tuch data, showing the relations between
the samples in two dimensions. From this plot, the samples T33 and T8 can be identified easily as
outliers—there is a large distance between these two samples and the others.

11.5 The design matrix

Before we fit negative binomial GLMs, we need to define our design matrix based on the experi-
mental design. Here we want to test for differential expressions between tumour and normal tissues
within patients, i.e. adjusting for differences between patients. In statistical terms, this is an addi-
tive linear model with patient as the blocking factor. So the full design matrix can be created as
follows.

> patient <- factor(c(8, 8, 33, 33, 51, 51))

> design <- model.matrix(~patient + d.tuch$samples$group)

> rownames(design) <- rownames(d.tuch$samples)

> colnames(design)[4] <- "tumour"

> design

(Intercept) patient33 patient51 tumour

N8 1 0 0 0

T8 1 0 0 1

N33 1 1 0 0

62

T33 1 1 0 1

N51 1 0 1 0

T51 1 0 1 1

attr(,"assign")

[1] 0 1 1 2

attr(,"contrasts")

attr(,"contrasts")$patient

[1] "contr.treatment"

attr(,"contrasts")$`d.tuch$samples$group`
[1] "contr.treatment"

This is the design matrix under the alternative hypothesis (i.e. the difference between the
normal tissue and the tumour tissue does exist), and the design matrix under the null hypothesis
is just the above matrix without the last column.

11.6 Analysis using Cox-Reid common dispersion

11.6.1 Estimating the Cox-Reid common dispersion

The first major step in the analysis of DGE data using the NB model is to estimate the dispersion
parameter for each tag. Note that this is a paired design experiment, so the dispersion has to be
estimated in a different way such that both the cell-type and the patient factors are taken into
account.

Like the qCML method (i.e.,the estimateCommonDisp() and the estimateTagwiseDisp() func-
tion) we used in previous case studies, the CR method also calculates both the common dispersion
and tagwise dispersions. The most straight-forward analysis for a paired design experiment uses
the CR common dispersion estimate as the dispersion for all tags. For many applications this will
be adequate and it may not be necessary to estimate the CR tagwise dispersions, i.e. estimate the
CR dispersion separately for each tag.

Estimating the CR common dispersion is done using the function estimateGLMCommonDisp().
Once we have the design matrix, we pass it to the estimateGLMCommonDisp() function, together
with the DGEList object ‘d.tuch’.

> d.tuch <- estimateGLMCommonDisp(d.tuch, design)

> names(d.tuch)

[1] "samples" "counts" "genes"

[4] "all.zeros" "common.dispersion"

The output of estimateCRDisp is a DGEList object with several new elements. The element com-
mon.dispersion, as the name suggests, provides the estimate of the Cox-Reid common dispersion,
and design gives the design matrix as we defined at the start.

63

Under the negative binomial model, the square root of the common dispersion gives the coeffi-
cient of variation of biological variation. Here the common dispersion is found to be 0.161, so the
coefficient of biological variation is around 0.401.

> d.tuch$common.dispersion

[1] 0.160527

> sqrt(d.tuch$common.dispersion)

[1] 0.4006582

11.6.2 Testing

Once we have an estimate of the CR common dispersion, we can proceed with testing procedures
for determining differential expression. Since this is a paired design experiment, we have to use
the new testing method, the GLM method, rather than the exact test (the one we demonstrated
in the previous case studies).

The GLM method fits a negative binomial generalized linear model for each gene/tag with
the unadjusted counts provided, a value for the dispersion parameter and, optionally, offsets and
weights for different libraries or transcripts. This is done using the funtion glmFit() and glmLRT().

The function glmFit() calls the in-built function glm.fit() to fit the NB GLM for each tag
and produces an object of class DGEGLM. Once we have a fit for a given design matrix, glmLRT()

can be run with a given coefficient or contrast specified and evidence for differential expression
can be assessed using a likelihood ratio test. The glmLRT function produces an object of class
DGELRT with a table containing the abundance of each tag (log-concentration, logConc), the log-
fold change of expression between conditions/contrasts being tested (logFC), the likelihood ratio
statistic (LR.statistic) and the p-value from the LR test (p.value), for each tag in the dataset. Then
tags can be ranked in order of evidence for differential expression, based on either the p-value or
the log-fold change of expression computed for each tag.

The results of the NB GLM likelihood ratio test can be accessed conveniently using the topTags

function applied to the object produced by glmLRT. The user can specify the number, n, of tags for
which they would like to see the differential expression information, ranked by p-value (default) or
fold change. As the same test is conducted for many thousands of tags, adjusting the p-values for
multiple testing is recommended. The desired adjustment method can be supplied by the user, with
the default method being Benjamini and Hochberg’s approach for controlling the false discovery
rate (FDR) [Benjamini and Hochberg, 1995]. The table below shows the top 10 DE genes ranked
by p-value.

> glmfit.tuch <- glmFit(d.tuch, design, dispersion = d.tuch$common.dispersion)

> lrt.tuch <- glmLRT(d.tuch, glmfit.tuch, coef = 4)

> options(digits = 4)

> topTags(lrt.tuch)

64

Coefficient: tumour

genes logConc logFC LR P.Value FDR

NM_182502 TMPRSS11B -8.506 -7.322 121.55 2.892e-28 3.026e-24

NM_016190 CRNN -6.987 -7.256 107.46 3.538e-25 1.851e-21

NM_002371 MAL -8.952 -6.810 106.38 6.089e-25 2.124e-21

NM_002465 MYBPC1 -8.157 -7.019 99.75 1.727e-23 4.518e-20

NM_014440 IL1F6 -10.060 -6.148 96.06 1.114e-22 2.332e-19

NM_002272 KRT4 -5.621 -7.133 92.79 5.800e-22 9.311e-19

NM_001010909 MUC21 -8.797 -6.724 92.65 6.229e-22 9.311e-19

NM_001100 ACTA1 -8.390 -6.281 92.08 8.329e-22 1.089e-18

NM_003280 TNNC1 -9.188 -6.958 91.38 1.186e-21 1.379e-18

NM_006063 KBTBD10 -8.232 -6.215 89.07 3.813e-21 3.990e-18

The output shows that the edgeR package identifies a good deal of differential expression be-
tween the normal tissue group and the tumour tissue group. The top DE tags are given very small
p-values, even after adjusting for multiple testing. Furthermore, all of the top tags have a large
fold change, indicating that these tags are more likely to be biologically meaningful.

The table below shows the raw counts for the tags that edgeR has identified as the most
differentially expressed. For these tags there seems to be very large differences between the groups,
suggesting that the DE tags identified are truly differentially expressed, and not false positives.

> top <- rownames(topTags(lrt.tuch)$table)

> d.tuch$counts[top, order(d.tuch$samples$group)]

N8 N33 N51 T8 T33 T51

NM_182502 2592 7805 3372 3 321 9

NM_016190 24146 22026 12480 49 2353 26

NM_002371 2697 3941 1750 3 265 8

NM_002465 4809 4146 15623 10 14 1311

NM_014440 367 1824 802 10 45 1

NM_002272 76461 99082 47411 353 20651 31

NM_001010909 4160 3425 1720 7 516 5

NM_001100 3334 3198 13643 8 32 1063

NM_003280 1684 1787 4894 0 7 559

NM_006063 4325 3115 16007 24 17 1461

Note that the 2nd tag (’CKM’) and the 7th tag (’MYBPC1’) have much larger counts in patient
55 than in the other two patients, which shows that the effect from the patients does exist and the
GLM method can pick that up.

If we order the genes by fold change instead of p-value, as in the table below, we see that the
tags with the largest fold changes have very small concentrations. This ranking is dominated by
genes that have zero counts in one group and is less informative than ranking by p-value.

65

> topTags(lrt.tuch, sort.by = "logFC")

Coefficient: tumour

genes logConc logFC LR P.Value FDR

NM_001100112 MYH2 -8.126 -7.347 86.96 1.107e-20 1.053e-17

NM_182502 TMPRSS11B -8.506 -7.322 121.55 2.892e-28 3.026e-24

NM_016190 CRNN -6.987 -7.256 107.46 3.538e-25 1.851e-21

NM_002272 KRT4 -5.621 -7.133 92.79 5.800e-22 9.311e-19

NM_002465 MYBPC1 -8.157 -7.019 99.75 1.727e-23 4.518e-20

NM_003280 TNNC1 -9.188 -6.958 91.38 1.186e-21 1.379e-18

NM_152381 XIRP2 -7.427 -6.927 75.86 3.049e-18 9.969e-16

NM_002371 MAL -8.952 -6.810 106.38 6.089e-25 2.124e-21

NM_001010909 MUC21 -8.797 -6.724 92.65 6.229e-22 9.311e-19

NM_198060 NRAP -8.451 -6.441 82.70 9.543e-20 5.548e-17

> top <- rownames(topTags(lrt.tuch, sort.by = "logFC")$table)

> d.tuch$counts[top, order(d.tuch$samples$group)]

N8 N33 N51 T8 T33 T51

NM_001100112 4389 7944 9262 7 16 1818

NM_182502 2592 7805 3372 3 321 9

NM_016190 24146 22026 12480 49 2353 26

NM_002272 76461 99082 47411 353 20651 31

NM_002465 4809 4146 15623 10 14 1311

NM_003280 1684 1787 4894 0 7 559

NM_152381 9915 10396 23309 15 48 7181

NM_002371 2697 3941 1750 3 265 8

NM_001010909 4160 3425 1720 7 516 5

NM_198060 3741 1990 12531 4 17 1829

We see in the output below that over 1200 tags are significantly differentially expressed accord-
ing to edgeR when using the CR common dispersion estimate and GLM likelihood ratio test. Of
those tags, 297 are up-regulated in the tumour tissues compared with the normal tissues and 975
are down-regulated in the tumour tissues compared with normal tissues.

> summary(decideTestsDGE(lrt.tuch))

[,1]

-1 975

0 9192

1 297

66

11.7 Cox-Reid dispersions with mean-dependent trend

It has been noted that the dispersion parameter in RNA-seq data can depend on the expression level
of the gene [Anders and Huber, 2010]. The function estimateGLMTrendedDisp in edgeR estimates
dispersion values that depend on the overall expression level of the genes. Typically, lowly expressed
genes have a higher value for the dispersion parameter than more highly expressed genes. There
are a number of possible options for the type of trend that is to be fit for the dispersion parameters.
These options are detailed in the help file for estimateGLMTrendedDisp.

> d.tuch <- estimateGLMTrendedDisp(d.tuch, design)

> summary(d.tuch$trended.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.124 0.129 0.150 0.162 0.172 0.558

An analysis could be carried out just as for the common dispersion above, but is not shown
here.

11.8 Analysis using Cox-Reid tagwise dispersion

11.8.1 Estimating the Cox-Reid tagwise dispersion

An extension to simply using the CR common dispersion for each tag is to estimate the CR
dispersion separately for each tag, while ‘squeezing’ these estimates towards the CR common
dispersion estimate in order to improve inference by sharing information between tags. This type
of analysis can also be carried out in few steps using the edgeR package.

As noted earlier, the dispersion parameter is the overdispersion relative to the Poisson, and
represents the biological, or sample-to-sample variability. The methods we have developed mod-
erate the dispersion estimates towards a common dispersion, much like how the limma package
moderates the variances in the analysis of microarray data.

The amount of moderation done is determined by the value of a weight parameter prior.n.
The value for prior.n corresponds to the number of individual tags equivalent to the weight given
to the common likelihood. Thus, the higher prior.n, the more strongly the individual dispersion
estimates are moderated, or ‘squeezed’, towards the common value. To run the moderated analysis,
we need to determine how much moderation is necessary. How best to do this is still an open
research question, but we currently recommend selecting a value for the weight parameter prior.n

a priori and have found that very good results can be obtained this way.
In an experiment such as that we consider here, in which we have just six samples, with

two groups (group factor) and three patients (blocking factor), and thus two degrees of freedom
for estimating the dispersion parameter. Standard tagwise dispersion estimates are likely to be
unreliable, so we want to give a reasonable weight to the common likelihood. We need to choose
a value for prior.n such that individual tagwise dispersion estimates are ‘squeezed’ quite strongly
towards the common dispersion. Here, we choose a moderate amount of smoothing—we let prior.n
be 8. This means that the common likelihood receives the weight of 8 individual tags, so there

67

will be a reasonable degree of ‘squeezing’, but there is still ample scope to estimate an individual
dispersion for each tag.

The function estimateGLMTagwiseDisp adds the CR tagwise dispersion estimates to the DGE-
List object provided as an argument.

> d.tuch <- estimateGLMTagwiseDisp(d.tuch, design, prior.n = 8)

> names(d.tuch)

[1] "samples" "counts" "genes"

[4] "all.zeros" "common.dispersion" "trended.dispersion"

[7] "abundance" "bin.dispersion" "bin.abundance"

[10] "tagwise.dispersion"

> head(d.tuch$tagwise.dispersion)

NM_000014 NM_144670 NM_017436 NM_015665 NM_023928 NM_024666

0.1933 0.2415 0.2051 0.1528 0.1157 0.1246

It is interesting to consider the distribution of the CR tagwise dispersion estimates. As we can
see from the output below, the CR tagwise dispersion estimates range from a minimum of 0.11 to
a maximum of 0.69. The range of dispersions is therefore large, but the tags in the middle two
quartiles of the CR tagwise dispersion estimates have dispersion estimates close to the CR common
dispersion estimate.

> summary(d.tuch$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.110 0.125 0.148 0.161 0.172 0.686

11.8.2 Testing

The testing procedures when using CR tagwise dispersion estimates are carried out exactly as for
the CR common dispersion, as described above. Here we carry out the testing using the CR tagwise
dispersion estimates calculated using a prior.n value of eight. The GLM fit and the likelihood ratio
test are done using the same functions as before (i.e. glmFit() and glmLRT()), the only difference
is that we use CR tagwise dispersions as the dispersion in the glmFit() function.

> glmfit.tuch.tgw <- glmFit(d.tuch, design, dispersion = d.tuch$tagwise.dispersion)

> lrt.tuch.tgw <- glmLRT(d.tuch, glmfit.tuch.tgw)

The output below shows that when using CR tagwise dispersions, the edgeR package still
identifies a lot of differential expression between the normal tissue group and the tumour tissue
group. This arises because the moderated tagwise dispersions can be much smaller than the
common dispersion, and tags with smaller dispersions will have smaller p-values than the same

68

tags with p-values computed using a common dispersion. As with the analysis using the common
dispersion, all of the top tags have a large fold change, indicating that these changes in expression
are likely to be biologically meaningful. We note that the ranking is different, however, and not
all of the top ten tags according to using the common dispersion are found to be among the top
ten tags using tagwise dispersions.

> options(digits = 4)

> topTags(lrt.tuch.tgw)

Coefficient: tumour

genes logConc logFC LR P.Value FDR

NM_014440 IL1F6 -10.060 -6.142 100.20 1.374e-23 1.438e-19

NM_001039585 PTGFR -10.519 -5.193 95.02 1.883e-22 9.854e-19

NM_005609 PYGM -9.653 -5.476 89.85 2.567e-21 8.955e-18

NM_182502 TMPRSS11B -8.506 -7.412 87.33 9.182e-21 2.402e-17

NM_004533 MYBPC2 -9.299 -5.458 82.56 1.027e-19 2.150e-16

NM_004320 ATP2A1 -9.669 -4.622 78.52 7.920e-19 1.381e-15

NM_002371 MAL -8.952 -6.902 76.58 2.117e-18 2.961e-15

NM_057088 KRT3 -9.301 -5.838 76.45 2.264e-18 2.961e-15

NM_001111283 IGF1 -9.841 -3.992 75.10 4.464e-18 5.191e-15

NM_001976 ENO3 -9.423 -5.179 73.12 1.218e-17 1.275e-14

The table below shows the raw counts for the tags that edgeR has identified as the most dif-
ferentially expressed using CR tagwise dispersions. For these tags there seems to be very large
differences between the groups, suggesting that the DE tags identified are truly differentially ex-
pressed, and not false positives.

> top.tgw <- rownames(topTags(lrt.tuch.tgw)$table)

> d.tuch$counts[top.tgw, order(d.tuch$samples$group)]

N8 N33 N51 T8 T33 T51

NM_014440 367 1824 802 10 45 1

NM_001039585 455 287 1736 7 12 46

NM_005609 1399 1267 2171 22 16 103

NM_182502 2592 7805 3372 3 321 9

NM_004533 966 486 8045 11 6 457

NM_004320 988 1558 2285 25 52 161

NM_002371 2697 3941 1750 3 265 8

NM_057088 1069 3774 885 7 358 5

NM_001111283 460 343 4703 25 26 257

NM_001976 1092 1292 4841 4 74 223

We see in the output below that 1272 tags are significantly differentially expressed according
to edgeR when using the CR tagwise dispersion estimate and GLM likelihood ratio test. It is

69

slightly less the total number of DE tags under the CR common dispersion method. Of those 1272
tags, 313 are up-regulated in the tumour tissues compared with the normal tissues and 959 are
down-regulated in the tumour tissues compared with normal tissues.

> summary(decideTestsDGE(lrt.tuch.tgw))

[,1]

-1 959

0 9192

1 313

11.9 Setup

This analysis of Tuch et al. [2010]’s RNA-seq data was conducted on:

> sessionInfo()

R version 2.13.0 beta (2011-03-30 r55205)

Platform: i386-apple-darwin9.8.0/i386 (32-bit)

locale:

[1] C/UTF-8/C/C/C/C

attached base packages:

[1] splines stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] org.Hs.eg.db_2.5.0 RSQLite_0.9-4 DBI_0.2-5

[4] AnnotationDbi_1.13.18 Biobase_2.11.10 limma_3.7.26

[7] edgeR_2.1.17

loaded via a namespace (and not attached):

[1] tools_2.13.0

70

12 Poisson example

It has been noted that, in some deep sequencing approaches, not a great deal of overdispersion is
observed. Specifically, the means and variances appear to be very close to each other, suggesting
the Poisson distribution is a good fit. Methods within the edgeR package may still be useful,
including the quantile adjustment (effectively a normalization) and the exact testing routines.

To illustrate this, we sample Poisson data and carry out the exact testing procedure by setting
the dispersion parameter in the NB model very close to zero. The NB model reduces to the Poisson
model as the dispersion parameter goes to zero, and our investigations have shown that using the
NB exact test with very small dispersion gives results entirely consistent with using a ‘true’ Poisson
model and testing procedure. The data are quantile-adjusted before the exact test is carried out,
with the dispersion parameter is set to (near) 0. The function exactTest operates only on DGEList

objects, as illustrated in the case studies above, so we need to form a DGEList object containing
our data before carrying out the Poisson test.

Nevertheless, an analysis using the Poisson distribution can be carried out as follows:

> library(edgeR)

> set.seed(101)

> n <- 10000

> lib.sizes <- c(40000, 50000, 38000, 40000)

> p <- runif(n, min = 1e-04, 0.001)

> mu <- outer(p, lib.sizes)

> mu[1:5, 3:4] <- mu[1:5, 3:4] * 8

> y <- matrix(rpois(4 * n, lambda = mu), nrow = n)

> dP <- DGEList(counts = y, group = rep(1:2, each = 2), lib.size = lib.sizes)

> dP$common.lib.size <- exp(mean(log(dP$samples$lib.size)))

And you can proceed as before (setting the dispersion close to zero to allow exact test for
Poisson data):

> de.P <- exactTest(dP, dispersion = 1e-06)

Comparison of groups: 2 - 1

> topTags(de.P)

Comparison of groups: 2-1

logConc logFC P.Value FDR

tag.3 -8.939897 2.946691 5.492755e-81 5.492755e-77

tag.4 -8.958118 2.910250 1.425021e-77 7.125106e-74

tag.1 -9.703306 2.937857 1.635095e-47 5.450317e-44

tag.5 -9.882605 2.579261 2.030845e-33 5.077113e-30

tag.2 -11.480315 3.310787 6.058052e-18 1.211610e-14

71

tag.9796 -11.366488 1.686444 5.269671e-06 8.782785e-03

tag.2893 -10.984522 1.132451 5.244268e-04 7.305223e-01

tag.142 -11.590674 1.394078 5.844178e-04 7.305223e-01

tag.3541 -13.561931 2.621489 7.286266e-04 8.095851e-01

tag.9783 -12.225718 -1.711087 9.407302e-04 8.878016e-01

The binomTest function in edgeR also provides an exact test for DE under a Poisson model
and for some applications this will be easier to use than the steps for the Poisson example shown
above.

13 Setup

This vignette was built on:

> sessionInfo()

R version 2.13.2 (2011-09-30)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] edgeR_2.2.6

loaded via a namespace (and not attached):

[1] limma_3.8.3 tools_2.13.2

References

Simon Anders and Wolfgang Huber. Differential expression analysis for sequence count data.
Genome Biology, 11(10):R106, Oct 2010. doi: 10.1186/gb-2010-11-10-r106.

72

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57:289–300,
1995.

H. R Li, J. Wang-Rodriguez, T. M Nair, J. M Yeakley, Y. S Kwon, M. Bibikova, C. Zheng, L. Zhou,
K. Zhang, and T. Downs. Two-dimensional transcriptome profiling: identification of messenger
rna isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens.
Cancer Research, 66(8):4079–4088, 2006.

H. R Li, M. T Lovci, Y-S. Kwon, M. G Rosenfeld, X-D. Fua, and G. W Yeo. Determination
of tag density required for digital transcriptome analysis: Application to an androgen-sensitive
prostate cancer model. Proceedings of the National Academy of Sciences of the USA, 105(51):
20179–20184, 2008.

John C Marioni, Christopher E Mason, Shrikant M Mane, Matthew Stephens, and Yoav Gilad.
Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays.
Genome Res, 18:1509–1517, Jun 2008. doi: 10.1101/gr.079558.108.

M. D Robinson and G. K Smyth. Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics, 23(21):2881–2887, 2007.

M. D Robinson and G. K Smyth. Small-sample estimation of negative binomial dispersion, with
applications to sage data. Biostatistics, 9(2):321–332, 2008.

Mark D Robinson and Alicia Oshlack. A scaling normalization method for differential expression
analysis of rna-seq data. Genome Biology, 11(3):R25, Mar 2010. doi: 10.1186/gb-2010-11-3-r25.
URL http://genomebiology.com/2010/11/3/R25.

Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edger: a bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26(1):139–40, Jan
2010. doi: 10.1093/bioinformatics/btp616. URL http://bioinformatics.oxfordjournals.

org/cgi/content/full/26/1/139.

P. A. C ’t Hoen, Y. Ariyurek, H. H Thygesen, E. Vreugdenhil, R. H. A. M Vossen, R. X De
Menezes, J. M Boer, G-J. B Van Ommen, and J. T Den Dunnen. Deep sequencing-based
expression analysis shows major advances in robustness, resolution and inter-lab portability
over five microarray platforms. Nucleic Acids Research, 36(21):e141, 2008.

Brian B Tuch, Rebecca R Laborde, Xing Xu, Jian Gu, Christina B Chung, Cinna K Monighetti,
Sarah J Stanley, Kerry D Olsen, Jan L Kasperbauer, Eric J Moore, Adam J Broomer, Ruoy-
ing Tan, Pius M Brzoska, Matthew W Muller, Asim S Siddiqui, Yan W Asmann, Yongming
Sun, Scott Kuersten, Melissa A Barker, Francisco M De La Vega, and David I Smith. Tumor
transcriptome sequencing reveals allelic expression imbalances associated with copy number al-
terations. PLoS ONE, 5(2):e9317, Jan 2010. doi: 10.1371/journal.pone.0009317. URL http:

//www.plosone.org/article/info%253Adoi%252F10.1371%252Fjournal.pone.0009317.

73

L. Zhang, W. Zhou, V. E Velculescu, S. E Kern, R. H Hruban, S. R Hamilton, B. Vogelstein,
and K. W Kinzler. Gene expression profiles in normal and cancer cells. Science, 276(5316):
1268–1272, May 1997.

74

