
edgeR
October 25, 2011

DGEExact-class differential expression of Digital Gene Expression data - class

Description

A simple list-based class for storing results of differential expression analysis for DGE data

Slots/List Components

Objects of this class contain the following list components:

table: data frame containing the log-concentration (i.e. expression level), the log-fold change in
expression between the two groups/conditions and the exact p-value for differential expression, for
each tag.

comparison: vector giving the two experimental groups/conditions being compared.

genes: a data frame containing information about each transcript (can be NULL).

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. DGEExact objects also have a show method.

Author(s)

Mark Robinson, Davis McCarthy

DGEGLM-class Digital Gene Expression Generalized Linear Model results - class

Description

A simple list-based class for storing results of a GLM fit to each tag/gene in a DGE dataset.

1



2 DGELRT-class

Slots/List Components

Objects of this class contain the following list components:

coefficients: matrix containing the coefficients computed from fitting the model defined by
the design matrix to each gene/tag in the dataset.

df.residual: vector containing the residual degrees of freedom for the model fit to each tag/gene
in the dataset.

deviance: vector giving the deviance from the model fit to each tag/gene.

design: design matrix for the full model from the likelihood ratio test.

offset: scalar, vector or matrix of offset values to be included in the GLMs for each tag/gene.

samples: data frame containing information about the samples comprising the dataset.

genes: data frame containing information about the genes or tags for which we have DGE data
(can be NULL if there is no information available).

dispersion: scalar or vector providing the value of the dispersion parameter used in the negative
binomial GLM for each tag/gene.

lib.size: vector providing the effective library size for each sample in the dataset.

weights: matrix of weights used in the GLM fitting for each tag/gene.

fitted.values: the fitted (expected) values–here they are counts–from the GLM for each
tag/gene.

abundance: vector of gene/tag abundances (expression level), on the log2 scale, computed from
the mean count for each gene/tag after scaling count by normalized library size.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. DGEGLM objects also have a show method.

Author(s)

Davis McCarthy

DGELRT-class Digital Gene Expression Likelihood Ratio Test data and results - class

Description

A simple list-based class for storing results of a GLM-based differential expression analysis for
DGE data, with evidence for differential expression assessed using a likelihood ratio test.

Slots/List Components

Objects of this class contain the following list components:

table: data frame containing the log-concentration (i.e. expression level), the log-fold change in
expression between the two groups/conditions and the exact p-value for differential expression, for
each tag.

coefficients.full: matrix containing the coefficients computed from fitting the full model
(fit using glmFit and a given design matrix) to each gene/tag in the dataset.



DGEList-class 3

coefficients.null: matrix containing the coefficients computed from fitting the null model
to each gene/tag in the dataset. The null model is the model to which the full model is compared,
and is fit using glmFit and dropping selected column(s) (i.e. coefficient(s)) from the design matrix
for the full model.

design: design matrix for the full model from the likelihood ratio test.

...: if the argument y to glmLRT (which produces the DGELRT object) was itself a DGEList
object, then the DGELRT will contain all of the elements of y, except for the table of counts and the
table of pseudocounts.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. DGELRT objects also have a show method.

Author(s)

Davis McCarthy

DGEList-class Digital Gene Expression data - class

Description

A simple list-based class for storing read counts from digital gene expression technologies and other
important information for the analysis of DGE data.

Slots/List Components

Objects of this class contain (at least) the following list components:

counts: numeric matrix containing the read counts.

samples: data.frame containing the library size and group labels.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on
objects of this class. DGEList objects also have a show method.

Author(s)

Mark Robinson

See Also

DGEList



4 DGEList

DGEList DGEList Constructor

Description

A function to create a DGEList object from a table of counts (rows=features, columns=samples),
group indicator for each column, library size (optional) and a table of annotation (optional)

Usage

DGEList(counts = matrix(0, 0, 0), lib.size = NULL, norm.factors = NULL, group = rep.int(1,ncol(counts)), genes = NULL, remove.zeros = FALSE)

Arguments

counts numeric matrix containing the read counts.

lib.size numeric vector containing the total to normalize against for each sample (op-
tional)

norm.factors numeric vector containing normalization factors (optional, defaults to all 1)

group vector giving the experimental group/condition for each sample/library

genes data frame containing annotation information for the tags/transcripts/genes for
which we have count data (optional).

remove.zeros whether to remove rows that have 0 total count; default is FALSE so as to retain
all information in the dataset

Details

If no lib.size argument is passed to the constructor, the column totals are used.

The optional genes argument is meant to be an annotation data.frame, with rows matching those
in the counts argument.

Value

a DGEList object

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

See Also

DGEList

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
d <- DGEList(counts=y, group=rep(1:2,each=2), lib.size=colSums(y))



Tu102 5

Tu102 Raw Data for Several SAGE Libraries from the Zhang 1997 Science
Paper.

Description

SAGE dataset for 2 tumour samples, 2 normal samples.

Usage

data(Tu102)

Format

Data frames with 22713, 18794, 16270 and 17703 observations (for Tu102, Tu98, NC2, NC1,
respectively) on the following 2 variables.

Tag_Sequence a character vector
Count a numeric vector

Source

Zhang et al. (1997) Gene Expression Profiles in Normal and Cancer Cells. Science, 276, 1268-72.

adjustedProfileLik Compute Cox-Reid Adjusted Profile Likelihood for Negative Binomial
GLMs

Description

Compute the Cox-Reid Adjusted Profile-likelihood for many negative binomial (NB) GLMs.

Usage

adjustedProfileLik(dispersion, y, design, offset, adjust=TRUE)

Arguments

dispersion numeric scalar or vector giving the dispersion(s) towards which the tagwise dis-
persion parameters are shrunk.

y numeric matrix of counts
design numeric matrix giving the design matrix for the GLM that is to be fit.
offset numeric scalar, vector or matrix giving the offset (in addition to the log of the

effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts.

adjust logical, if TRUE then Cox-Reid adjustment is made to the log-likelihood, if
FALSE then the log-likelihood is returned without adjustment. Default is TRUE.



6 approx.expected.info

Details

In the edgeR context, adjustedProfileLik is a low-level function necessary for estimating
dispersion parameters for NB GLMs.

Value

adjustedProfileLik produces a vector of Cox-Reid adjusted profile likelihoods for the given
counts, dispersion value, offset and design matrix (i.e. the APL for each gene/tag), which has the
same length as the number of rows of the count datamatrix y.

Author(s)

Yunshun Chen, Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

dispCoxReidInterpolateTagwise, estimateGLMTagwiseDisp, maximizeInterpolant

Examples

y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- matrix(1, 4, 1)
dispersion <- 0.5
apl <- adjustedProfileLik(dispersion, y, design, offset=0)
apl

approx.expected.info
Approximate Expected Information (Fisher Information)

Description

Using a linear fit (for simplicity), the expected information from the conditional log likelihood of
the dispersion parameter of the negative binomial is calculated over all genes.

Usage

approx.expected.info(object, d, pseudo, robust = FALSE)

Arguments

object DGEList object containing the raw counts with (at least) elements counts
(table of counts), group (vector indicating group) and lib.size (vector of
library sizes)

d numeric vector giving the delta parameter for negative binomial - phi/(phi+1)
; either of length 1 or of length equal to the number of tags/transcripts (i.e. num-
ber of rows of object$counts.



as.matrix 7

pseudo numeric matrix of pseudocounts from output of estimateDispIter

robust logical on whether to use a robust fit, default FALSE

Value

numeric vector of approximate values of the Fisher information for each tag/transcript (with length
same as the number of rows of the original counts)

Author(s)

Mark Robinson

See Also

This function is used in the algorithm for estimating an appropriate amount of smoothing for the
dipsersion estimates carried out by estimateSmoothing.

Examples

set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
d<-estimateCommonDisp(d)
d<-estimateTagwiseDisp(d,prior.n=10)
exp.inf<-approx.expected.info(d,1/(1 + d$common.dispersion),d$pseudo.alt)

as.matrix Turn a DGEList Object into a Matrix

Description

Turn a digital gene expression object into a numeric matrix by extracting the count values.

Usage

## S3 method for class 'DGEList'
as.matrix(x,...)

Arguments

x an object of class DGEList.

... additional arguments, not used for these methods.

Details

This method extracts the matrix of counts.

This involves loss of information, so the original data object is not recoverable.

Value

A numeric matrix.



8 betaApproxNBTest

Author(s)

Gordon Smyth

See Also

as.matrix in the base package or as.matrix.RGList in the limma package.

betaApproxNBTest An Approximate Exact Test for Differences between Two Negative Bi-
nomial

Description

Approximate the tail probabilities of a conditional negative binomial exact test of equality of means
between groups.

Usage

betaApproxNBTest(x1, x2, dispersion)

Arguments

x1 vector of observed negative binomial variables for group one

x2 vector of observed negative binomial variables for group two

dispersion vector or scalar providing the value of the NB dispersion parameter for each
tag to be used for calculating p-values for differences in mean between the two
groups.

Details

exactTest is the user-level function for computing p-values for differential expression between
groups in DGE data. However, for tags with extremely large counts, the computation of the tail
propbabilities of the conditional negative binomial exact test can be unstable. For such tags, the
tail probabilities are well approximated by using a transformed beta distribution (Anderson and
Boullion, 1972).

Value

Vector of p-values providing the extent of evidence for difference in means between the two groups.

Author(s)

Davis McCarthy

References

Anderson, Dwane E. and Boullion, Thomas L. Homogeneity test for two negative binomial popu-
lations. IEEE Transactions on Reliability, Vol. R-21, No. 2, May 1972.



bin.dispersion 9

See Also

Computing p-values for differential expression for each transcript between two (only) digital gene
expression libraries can also be done using the sage.test function in the statmod package.

Examples

# generate raw counts from NB, create list object
x1<-rnbinom(20,size=1,mu=1000)
x2<-rnbinom(20, size=1, mu=1500)
betaApproxNBTest(x1, x2, dispersion=1)

bin.dispersion Estimate Common Dispersion for Negative Binomial GLMs in Bins of
Genes

Description

Estimates the common dispersion parameter for each of a number of bins of data for a DGE dataset.
Genes are sorted into bins based on overall expression level. For multiple-group (one-way layout)
experimental designs, conditional maximum likelihood (CML) methods can be used. For general
experimental designs the binned common dispersions we can use Cox-Reid approximate conditional
inference, Pearson or deviance estimators for a negative binomial generalized linear model.

Usage

binCMLDispersion(y, nbins=50)
binGLMDispersion(y, design, nbins=50, offset=NULL, method="CoxReid", ...)

Arguments

y an object that contains the raw counts for each library (the measure of expression
level); it can either be a matrix of counts, or a DGEList object with (at least)
elements counts (table of unadjusted counts) and samples (data frame con-
taining information about experimental group, library size and normalization
factor for the library size)

nbins scalar, the number of bins for which to compute common dispersions. Default
is 50 bins.

design numeric matrix giving the design matrix for the GLM that is to be fit.
offset (optional) numeric scalar, vector or matrix giving the offset (in addition to the

log of the effective library size) that is to be included in the NB GLM for the
transcripts. If a scalar, then this value will be used as an offset for all tran-
scripts and libraries. If a vector, it should be have length equal to the number
of libraries, and the same vector of offsets will be used for each transcript. If a
matrix, then each library for each transcript can have a unique offset, if desired.
Default is NULL. If NULL, then offset is log(lib.size) if y is a matrix
or log(y$samples$lib.size * y$samples$norm.factors) if y
is a DGEList object.

method method used to estimated the dispersion. Argument passed to estimateGLMCommonDisp,
which calls the functions to do the computations. Possible values are "CoxReid",
"Pearson" or "deviance".

... other arguments are passed to lower-level functions.



10 binomTest

Details

To obtain estimates of the common dispersion parameters conditional maximum likelihood (estimateCommonDisp)
is used for binCMLDispersion and one of Cox-Reid approximate conditional inference (dispCoxReid),
the deviance (dispDeviance) or Pearson (dispPearson) estimates are used for binGLMDispersion.

Value

Returns a list with two components:

dispersion numeric vector providing the common dispersion for each bin

abundance numeric vector providing the average abundance (expression level) of genes in
each bin

Author(s)

Gordon Smyth, Davis McCarthy

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

estimateGLMCommonDisp, dispCoxReid, dispPearson, dispDeviance

Examples

y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model
bindisp.CML <- binCMLDispersion(d, nbins=50)
bindisp.GLM <- binGLMDispersion(d, design, nbins=50)

binomTest Exact Binomial Tests for Comparing Two Digital Libraries

Description

Computes p-values for differential abundance for each tag between two digital libraries, condition-
ing on the total count for each tag. The counts in each group as a proportion of the whole are
assumed to follow a binomial distribution.

Usage

binomTest(y1, y2, n1=sum(y1), n2=sum(y2), p=n1/(n1+n2))



binomTest 11

Arguments

y1 integer vector giving counts in first library. Non-integer values are rounded to
the nearest integer.

y2 integer vector giving counts in second library. Of same length as x. Non-integer
values are rounded to the nearest integer.

n1 total number of tags in first library. Non-integer values are rounded to the nearest
integer. Not required if p is supplied.

n2 total number of tags in second library. Non-integer values are rounded to the
nearest integer. Not required if p is supplied.

p expected proportion of y1 to the total under the null hypothesis.

Details

This function can be used to compare two libraries from SAGE, RNA-Seq, ChIP-Seq or other
sequencing technologies with respect to technical variation.

An exact two-sided binomial test is computed for each tag. This test is closely related to Fisher’s
exact test for 2x2 contingency tables but, unlike Fisher’s test, it conditions on the total number of
counts for each tag. The null hypothesis is that the expected counts are in the same proportions as
the library sizes, i.e., that the binomial probability for the first library is n1/(n1+n2).

The two-sided rejection region is chosen analogously to Fisher’s test. Specifically, the rejection
region consists of those values with smallest probabilities under the null hypothesis.

When the counts are reasonably large, the binomial test, Fisher’s test and Pearson’s chisquare all
give the same results. When the counts are smaller, the binomial test is usually to be preferred in
this context.

This function replaces the earlier sage.test functions in the statmod and sagenhaft packages. It
produces the same results as binom.test in the stats packge, but is much faster.

Value

Numeric vector of p-values.

Author(s)

Gordon Smyth

References

http://en.wikipedia.org/wiki/Binomial_test

http://en.wikipedia.org/wiki/Fisher’s_exact_test

http://en.wikipedia.org/wiki/Serial_analysis_of_gene_expression

http://en.wikipedia.org/wiki/RNA-Seq

See Also

sage.test (statmod package), binom.test (stats package)

http://en.wikipedia.org/wiki/Binomial_test
http://en.wikipedia.org/wiki/Fisher's_exact_test
http://en.wikipedia.org/wiki/Serial_analysis_of_gene_expression


12 calcNormFactors

Examples

binomTest(c(0,5,10),c(0,30,50),n1=10000,n2=15000)
# Univariate equivalents:
binom.test(5,5+30,p=10000/(10000+15000))$p.value
binom.test(10,10+50,p=10000/(10000+15000))$p.value

calcNormFactors Calculates Normalization Factors for a Matrix of Count Data

Description

Using a reference sample, calculate the normalization factors, over and above accounting for library
size.

Usage

calcNormFactors(object, method=c("TMM","RLE","quantile"), refColumn = NULL, logratioTrim = .3, sumTrim = 0.05, doWeighting=TRUE, Acutoff=-1e10, quantile=0.75)

Arguments

object either a matrix of raw (read) counts or a DGEList object

method method to use to calculate the scale factors

refColumn column to use as reference, only used when method="TMM"

logratioTrim amount of trim to use on log-ratios ("M" values), only used when method="TMM"

sumTrim amount of trim to use on the combined absolute levels ("A" values), only used
when method="TMM"

doWeighting logical, whether to compute (asymptotic binomial precision) weights, only used
when method="TMM"

Acutoff cutoff on "A" values to use before trimming, only used when method="TMM"

quantile quantile used to compute scale factors from, only used when method="Quantile"

Details

When method="TMM", the weighted trimmed mean of M values (to the reference) is used as the
normalization factor, where the weights are from the delta method on Binomial data. If refColumn
is unspecified, the library whose upper quartile is closest to the mean upper quartile is used. When
method="RLE" (which stands for relative log expression), a median library is calculated from
the geometric mean of all columns and the median ratio of each sample to the median library
is taken as the scale factor (this is the implementation proposed by the DESeq package). When
method="Quantile", the scale factors are calculated from the quantiles (default=75

For symmetry, normalization factors are adjusted to multiply to 1.

Value

If a matrix is given for object, the output is a vector with length ncol(object) giving the
relative normalization factors. If a DGEList object is given for object, the output is a DGEList
object containing the normalization factors in the samples$norm.factors element.



commonCondLogLikDerDelta 13

Author(s)

Mark Robinson

Examples

d <- matrix( rpois(1000, lambda=5), nrow=200 )
f <- calcNormFactors(d)

commonCondLogLikDerDelta
Conditional Log-Likelihoods in Terms of Delta

Description

Common conditional log-likelihood parameterized in terms of delta (phi / (phi+1))

Usage

commonCondLogLikDerDelta(y, delta, der = 0, doSum = FALSE)

Arguments

y list with elements comprising the matrices of count data (or pseudocounts) for
the different groups

delta delta (phi / (phi+1)) parameter of negative binomial

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

doSum logical, whether to sum over samples or not (default FALSE

Details

The common conditional log-likelihood is constructed by summing over all of the individual tag
conditional log-likelihoods. The common conditional log-likelihood is taken as a function of the
dispersion parameter (phi), and here parameterized in terms of delta (phi / (phi+1)). The
value of delta that maximizes the common conditional log-likelihood is converted back to the phi
scale, and this value is the estimate of the common dispersion parameter used by all tags.

Value

numeric scalar of function/derivative evaluated at given delta

Author(s)

Davis McCarthy

See Also

estimateCommonDisp is the user-level function for estimating the common dispersion param-
eter.



14 condLogLikDerDelta

Examples

counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-commonCondLogLikDerDelta(y,delta=0.5,der=0,doSum=FALSE)
ll2<-commonCondLogLikDerDelta(y,delta=0.5,der=1)

condLogLikDerDelta Conditional Log-Likelihood in Terms of Delta

Description

Conditional negative binomial log-likelihood parameterized in terms of delta (phi / (phi+1))

Usage

condLogLikDerDelta(y, delta, grid = TRUE, der = 1, doSum = TRUE)

Arguments

y matrix with count data (or pseudocounts)

delta delta (phi / (phi+1))parameter of negative binomial

grid logical, whether to calculate a grid over the values of delta

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

doSum logical, whether to sum over samples or not (default TRUE

Details

This function computes the individual tag conditional log-likelihood for each tag. It is neces-
sary for computing both the common conditional log-likelihood and the weighted conditional log-
likelihood, which are used to find the common and tagwise (moderated) estimates of the dipsersion
parameter. The delta scale for convenience (delta is bounded between 0 and 1).

Value

vector or matrix of function/derivative evaluations

Author(s)

Mark Robinson, Davis McCarthy

See Also

commonCondLogLikDerDelta and weightedCondLogLikDerDelta rely on condLogLikDerDelta,
and at a user level, estimateCommonDisp and estimateTagwiseDisp are used to estimate
the common and (moderated) tagwise dispersion estimates, respectively. condLogLikDerDelta
calls condLogLikDerSize, the function that does the mathematical calculations.



condLogLikDerSize 15

Examples

y1<-matrix(rnbinom(10,size=1,mu=10),nrow=5)
v1<-seq(.1,.9,length=9)
ll1<-condLogLikDerDelta(y1,v1,grid=TRUE,der=0,doSum=FALSE)
ll2<-condLogLikDerDelta(y1,delta=.5,grid=FALSE,der=0)

condLogLikDerSize Log-Likelihood of the Common Dispersion for a Single Equalized
Group

Description

Derivatives of the conditional negative-binomial log-likelihood (for each tag/transcript) with respect
to the common dispersion parameter, for a single group of replicate libraries of the same size.
Parameterized in terms of size or precision (1/phi).

Usage

condLogLikDerSize(y, r, der=1)

Arguments

y matrix of (pseudo) count data

r size parameter of negative binomial distribution

der order of derivative required, either 0 (the function), 1 (first derivative) or 2 (sec-
ond derivative)

Details

The library sizes must be equalized before running this function. This function carries out the
actual mathematical computations for the conditional log-likelihood and its derivatives, calculating
the conditional log-likelihood for each tag/transcript.

Value

vector of function/derivative evaluations, one for each transcript

Author(s)

Mark Robinson, Davis McCarthy

Examples

y <- matrix(rnbinom(10,size=1,mu=10),nrow=5)
condLogLikDerSize(y,r=1,der=1)



16 decideTestsDGE

decideTestsDGE Multiple Testing Across Genes and Contrasts

Description

Classify a series of related differential expression statistics as up, down or not significant. A number
of different multiple testing schemes are offered which adjust for multiple testing down the genes
as well as across contrasts for each gene.

Usage

decideTestsDGE(object, adjust.method="BH", p.value=0.05)

Arguments

object deDGElist object, output from exactTest, or DGELRT object, output from
DGELRT, from which p-values for differential expression and log-fold change
values may be extracted.

adjust.method
character string specifying p-value adjustment method. Possible values are "none",
"BH", "fdr" (equivalent to "BH"), "BY" and "holm". See p.adjust for
details.

p.value numeric value between 0 and 1 giving the desired size of the test

Details

These functions implement multiple testing procedures for determining whether each log-fold change
in a matrix of log-fold changes should be considered significantly different from zero.

Value

An object of class TestResults (see TestResults). This is essentially a numeric matrix with
elements -1, 0 or 1 depending on whether each DE p-value is classified as significant with negative
log-fold change, not significant or significant with positive log-fold change, respectively.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

Adapted from decideTests in the limma package.



dglmStdResid 17

dglmStdResid Visualize the mean-variance relationship in DGE data using standard-
ized

Description

Appropriate modelling of the mean-variance relationship in DGE data is important for making
inferences about differential expression. However, the standard approach to visualizing the mean-
variance relationship is not appropriate for general, complicated experimental designs that require
generalized linear models (GLMs) for analysis. Here are functions to compute standardized resid-
uals from a Poisson GLM and plot them for bins based on overall expression level of tags as a way
to visualize the mean-variance relationship. A rough estimate of the dispersion parameter can also
be obtained from the standardized residuals.

Usage

dglmStdResid(y, design, dispersion=0, offset=0, nbins=100, make.plot=TRUE, xlab="Mean", ylab="Ave. binned standardized residual", ...)
getDispersions(binned.object)

Arguments

y numeric matrix of counts, each row represents one tag, each column represents
one DGE library.

design numeric matrix giving the design matrix of the GLM. Assumed to be full column
rank.

dispersion numeric scalar or vector giving the dispersion parameter for each GLM. Can be
a scalar giving one value for all tags, or a vector of length equal to the number
of tags giving tag-wise dispersions.

offset numeric vector or matrix giving the offset that is to be included in teh log-linear
model predictor. Can be a vector of length equal to the number of libraries, or a
matrix of the same size as y.

nbins scalar giving the number of bins (formed by using the quantiles of the genewise
mean expression levels) for which to compute average means and variances for
exploring the mean-variance relationship. Default is 100 bins

make.plot logical, whether or not to plot the mean standardized residual for binned data
(binned on expression level). Provides a visualization of the mean-variance re-
lationship. Default is TRUE.

xlab character string giving the label for the x-axis. Standard graphical parameter. If
left as the default, then the x-axis label will be set to "Mean".

ylab character string giving the label for the y-axis. Standard graphical parameter. If
left as the default, then the y-axis label will be set to "Ave. binned standardized
residual".

... further arguments passed on to plot

binned.object
list object, which is the output of dglmStdResid.



18 dglmStdResid

Details

This function is useful for exploring the mean-variance relationship in the data. Raw or pooled
variances cannot be used for complex experimental designs, so instead we can fit a Poisson model
using the appropriate design matrix to each tag and use the standardized residuals in place of the
pooled variance (as in plotMeanVar) to visualize the mean-variance relationship in the data.
The function will plot the average standardized residual for observations split into nbins bins by
overall expression level. This provides a useful summary of how the variance of the counts change
with respect to average expression level (abundance). A line showing the Poisson mean-variance
relationship (mean equals variance) is always shown to illustrate how the genewise variances may
differ from a Poisson mean-variance relationship. A log-log scale is used for the plot.

The function mglmLS is used to fit the Poisson models to the data. This code is fast for fitting mod-
els, but does not compute the value for the leverage, technically required to compute the standard-
ized residuals. Here, we approximate the standardized residuals by replacing the usual denominator
of ( 1 - leverage ) by ( 1 - p/n ) , where n is the number of observations per tag
(i.e. number of libraries) and p is the number of parameters in the model (i.e. number of columns
in the full-rank design matrix.

Value

dglmStdResid produces a mean-variance plot based on standardized residuals from a Poisson
model fitfor each tag for the DGE data. dglmStdResid returns a list with the following elements:

ave.means vector of the average expression level within each bin of observations
ave.std.resid

vector of the average standardized Poisson residual within each bin of tags

bin.means list containing the average (mean) expression level (given by the fitted value
from the given Poisson model) for observations divided into bins based on
amount of expression

bin.std.resid
list containing the standardized residual from the given Poisson model for ob-
servations divided into bins based on amount of expression

means vector giving the fitted value for each observed count
standardized.residuals

vector giving approximate standardized residual for each observed count

bins list containing the indices for the observations, assigning them to bins

nbins scalar giving the number of bins used to split up the observed counts

ngenes scalar giving the number of genes/tags in the dataset

nlibs scalar giving the number of libraries in the dataset

getDispersions computes the dispersion from the standardized residuals and returns a list with
the following components:

bin.dispersion
vector giving the estimated dispersion value for each bin of observed counts,
computed using the average standardized residual for the bin

bin.dispersion.used
vector giving the actual estimated dispersion value to be used. Some computed
dispersions using the method in this function can be negative, which is not al-
lowed. We use the dispersion value from the nearest bin of higher expression
level with positive dispersion value in place of any negative dispersions.



dim 19

dispersion vector giving the estimated dispersion for each observation, using the binned
dispersion estimates from above, so that all of the observations in a given bin
get the same dispersion value.

Author(s)

Davis McCarthy

See Also

plotMeanVar, plotMDS.dge, plotSmear and maPlot provide more ways of visualizing
DGE data.

Examples

y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4)
design <- model.matrix(~c(0,0,1,1)+c(0,1,0,1))
binned <- dglmStdResid(y, design, dispersion=0.5)

getDispersions(binned)$bin.dispersion.used # Look at the estimated dispersions for the bins

dim Retrieve the Dimensions of a DGEList, DGEExact, DGEGLM,
DGELRT or

Description

Retrieve the number of rows (transcripts) and columns (libraries) for an DGEList, DGEExact or
TopTags Object.

Usage

## S3 method for class 'DGEList'
dim(x)
## S3 method for class 'DGEList'
length(x)

Arguments

x an object of class DGEList, DGEExact, TopTags, DGEGLM or DGELRT

Details

Digital gene expression data objects share many analogies with ordinary matrices in which the rows
correspond to transcripts or genes and the columns to arrays. These methods allow one to extract
the size of microarray data objects in the same way that one would do for ordinary matrices.

A consequence is that row and column commands nrow(x), ncol(x) and so on also work.

Value

Numeric vector of length 2. The first element is the number of rows (genes) and the second is the
number of columns (arrays).



20 dimnames

Author(s)

Gordon Smyth, Davis McCarthy

See Also

dim in the base package.

02.Classes gives an overview of data classes used in LIMMA.

Examples

M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
colnames(M) <- colnames(A) <- c("A1","A2")
MA <- new("MAList",list(M=M,A=A))
dim(M)
ncol(M)
nrow(M)
length(M)

dimnames Retrieve the Dimension Names of a DGEList Object

Description

Retrieve the dimension names of a digital gene expression data object.

Usage

## S3 method for class 'DGEList'
dimnames(x)
## S3 replacement method for class 'DGEList'
dimnames(x) <- value

Arguments

x an object of class DGEList

value a possible value for dimnames(x): see dimnames

Details

The dimension names of a microarray object are the same as those of the most important matrix
component of that object.

A consequence is that rownames and colnames will work as expected.

Value

Either NULL or a list of length 2. If a list, its components are either NULL or a character vector the
length of the appropriate dimension of x.

Author(s)

Gordon Smyth



dispBinTrend 21

See Also

dimnames in the base package.

02.Classes gives an overview of data classes used in LIMMA.

dispBinTrend Estimate Dispersions with an Abundance-Dependent Trend for Nega-
tive

Description

Estimate a dispersion parameter for each of many negative binomial generalized linear models by
computing the common dispersion for genes sorted into bins based on overall abundance and then
using splines or a loess fit to interpolate a dispersion value for each gene, dependent on overall
abundance of the gene.

Usage

dispBinTrend(y, design, offset=NULL, degree = 10, span=0.3, nbins=50, method.bin="CoxReid", method.trend="spline", trace=0, ...)

Arguments

y numeric matrix of counts

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts.

degree scalar, the degree for the natural cubic splines fit, used to determine the place-
ment of the knots. Default is 10.

span scalar, passed to loess to determine the amount of smoothing for the loess fit.
Default is 0.3.

nbins scalar, number of bins into which to sort genes to form the basis for interpolating
the dispersions.

method.bin character, passed to binGLMDispersion, to specify the method used to com-
pute the common dispersion within each bin of genes. Default is "CoxReid",
other options are "Pearson" and "deviance".

method.trend character, specifies method to produce a smooth fit through the binned common
dispersions in order to interpolate the trended dispersions. Default is "spline"
to use natural cubic splines, other option is "loess" to use a loess fit.

trace logical, should iteration information be output?

... option arguments to be passed to lower-level function binGLMDispersion.



22 dispBinTrend

Details

This function takes the binned common dispersion and abundance from binGLMDispersion
and fits a smooth curve through these binned values using either natural cubic splines or loess.
From this smooth curve it predicts the dispersion value for each gene based on the gene’s overall
abundance. This results in estimates for the NB dispersion parameter which have a dependence on
the overall expression level of the gene, and thus have an abundance-dependent trend. This function
is called by estimateGLMTrendedDisp.

Value

list with the following components:

abundance numeric vector containing the overall abundance for each gene

dispersion numeric vector giving the trended dispersion estimate for each gene

bin.abundance
numeric vector of length equal to nbins giving the average (mean) abundance
for each bin

bin.dispersion
numeric vector of length equal to nbins giving the estimated common disper-
sion for each bin

Author(s)

Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

binGLMDispersion, estimateGLMTrendedDisp

Examples

ntags <- 1000
nlibs <- 4
means <- seq(5,10000,length.out=ntags)
y <- matrix(rnbinom(ntags*nlibs,mu=rep(means,nlibs),size=0.1*means),nrow=ntags,ncol=nlibs)
keep <- rowSums(y) > 0
y <- y[keep,]
group <- factor(c(1,1,2,2))
lib.size <- colSums(y)
design <- model.matrix(~group) # Define the design matrix for the full model
disp <- dispBinTrend(y, design, offset=log(lib.size), nbins=5, degree=3)
plot(disp$abundance, disp$dispersion)



dispCoxReid 23

dispCoxReid Estimate Common Dispersion for Negative Binomial GLMs

Description

Estimate a common dispersion parameter across multiple negative binomial generalized linear mod-
els.

Usage

dispCoxReid(y, design, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=1000)
dispDeviance(y, design, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=1000, robust=FALSE, trace=FALSE)
dispPearson(y, design, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5, subset=1000, robust=FALSE, trace=FALSE)

Arguments

y numeric matrix of counts

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts.

interval numeric vector of length 2 giving allowable values for the dispersion, passed to
optimize.

tol the desired accuracy, see optimize.

min.row.sum integer. Only rows with at least this number of counts are used.

subset integer, number of rows to use in the calculation. Rows used are chosen evenly
spaced by abundance.

trace logical, should iteration information be output?

robust logical, should a robust estimator be used?

Details

In the edgeR context, these are low-level functions called by estimateGLMCommonDisp.

dispCoxReidmaximizes the Cox-Reid adjusted profile likelihood (Cox and Reid, 1987). dispDeviance
and dispPearson set the deviance or Pearson goodness of fit statistics to their expected values.
dispCoxReid uses optimize while dispDeviance and dispPearson use uniroot.
The robust options mean that a minority of tags with very large (outlier) dispersions will not affect
the estimated value.

Value

Numeric vector of length one giving the estimated common dispersion.



24 dispCoxReidInterpolateTagwise

Author(s)

Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

estimateGLMCommonDisp, optimize, uniroot

Examples

ntags <- 100
nlibs <- 4
y <- matrix(rnbinom(ntags*nlibs,mu=10,size=10),nrow=ntags,ncol=nlibs)
group <- factor(c(1,1,2,2))
lib.size <- rowSums(y)
design <- model.matrix(~group) # Define the design matrix for the full model
disp <- dispCoxReid(y, design, offset=log(lib.size), subset=100)

dispCoxReidInterpolateTagwise
Estimate Tagwise Dispersion for Negative Binomial GLMs by Cox-
Reid

Description

Estimate tagwise dispersion parameters across multiple negative binomial generalized linear models
using weighted Cox-Reid Adjusted Profile-likelihood and cubic spline interpolation over a tagwise
grid.

Usage

dispCoxReidInterpolateTagwise(y, design, offset=NULL, dispersion, abundance=NULL, npts=11, min.row.sum=5, prior.n=10, span=0.3)

Arguments

y numeric matrix of counts

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts.

dispersion numeric scalar or vector giving the dispersion(s) towards which the tagwise dis-
persion parameters are shrunk.



dispCoxReidInterpolateTagwise 25

abundance numeric scalar or vector giving the tagwise log-abundance measure for each tag.
If null, the abundance is then evaluated by mglmOneGroup

npts numeric scalar, the number of points at which to place knots for the spline-based
estimation of the tagwise dispersion estimates.

min.row.sum numeric scalar giving a value for the filtering out of low abundance tags. Only
tags with total sum of counts above this value are used. Low abundance tags
can adversely affect the estimation of the common dispersion, so this argument
allows the user to select an appropriate filter threshold for the tag abundance.

prior.n numeric scalar, smoothing parameter that indicates the weight to give to the
common likelihood compared to the individual tag’s likelihood; default 10means
that the common likelihood is given 10 times the weight of the individual tag/gene’s
likelihood in the estimation of the tag/genewise dispersion

span numeric parameter between 0 and 1 specifying proportion of data to be used in
the local regression moving window. Larger numbers give smoother fits.

Details

In the edgeR context, dispCoxReidInterpolateTagwise is a low-level function called by
estimateGLMTagwiseDisp.

dispCoxReidInterpolateTagwise calls the function maximizeInterpolant to fit cu-
bic spline interpolation over a tagwise grid.

Value

dispCoxReidInterpolateTagwise produces a vector of tagwise dispersions having the
same length as the number of genes in the count data.

Author(s)

Yunshun Chen, Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

estimateGLMTagwiseDisp, maximizeInterpolant

Examples

y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- matrix(1, 4, 1)
dispersion <- 0.5
d <- dispCoxReidInterpolateTagwise(y, design, dispersion=dispersion)
d



26 dispCoxReidSplineTrend

dispCoxReidSplineTrend
Estimate Dispersion Trend for Negative Binomial GLMs

Description

Estimate trended common dispersion parameters across multiple negative binomial generalized lin-
ear models using Cox-Reid adjusted profile likelihood.

Usage

dispCoxReidSplineTrend(y, design, offset=NULL, degree = 5, subset=1000, method.optim="Nelder-Mead", trace=0)
dispCoxReidPowerTrend(y, design, offset=NULL, subset=1000, method.optim="Nelder-Mead", trace=0)

Arguments

y numeric matrix of counts

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts.

degree integer giving the degree of the spline function.

subset integer, number of rows to use in the calculation. Rows used are chosen evenly
spaced by abundance.

method.optim the method to be used in optim. See optim for more detail.

trace logical, should iteration information be output?

Details

In the edgeR context, these are low-level functions called by estimateGLMTrendedDisp.

dispCoxReidSplineTrend maximizes the Cox-Reid adjusted profile likelihood (Cox and
Reid, 1987) by fitting spline interpolation. dispCoxReidPowerTrend models the dispersion
trend by a power function. The parameters of the power function are estimated by maximizing the
Cox-Reid adjusted profile likelihood.

Value

Numeric vector giving the estimated trended common dispersions. It is of the same length as the
number of tags in the count data.

Author(s)

Yunshun Chen, Davis McCarthy, Gordon Smyth



edgeR-package 27

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

estimateGLMTrendedDisp, optim

Examples

design <- matrix(1,4,1)
y <- matrix((rnbinom(400,mu=100,size=2)),100,4)
dispCoxReidSplineTrend(y, design, degree=3)
dispCoxReidPowerTrend(y, design)

edgeR-package Empirical analysis of digital gene expression data in R

Description

edgeR is a library for the analysis of digital gene expression data arising from RNA sequencing
technologies such as SAGE, CAGE, Tag-seq or RNA-seq, with emphasis on testing for differential
expression.

Particular strengths of the package include the ability to estimate biological variation between repli-
cate libraries, and to conduct exact tests of significance which are suitable for small counts. The
package is able to make use of even minimal numbers of replicates.

A User’s Guide is available as well as the usual help page documentation for each of the individual
functions.

The library implements statistical methodology developed by Robinson and Smyth (2007, 2008).

Author(s)

Mark Robinson <mrobinson@wehi.edu.au>, Davis McCarthy <dmccarthy@wehi.edu.au>, Gordon
Smyth

References

Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics 23, 2881-2887

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140



28 equalizeLibSizes

equalizeLibSizes Quantile Adjustment to Equalize Library Sizes for a Fixed Value of the

Description

A function that uses a NB quantile-to-quantile method to adjust the libraries of counts so that library
sizes are equal for a fixed value of the dispersion parameter.

Usage

equalizeLibSizes(object, disp=0, N=exp(mean(log(object$samples$lib.size*object$samples$norm.factors))),null.hypothesis=FALSE)

Arguments

object DGEList object containing the raw counts with elements counts (table of
counts), group (vector indicating group) and lib.size (vector of library
sizes)

disp numeric scalar or vector of dispersion parameters; if a scalar, then a com-
mon dispersion parameter is used for all tags

N numeric scalar, the library size to normalize to; default is the geometric mean of
the original library sizes

null.hypothesis
logical, whether to calculate the input.mean and output.mean under the
null hypothesis; default is FALSE

Details

The function equalizeLibSizes provides the necessary framework and calculations to call
q2qnbinom, for given value(s) of the dispersion parameter. The function q2qnbinom actu-
ally generates the pseudocounts, the counts that have been adjusted for normalized library sizes.
These pseudocounts are required to estimate the dispersion parameter, as the methods used by
estimateCommonDisp and estimateTagwiseDisp rely on the assumption of equal library
sizes. This function calls estimatePs to estimate the expression proportion for each tag, which
is needed to calculate the input.mean and output.mean for each tag, which are passed to
q2qnbinom along with the unadjusted counts and the fixed value(s) for the dispersion parameter.

Value

A list with elements

pseudo numeric matrix of pseudocounts, i.e. adjusted counts for equalized libraries

conc list with elements conc.common (vector giving overall proportion/concentration
for each tag), and conc.group (matrix with columns giving estimates of
tag/gene concentrations (proportion of total RNA for that group that that par-
ticular tag/gene contributes) for different groups); output from estimatePs

N normalized library size

Author(s)

Mark Robinson, Davis McCarthy



estimateCRDisp 29

Examples

y<-matrix(rnbinom(10000,size=2,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000,1010),2))
ps<-estimatePs(d,r=2)
q2q.out<-equalizeLibSizes(d,disp=0.5,null.hypothesis=FALSE)

estimateCRDisp Estimate Negative Binomial Dispersion By Cox-Reid Adjusted Profile

Description

This function has been replaced by estimateGLMCommonDisp, estimateGLMTrendedDisp
and estimateGLMTagwiseDisp. It is kept in this release of the package for backward capata-
bility, but will be removed in future releases.

Estimates the dispersion parameter for a DGE dataset for general experimental designs by using
Cox-Reid approximate conditional inference for a negative binomial generalized linear model for
each transcript (tag) with the unadjusted counts and design matrix provided.

Usage

estimateCRDisp(y, design=NULL, offset=NULL, npts=10, rowsum.filter=5, subset=1000, tagwise=FALSE, prior.n=10, nbins=50, lib.size=NULL, disp.trend=NULL, method.trend="binned-spline",verbose=TRUE)

Arguments

y an object that contains the raw counts for each library (the measure of expression
level); it can either be a matrix of counts, or a DGEList object with (at least)
elements counts (table of unadjusted counts) and samples (data frame con-
taining information about experimental group, library size and normalization
factor for the library size)

design numeric matrix giving the design matrix for the GLM that is to be fit.

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts.

npts scalar, the number of points at which to place knots for the spline-based estima-
tion of the common and tagwise dispersion estimates.

rowsum.filter
numeric scalar giving a value for the filtering out of low abundance tags in the
estimation of the common dispersion. Only tags with total sum of counts above
this value are used in the estimation of the common dispersion. Low abun-
dance tags can adversely affect the estimation of the common dispersion, so
this argument allows the user to select an appropriate filter threshold for the tag
abundance.

subset integer, number of rows to use in the calculation. Rows used are chosen evenly
spaced by abundance.



30 estimateCRDisp

tagwise logical scalar, if FALSE (default) then the tagwise dispersions are not calculated,
if TRUE then the tagwise dispersions are calculated.

prior.n numeric scalar, smoothing parameter that indicates the weight to give to the
common likelihood compared to the individual tag’s likelihood; default 10means
that the common likelihood is given 10 times the weight of the individual tag/gene’s
likelihood in the estimation of the tag/genewise dispersion

nbins integer, the number of bins for the calculation of trended dispersions. Passed to
dispBinTrend.

lib.size optional vector providing the (effective) library size for each library (must have
length equal to the number of columns, or libraries, in the matrix of counts).
If NULL, then a default is used. If y is a DGEList object then the default for
lib.size is the product of the library sizes and the normalization factors (in
the samples slot of the object). If y is a simple matrix of counts, then the
default for lib.size is the vector of column sums of y.

disp.trend optional vector providing trended dispersion estimates if these have already been
computed. If left as the default value, NULL, then trended dispersions are com-
puted in estimateCRDisp.

method.trend character determining the method to be used to obtain trended dispersion es-
timates. Only required if disp.trend=NULL. If "binned-spline" or
"binned-loess" then dispBinTrend is called to compute trended dis-
persions using a spline fit or a loess fit, respectively, through binned common
dispersion values. If "power" then dispCoxReidPowerTrend is used to
obtain trended dispersion estimates.

verbose logical scalar, if TRUE (default) then certain notification messages are displayed
in some circumstances, if FALSE then these messages are not displayed.

Details

To obtain estimates of the common and tagwise (i.e., genewise) dispersion parameters for negative
binomial GLMs we use Cox-Reid approximate conditional inference. The approach is to maximize
the adjusted profile likelihood over the dispersion value, for both the common and tagwise models
and use these values as the common and tagwise dispersion parameters for differential signal testing
in downstream analysis.

Value

estimateCRDisp produces a DGEList object, which contains the estimate of the common
dispersion parameter for the negative binomial model that maximizes the Cox-Reid adjusted profile
likelihood, and also the tagwise Cox-Reid dispersion estimates.

Author(s)

Yunshun Chen, Gordon Smyth, Davis McCarthy

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

This function is now obsolete, replaced by estimateGLMCommonDisp, estimateGLMTrendedDisp
and estimateGLMTagwiseDisp.



estimateCommonDisp 31

Examples

## This function is obsolete, but code below shows usage
y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d<-DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~d$samples$group) # Define the design matrix for the full model
d<-estimateCRDisp(d, design)
d

estimateCommonDisp Estimates the Negative Binomial Common Dispersion by Maximizing
the

Description

Maximizes the negative binomial conditional common likelihood to give the estimate of the com-
mon dispersion across all tags for the unadjusted counts provided.

Usage

estimateCommonDisp(object, tol=1e-06, rowsum.filter=5)

Arguments

object DGEList object with (at least) elements counts (table of unadjusted counts),
and samples (vector indicating group) and lib.size (vector of library sizes)

tol numeric scalar providing the tolerance to be passed to optimize; default value
is 1e-06

rowsum.filter
numeric scalar giving a value for the filtering out of low abundance tags in the
estimation of the common dispersion. Only tags with total sum of counts above
this value are used in the estimation of the common dispersion. Low abun-
dance tags can adversely affect the estimation of the common dispersion, so
this argument allows the user to select an appropriate filter threshold for the tag
abundance.

Details

The method of conditional maximum likelihood assumes that library sizes are equal, which is not
true in general, so pseudocounts (counts adjusted so that the library sizes are equal) need to be
calculated. The function equalizeLibSizes is called to adjust the counts using a quantile-to-
quantile method, but this requires a fixed value for the common dispersion parameter. To obtain
a good estimate for the common dispersion, pseudocounts are calculated under the Poisson model
(dispersion is zero) and these pseudocounts are used to give an estimate of the common dispersion.
This estimate of the common dispersion is then used to recalculate the pseudocounts, which are
used to provide a final estimate of the common dispersion.



32 estimateCommonDisp

Value

estimateCommonDisp produces an object of class DGEList with the following components.

common.dispersion
estimate of the common dispersion; the value for phi, the dispersion parameter
in the NB model, that maximizes the negative binomial common likelihood on
the phi scale

counts table of unadjusted counts

group vector indicating the group to which each library belongs

lib.size vector containing the unadjusted size of each library

pseudo.alt table of adjusted counts; quantile-to-quantile method (see q2qnbinom) used to
adjust the raw counts so that library sizes are equal; adjustment here done under
the alternative hypothesis that there is a true difference between groups

conc list containing the estimates of the concentration of each tag in the underly-
ing sample; conc$p.common gives estimates under the null hypothesis of no
difference between groups; conc$p.group gives the estimate of the concen-
tration for each tag within each group; concentration is a measure of abundance
and thus expression level for the tags

common.lib.size
the common library size to which the count libraries have been adjusted

Author(s)

Mark Robinson, Davis McCarthy

References

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

See Also

estimateTagwiseDisp can be used to estimate a value for the dispersion parameter for each
tag/transcript. The estimates are stabilized by squeezing the estimates towards the common value
calculated by estimateCommonDisp.

Examples

y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d<-DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
cmdisp<-estimateCommonDisp(d)



estimateGLMCommonDisp 33

estimateGLMCommonDisp
Estimate Common Dispersion for Negative Binomial GLMs

Description

Estimates the dispersion parameter for a DGE dataset for general experimental designs by using
Cox-Reid approximate conditional inference for a negative binomial generalized linear model for
each transcript (tag) with the unadjusted counts and design matrix provided.

Usage

## S3 method for class 'DGEList'
estimateGLMCommonDisp(y, design, offset=NULL, method="CoxReid", ...)
## Default S3 method:
estimateGLMCommonDisp(y, design, offset=NULL, method="CoxReid", ...)

Arguments

y an object that contains the raw counts for each library (the measure of expression
level); it can either be a matrix of counts, or a DGEList object with (at least)
elements counts (table of unadjusted counts) and samples (data frame con-
taining information about experimental group, library size and normalization
factor for the library size)

design numeric matrix giving the design matrix for the GLM that is to be fit.

method method (low-level function) used to estimated the dispersion. Possible values
are "CoxReid", "Pearson" or "deviance".

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts. Default is NULL; if object is a DGEList and offset
is NULL then offset will be calculated automatically from codey$samples.

... other arguments are passed to lower-level functions.

Details

To obtain estimates of the common and tagwise (i.e., genewise) dispersion parameters for negative
binomial GLMs we use Cox-Reid approximate conditional inference. The approach is to maximize
the adjusted profile likelihood over the dispersion value, for both the common and tagwise models
and use these values as the common and tagwise dispersion parameters for differential signal testing
in downstream analysis.



34 estimateGLMTagwiseDisp

Value

The default method returns a numeric vector of length 1.

The method for DGEList objects returns a , which contains the estimate of the common dispersion
parameter for the negative binomial model that maximizes the Cox-Reid adjusted profile likelihood,
and also the tagwise Cox-Reid dispersion estimates.

Author(s)

Gordon Smyth

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

dispCoxReid, dispPearson, dispDeviance

estimateGLMTrendedDisp, estimateGLMTagwiseDisp

Examples

y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model
disp <- estimateGLMCommonDisp(d, design)

estimateGLMTagwiseDisp
Estimate Tagwise Dispersions for Negative Binomial GLMs

Description

Estimates the dispersion parameter for a DGE dataset for general experimental designs by using
Cox-Reid approximate conditional inference for a negative binomial generalized linear model for
each transcript (tag) with the unadjusted counts and design matrix provided.

Usage

## S3 method for class 'DGEList'
estimateGLMTagwiseDisp(y, design, offset=NULL, method="trend", ...)
## Default S3 method:
estimateGLMTagwiseDisp(y, design, offset=NULL, dispersion, ...)



estimateGLMTagwiseDisp 35

Arguments

y an object that contains the raw counts for each library (the measure of expression
level); it can either be a matrix of counts, or a DGEList object with (at least)
elements counts (table of unadjusted counts) and samples (data frame con-
taining information about experimental group, library size and normalization
factor for the library size)

design numeric matrix giving the design matrix for the GLM that is to be fit.

method method for defining the set up for smoothing the tagwise dispersion estimates
towards some ‘common’ value. If trend then the function uses the trended dis-
persion estimates from the DGEList object (y$trended.dispersion) to
set the grid of points on which the tagwise dispersions are computed. If common
then the function uses the common dispersion estimate from the DGEList ob-
ject, (y$common.dispersion).

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts. If
a scalar, then this value will be used as an offset for all transcripts and libraries.
If a vector, it should be have length equal to the number of libraries, and the same
vector of offsets will be used for each transcript. If a matrix, then each library
for each transcript can have a unique offset, if desired. Default is NULL; if object
is a DGEList and offset is NULL then offset will be calculated automatically
from codey$samples.

dispersion vector or scalar giving the dispersion value(s) to be used to set the grip of points
for computation of the tagwise dispersion in dispCoxReidInterpolateTagwise.

... other arguments are passed to lower-level functions.

Details

This generic function is simply a wrapper for dispCoxReidInterpolateTagwise. To obtain
estimates of the tagwise (i.e., genewise) dispersion parameters for negative binomial GLMs we use
Cox-Reid approximate conditional inference as implemented in dispCoxReidInterpolateTagwise.
The approach is to maximize the adjusted profile likelihood over the dispersion value, for the tag-
wise models and use these values as the tagwise dispersion parameters for differential signal testing
in downstream analysis.

Value

estimateGLMTagwiseDisp.DGEList produces a DGEList object, which contains the tag-
wise dispersion parameter estimate for each tag for the negative binomial model that maximizes the
Cox-Reid adjusted profile likelihood. The tagwise dispersions are simply added to the DGEList
object provided as the argument to the function.

estimateGLMTagwiseDisp.default returns a vector of the tagwise dispersion estimates.

Author(s)

Gordon Smyth, Davis McCarthy

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.



36 estimateGLMTrendedDisp

See Also

estimateGLMCommonDisp, estimateGLMTrendedDisp

estimateGLMCommonDisp, and estimateGLMTrendedDisp can be used to estimate a
common value for the dispersion parameter for the whole dataset or a value for each tag/transcript
that incorporates a mean-dependent trend on the dispersion, respectively, for a GLM (complicated
experimental design). estimateCommonDisp and estimateTagwiseDisp use conditional
maximum likelihood methods to estimate common and tagwise dispersions respectively, but are
limited to multiple-group experimental designs (one-way layouts).

Examples

y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model
d <- estimateGLMTrendedDisp(d, design)
d <- estimateGLMTagwiseDisp(d, design)
summary(d$tagwise.dispersion)

estimateGLMTrendedDisp
Estimate Trended Dispersion for Negative Binomial GLMs

Description

Estimates the dispersion parameter for each transcript (tag) with a trend that depends on the overall
level of expression for the transcript for a DGE dataset for general experimental designs by using
Cox-Reid approximate conditional inference for a negative binomial generalized linear model for
each transcript (tag) with the unadjusted counts and design matrix provided.

Usage

## S3 method for class 'DGEList'
estimateGLMTrendedDisp(y, design, offset=NULL, method="bin.spline", ...)
## Default S3 method:
estimateGLMTrendedDisp(y, design, offset=NULL, method="bin.spline", ...)

Arguments

y an object that contains the raw counts for each library (the measure of expression
level); it can either be a matrix of counts, or a DGEList object with (at least)
elements counts (table of unadjusted counts) and samples (data frame con-
taining information about experimental group, library size and normalization
factor for the library size)

design numeric matrix giving the design matrix for the GLM that is to be fit.

method method (low-level function) used to estimated the trended dispersions. Possi-
ble values are "bin.spline", "bin.loess" (which both result in a call
to dispBinTrend), "power" (call to dispCoxReidPowerTrend), or
"spline" (call to dispCoxReidSplineTrend).



estimateGLMTrendedDisp 37

offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the transcripts.
If a scalar, then this value will be used as an offset for all transcripts and li-
braries. If a vector, it should be have length equal to the number of libraries,
and the same vector of offsets will be used for each transcript. If a matrix,
then each library for each transcript can have a unique offset, if desired. In
adjustedProfileLik the offset must be a matrix with the same dimen-
sion as the table of counts. Default is NULL; if object is a DGEList and offset
is NULL then offset will be calculated automatically from codey$samples.

... other arguments are passed to lower-level functions.

Details

This is a wrapper function for the lower-level functions that actually carry out the dispersion esti-
mation calculations. Provide a convenient, object-oriented interface for users.

Value

When the input object is a DGEList, estimateGLMTrendedDisp produces a DGEList ob-
ject, which contains the estimates of the trended dispersion parameter for the negative binomial
model according to the method applied.

When the input object is a numeric matrix, the output of one of the lower-level functions dispBinTrend,
dispCoxReidPowerTrend of dispCoxReidSplineTrend is returned.

Author(s)

Gordon Smyth, Davis McCarthy

References

Cox, DR, and Reid, N (1987). Parameter orthogonality and approximate conditional inference.
Journal of the Royal Statistical Society Series B 49, 1-39.

See Also

See dispBinTrend, dispCoxReidPowerTrend and dispCoxReidSplineTrend for
details on how the calculations are done.

estimateGLMCommonDisp, estimateGLMTagwiseDisp

estimateTagwiseDisp, and estimateCommonDisp can be used to estimate a value for the
dispersion parameter for each tag/transcript and a common dispersion value, respectively. The esti-
mates are stabilized by squeezing the estimates towards the common value calculated by estimateCommonDisp.
These functions use exact conditional methods, but are restricted to less complicated experimental
designs; they can deal with multiple groups, but nothing more complicated.

Examples

y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model
disp <- estimateGLMTrendedDisp(d, design)



38 estimatePs

estimatePs Estimate Expression Levels

Description

Estimate expression levels (i.e. proportion of all sample mRNA corresponding to each tag; or,
concentration of mRNA for each tag in sample mRNA) using maximum likelihood with disper-
sion parameter fixed based on the negative binomial model for each tag/gene and sample group.
Expression proportions are used to determine overall abundance of each tag/gene and differential
expression of tags/genes between groups.

Usage

estimatePs(object, r, tol = 1e-10, maxit = 30)

Arguments

object list containing (at least) the elements counts (table of counts), group (vector
or factor indicating group) and lib.size (numeric vector of library sizes)

r numeric vector providing the size parameter of negative binomial model (size
= 1/phi where phi is the dispersion parameter in the NB model)

tol numeric scalar, tolerance between iterations

maxit positive integer scalar, maximum number of iterations

Details

The Newton-Raphson method is used to calculate iteratively the maximum likelihood estimate of
the expression level (i.e. concentration of mRNA for a particular tag in the sample mRNA) for each
tag/gene.

Value

A list with elements:

conc.common numeric vector giving overall proportion/concentration for each tag

conc.group numeric matrix with columns giving estimates of tag/gene concentrations (pro-
portion of total RNA for that group that that particular tag/gene contributes) for
different groups)

Author(s)

Mark Robinson, Davis McCarthy

Examples

set.seed(0)
y<-matrix(rnbinom(40,size=1,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
conc<-estimatePs(d,r=1)



estimateSmoothing 39

estimateSmoothing Estimate the Prior Weight

Description

Estimate the prior weight, prior.n, using an approximate empirical Bayes rule given the estimate of
the common dispersion. The prior weight determines how much smoothing takes place to squeeze
tag/genewise estimates of the dispersion closer to the estimate of the common dispersion.

Usage

estimateSmoothing(object,verbose=TRUE)

Arguments

object DGEList object, output of estimateCommonDisp

verbose logical, whether to write comments, default true

Details

We are not recommending this function for routine use at the moment, as it has given unexpected
results on some deep-sequenced data sets. It should be considered experimental. We are instead
recommending that prior.n be chosen by the user. Values in the range 10-50 give good results
in practice.

Value

estimateSmoothing produces an object of class DGEList with the following components.

prior.n scalar; estimate of the prior weight, i.e. the smoothing parameter that indi-
cates the weight to put on the common likelihood compared to the individual
tag’s likelihood; prior.n of 10 means that the common likelihood is given 10
times the weight of the individual tag/gene’s likelihood in the estimation of the
tag/genewise dispersion

Author(s)

Mark Robinson, Davis McCarthy

Examples

y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
d<-estimateCommonDisp(d)
prior.n<-estimateSmoothing(d)



40 estimateTagwiseDisp

estimateTagwiseDisp
Maximizes the Negative Binomial Weighted Conditional Likelihood

Description

Maximizes the negative binomial weighted likelihood (a weighted version using the common like-
lihood given weight according the the smoothing parameter prior.n and the individual tag/gene
likelihood) for each tag from the pseudocounts provided (i.e. assuming library sizes are equal), to
give an estimate of the dispersion parameter for each tag (i.e. tagwise dispersion estimation).

Usage

estimateTagwiseDisp(object, prior.n=10, trend=FALSE, prop.used=NULL, tol=1e-06, grid=TRUE, grid.length=200, method="movingave", verbose=TRUE)

Arguments

object a DGEList object containing (at least) the elements counts (table of raw
counts), group (factor indicating group), lib.size (numeric vector of li-
brary sizes) and pseudo,alt (numeric matrix of quantile-adjusted pseudo-
counts calculated under the alternative hypothesis of a true difference between
groups; recommended to use the DGEList object provided as the output of
estimateCommonDisp

prior.n numeric scalar, smoothing parameter that indicates the weight to give to the
common likelihood compared to the individual tag’s likelihood; default 10means
that the common likelihood is given 10 times the weight of the individual tag/gene’s
likelihood in the estimation of the tag/genewise dispersion

trend logical, whether or not to let the tagwise dispersion estimates vary with tag/gene
abundance (expression level), that is, whether or not to allow a trend with tag
abundance in the tagwise dispersion estimates

prop.used optional scalar giving the proportion of all tags/genes to be used for the locally
weighted estimation of the tagwise dispersion, allowing the dispersion estimates
to vary with abundance (expression level). If NULL, then a default value of 0.3
(i.e. 30 per cent of tags) are used. That means that for each tag/gene the estimate
of its dispersion is based on the closest 40 per cent of all of the genes to that gene,
where ’closeness’ is based on similarity in expression level.

tol numeric scalar, if grid=FALSE, tolerance for Newton-Rhapson iterations
grid logical, whether to use a grid search (default = TRUE); if FALSE, uses optimize,

but this is very slow if there is a large number of tags/genes to be analysed (i.e.
more than 5000)

grid.length if grid=TRUE, the number of points at which the likelihood is evaluated for
each tag, so larger values improve the accuracy of the dispersion estimates; de-
fault 1000

method names the method to use to fit the trend (so only relevant if trend=TRUE).
The default is "movingave", which uses a moving average to locally smooth
the common likelihood to apply a mean-dependent trend to the dispersions. The
other option is "tricube", which uses a tricube weighting function to locally
smooth the common likelihood. The moving average method is much faster and
results are similar.

verbose logical, whether to write comments, default TRUE



exactTest 41

Value

An object of class DGEList with the same components as for estimateCommonDisp plus the
following:

prior.n estimate of the prior weight, i.e. the smoothing parameter that indicates the
weight to put on the common likelihood compared to the individual tag’s like-
lihood; prior.n of 10 means that the common likelihood is given 10 times the
weight of the individual tag/gene’s likelihood in the estimation of the tag/genewise
dispersion

tagwise.dispersion
tag- or gene-wise estimates of the dispersion parameter

Author(s)

Mark Robinson, Davis McCarthy and Gordon Smyth

References

Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics 23, 2881-2887

See Also

estimateCommonDisp estimates a common value for the dispersion parameter for all tags/genes
- should generally be run before estimateTagwiseDisp.

Examples

y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d<-DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
d<-estimateCommonDisp(d)
tgwdisp<-estimateTagwiseDisp(d, prior.n=10)

exactTest An Exact Test for Differences between Two Negative Binomial Groups

Description

Carry out an exact test for differences between two negative binomial groups, based on conditioning
on sums of (quantile-adjusted pseudo-)counts; calculations performed by exactTest.matrix

Usage

exactTest(object,pair=NULL,dispersion=NULL,common.disp=TRUE)
exactTest.matrix(y1,y2,r=NULL,dispersion=0,all.zeros=NULL)



42 exactTest

Arguments

object a DGEList object, output of estimateCommonDisp, on which to compute
Fisher-like exact statistics for the pair of groups specified.

pair vector of length two, either numeric or character, providing the pair of groups
to be compared; if a character vector, then should be the names of two groups
(e.g. two levels of object$samples$group); if numeric, then groups to
be compared are chosen by finding the levels of object$samples$group
corresponding to those numeric values and using those levels as the groups to
be compared; if NULL, then first two levels of object$samples$group (a
factor) are used.

dispersion optional vector either of length 1 or the same length as the number of tags. If
not NULL (default), then the supplied value(s) will be used as the dispersion
parameter for calculating p-values for differential expression. If NULL, then
either the common or tagwise dispersion estimates from the DGEList object
will be used, according to the value of common.disp. If dispersion is
zero, then p-values are equivalent to exact Poisson rather than NB p-values. For
exactTest.matrix equal to 1/r and ignored if r is supplied.

common.disp logical, if TRUE, then testing carried out using common dispersion for each
tag/gene, if FALSE then tag-wise estimates of the dispersion parameter are used;
default TRUE.

y1 numeric matrix of counts for one of the two given experimental groups to be
tested for differences. Libraries are assumed to be equal in size - e.g. adjusted
pseudocounts from the output of equalizeLibSizes.

y2 numeric matrix of counts for one of the two given experimental groups to be
tested for differences. Libraries are assumed to be equal in size - e.g. adjusted
pseudocounts from the output of equalizeLibSizes. Must have the same
number of rows as y1.

r vector of negative binomial size parameter values (size = 1/phi where
phi is the dispersion parameter in the NB model); if r is of length 1, then a
common value of the dispersion is used for all transcripts, otherwise, must be a
vector with length equal to the number of rows of y1 and y2.

all.zeros logical vector indicating which tags have zero total counts over all libraries. The
output p-value is set to 1 for these tags. If not provided, is determined from the
data.

Details

For each transcript, conditioning on the total sum of counts within each group and the total sum of
counts across all groups allows us to construct an exact test for differences between two group. The
conditional distribution for the sum of counts in a group is known (given the values for the mean
counts, mus, and the dispersion parameter, 1/r), exact p-values can be computed by summing over
all sums of counts that have a probability less than the probability under the null hypothesis of the
observed sum of counts.

exactTest.matrix is the function that actually computes the exact p-values. exactTest is
intended to have a more object-orientated flavor as it produces objects containing all the necessary
components for downstream analysis.

Value

exactTest produces an object of class DGEExact containing the following elements.



expandAsMatrix 43

table a data frame containing the elements logConc, the log-average concentra-
tion/abundance for each tag in the two groups being compared, logFC, the
log-abundance ratio, i.e. fold change, for each tag in the two groups being com-
pared, p.value, exact p-value for differential expression using the NB model

comparison a vector giving the names of the two groups being compared

genes a data frame containing information about each transcript; taken from object
and can be NULL

exactTest.matrix produces a numeric vector of exact p-values with length equal to the num-
ber of transcripts, taken to be the number of rows of y1.

Author(s)

Mark Robinson, Davis McCarthy

References

Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics, 9, 321-332

See Also

Computing p-values for differential expression for each transcript between two (only) digital gene
expression libraries can also be done using the sage.test function in the statmod package.

Examples

# generate raw counts from NB, create list object
y<-matrix(rnbinom(80,size=1,mu=10),nrow=20)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts)<-paste("tagno",1:nrow(d$counts),sep=".")

# estimate common dispersion and find differences in expression
d<-estimateCommonDisp(d)
de<-exactTest(d)

# example using exactTest.matrix directly
y<-matrix(rnbinom(20,mu=10,size=1.5),nrow=5)
group<-factor(c(1,1,2,2))
y<-splitIntoGroupsPseudo(y,group,pair=c(1,2))
f<-exactTest.matrix(y$y1,y$y2,r=1.5)

expandAsMatrix expandAsMatrix

Description

Expand scalar or vector to a matrix.

Usage

expandAsMatrix(x, dim)



44 getCounts

Arguments

x scalar, vector or matrix. If a vector, length must match one of the output dimen-
sions.

dim required dimension for the output matrix.

Details

This function expands a row or column vector to be a matrix. It is used internally in edgeR to
convert offsets to a matrix.

Value

Numeric matrix of dimension dim.

Author(s)

Gordon Smyth

See Also

mglmLS.

Examples

expandAsMatrix(1:3,c(4,3))
expandAsMatrix(1:4,c(4,3))

getCounts Extract Table of Counts from DGEList Object

Description

Returns the counts component of a DGEList object

Usage

getCounts(object)

Arguments

object DGEList object containing (at least) the elements counts (table of raw counts),
group (factor indicating group) and lib.size (numeric vector of library
sizes)

Value

getCounts returns a matrix of counts (presumably integers)

Author(s)

Mark Robinson, Davis McCarthy



getOffsets 45

See Also

DGEList for more information about the DGEList class. as.matrix.DGEList.

Examples

# generate raw counts from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
# should be 5x4
print(dim(getCounts(d)))

getOffsets Extract Vector of Offsets from DGEList Object

Description

Returns the lib.size component of the samples component of DGEList object multiplied by
the norm.factors component

Usage

getOffsets(object)

Arguments

object DGEList object containing (at least) the elements counts (table of raw counts),
group (factor indicating group) and samples, which contains lib.size
(numeric vector of library sizes) and norm.factors (numeric vector of nor-
malization factors).

Value

getOffsets returns a numeric vector

Author(s)

Gordon Smyth, Davis McCarthy

See Also

DGEList for more information about the DGEList class. as.matrix.DGEList.

Examples

# generate raw counts from NB, create list object
y<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
getOffsets(d)



46 glmFit

glmFit Fit negative binomial generalized linear model for each transcript

Description

Fit a negative binomial generalized linear model (GLM) for each transcript (tag) with the unad-
justed counts provided, a value for the dispersion parameter and, optionally, offsets and weights for
different libraries or transcripts.

Usage

glmFit(y, design, dispersion=NULL, offset=NULL, weights=NULL, lib.size=NULL, start=NULL)
glmLRT(y, glmfit, coef=ncol(glmfit$design), contrast=NULL)

Arguments

y an object that contains the raw counts for each library (the measure of expres-
sion level); alternatively, a matrix of counts, or a DGEList object with (at least)
elements counts (table of unadjusted counts) and samples (data frame con-
taining information about experimental group, library size and normalization
factor for the library size)

design numeric matrix giving the design matrix for the GLM that is to be fit. Must be
of full column rank.

dispersion numeric scalar or vector providing the value for the dispersion parameter that
is used in fitting the GLM for each transcript. Can be a common value for
all tags, or a vector of values can provide a unique dispersion value for each
tag. If NULL (default) then dispersion will be detected and extracted from y,
if possible, with order of precedence: tagwise dispersion, trended dispersions,
common dispersion.

offset numeric scalar, vector or matrix giving the offset that is to be included in the
NB GLM for the transcripts. Only one of offset and lib.size should be
supplied—if both are supplied then offset will be used and lib.size will
be ignored. If a scalar, then this value will be used as an offset for all tran-
scripts and libraries. If a vector, it should be have length equal to the number
of libraries, and the same vector of offsets will be used for each transcript. If
a matrix, then each library for each transcript can have a unique offset, if de-
sired. If NULL (the default) then the log of the effective library size (library size
multiplied by normalization factors) will be used as the offsets in the GLMs.

weights optional numeric matrix giving the matrix of weights for the observations (for
each library and transcript) to be used in the GLM calculations. Not currently
used in the GLM calculations.

lib.size optional numeric vector providing the (effective) library size for each library
(must have length equal to the number of columns, or libraries, in the matrix
of counts). If NULL, then a default is used. If y is a DGEList object then the
default for lib.size is the product of the library sizes and the normalization
factors (in the samples slot of the object). If y is a simple matrix of counts,
then the default for lib.size is the vector of column sums of y.

start optional numeric matrix of initial estimates for the fitted coefficients

glmfit a DGEGLM object, the output from glmFit.



glmFit 47

coef scalar or vector indicating the column(s) of design that are to be dropped when
creating the null model for the Likelihood Ratio (LR) Test. The glmLRT fits the
null model and then conducts an LR test of the model fit provided in glmfit
against the null model defined by the choice of coef.

contrast contrast vector for which the test is required, of length equal to the number of
columns of design. If specified, then takes precedence over coef.

Details

Given a fixed value for the dispersion parameter, a negative binomial model can be fitted to the
counts for each tag/transcript in a dataset. The function glmFit calls the in-built function glm.fit
to fit the NB GLM for each tag. Once we have a fit for a given design matrix, glmLRT can be run
with a given coefficient or contrast specified and evidence for differential expression assessed using
a likelihood ratio test. Tags can be ranked in order of evidence for differential expression, based on
the p-value computed for each tag.

Value

glmFit produces an object of class DGEGLM with the following components:

coefficients matrix of estimated coefficients from the NB model

df.residual vector giving the residual degrees of freedom for each tag. In theory it can be
different for different tags (if there are missing values), but in practice these will
usually be identical for each tag.

deviance vector giving the deviance from the NB model fit for each tag.

design design matrix used in the NB model fit for each tag.

offset scalar, vector or matrix giving the offset to use in the NB model for each tag.

samples data frame providing information about the samples (libraries) in the experi-
ment; taken from the object y.

genes vector or data frame providing gene information for each tag; taken from the
object y.

dispersion scalar or vector giving the the value of the dispersion parameter used in each
tag’s NB model fit.

lib.size vector of library sizes used in the model fit.

weights matrix of final weights used in the NB model fits for each tag.
fitted.values

matrix of fitted values from the NB model for each tag.

abundance vector of gene/tag abundances (expression level), on the log2 scale, computed
from the mean count for each gene/tag after scaling count by normalized library
size.

glmLRT produces an object of class DGELRT with the following components:

table data frame (table) containing the abundance of each tag (log-concentration, logConc),
the log-fold change of expression between conditions/contrasts being tested (logFC),
the likelihood ratio statistic (LR.statistic) and the p-value from the LR test
(p.value), for each tag in the dataset.

coefficients matrix of coefficients for the full model defined by the design matrix (i.e. for
the full model).



48 gof

dispersion.used
scalar or vector of the dispersion value(s) used in the GLM fits and LR test.

The DGELRT object also contains all the elements of y except for the table of counts (raw data) and
the table of pseudo-counts (if applicable).

Author(s)

Davis McCarthy and Gordon Smyth

See Also

estimateCRDisp for estimating the negative binomial dispersion.

topTags for displaying results from glmLRT.

Examples

nlibs <- 3
ntags <- 100
dispersion.true <- 0.1

# Make first transcript respond to covariate x
x <- 0:2
design <- model.matrix(~x)
beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))
mu.true <- 2^(beta.true %*% t(design))

# Generate count data
y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)
y <- matrix(y,ntags,nlibs)
colnames(y) <- c("x0","x1","x2")
rownames(y) <- paste("Gene",1:ntags,sep="")
d <- DGEList(y)

# Normalize
d <- calcNormFactors(d)

# Fit the NB GLMs
fit <- glmFit(d, design, dispersion=dispersion.true)

## Likelihood ratio tests for trend
results <- glmLRT(d, fit, coef=2)
topTags(results)

gof Goodness of Fit Tests for Multiple GLM Fits

Description

Conducts deviance goodness of fit tests for each fit in a DGEGLM object

Usage

gof(glmfit, pcutoff=0.1)



gof 49

Arguments

glmfit DGEGLM object containing results from fitting NB GLMs to genes in a DGE
dataset. Output from glmFit.

pcutoff scalar giving the cut-off value for the Holm-adjusted p-value. Genes with Holm-
adjusted p-values lower than this cutoff value are flagged as ‘dispersion outlier’
genes.

Value

This function returns a list with the following components:

gof.statistics
numeric vector of deviance statistics, which are the statistics used for the good-
ness of fit test

gof.pvalues numeric vector of p-values providing evidence of poor fit; computed from the
chi-square distribution on the residual degrees of freedom from the GLM fits.

outlier logical vector indicating whether or not each gene is a ‘dispersion outlier’ (i.e.~the
model fit is poor for that gene indicating that the dispersion estimate is not good
for that gene).

df scalar, the residual degrees of freedom from the GLM fit for which the good-
ness of fit statistics have been computed. Also the degrees of freedom for the
goodness of fit statistics for the LR (chi-quare) test for significance.

Author(s)

Davis McCarthy

See Also

glmFit for more information on fitting NB GLMs to DGE data.

Examples

nlibs <- 3
ntags <- 100
dispersion.true <- 0.1

# Make first transcript respond to covariate x
x <- 0:2
design <- model.matrix(~x)
beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,ntags-1)))
mu.true <- 2^(beta.true %*% t(design))

# Generate count data
y <- rnbinom(ntags*nlibs,mu=mu.true,size=1/dispersion.true)
y <- matrix(y,ntags,nlibs)
colnames(y) <- c("x0","x1","x2")
rownames(y) <- paste("Gene",1:ntags,sep="")
d <- DGEList(y)

# Normalize
d <- calcNormFactors(d)

# Fit the NB GLMs



50 goodTuring

fit <- glmFit(d, design, dispersion=dispersion.true)
# Check how good the fit is for each gene
gof(fit)

goodTuring Good-Turing Frequency Estimation

Description

Non-parametric empirical Bayes estimates of the frequencies of observed (and unobserved) species.

Usage

goodTuring(x, plot=FALSE)
goodTuringProportions(counts)

Arguments

x numeric vector of non-negative integers, representing the observed frequency of
each species.

plot logical, whether to plot log-probability (i.e., log frequencies of frequencies)versus
log-frequency.

counts matrix of counts

Details

Observed counts are assumed to be Poisson. Using an non-parametric empirical Bayes strategy,
the algorithm evaluates the posterior expectation of each species mean given its observed count.
The posterior means are then converted to proportions. In the empirical Bayes step, the counts are
smoothed by assuming a log-linear relationship between frequencies and frequencies of frequencies.
The basics of the algorithm are from Good (1953). Gale and Sampson (1995) proposed a simplied
algorithm with a rule for switching between the observed and smoothed frequencies, and it is Gale
and Sampson’s simplified algorithm that is implemented here. The number of zero values in x are
not used in the algorithm, but is returned by this function.

Sampson gives a C code version on his webpage at http://www.grsampson.net/RGoodTur.
html which gives identical results to this function.

goodTuringProportions runs goodTuring on each column of data, then uses the results
to predict the proportion of each tag in each library.

Value

goodTuring returns a list with components

count observed frequencies, i.e., the unique positive values of x

proportion estimated proportion of species given the count

P0 estimated combined proportion of all undetected species

n0 number of zeros found in x

goodTuringProportions returns a matrix of proportions of the same size as counts.

http://www.grsampson.net/RGoodTur.html
http://www.grsampson.net/RGoodTur.html


logLikDerP 51

Author(s)

Gordon Smyth

References

Gale, WA, and Sampson, G (1995). Good-Turing frequency estimation without tears. Journal of
Quantitative Linguistics 2, 217-237.

Examples

# True means of observed species
lambda <- rnbinom(10000,mu=2,size=1/10)
lambda <- lambda[lambda>1]

# Oberved frequencies
Ntrue <- length(lambda)
x <- rpois(Ntrue, lambda=lambda)
freq <- goodTuring(x, plot=TRUE)

logLikDerP Log-Likelihood for Proportion

Description

Log-likelihood and derivatives for the proportion parameter (i,e, expression level) of negative bino-
mial (mean = library size * proportion)

Usage

logLikDerP(p, y, lib.size, r, der = 0)

Arguments

p vector of proportion parameters to be evaluated

y matrix of counts

lib.size vector of library sizes

r size parameter of negative binomial distribution

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Value

vector of the likelihood or specified derivative evaluations for each tag/gene

Author(s)

Mark Robinson, Davis McCarthy

See Also

estimatePs calls logLikDerP as part of the procedure for estimating the expression level(s)
of each tag.



52 maPlot

Examples

y<-matrix(rnbinom(20,size=1.5,mu=10),nrow=5)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))

this.p<-rowMeans( y/ outer(rep(1,nrow(y)),d$samples$lib.size) )
d1p<-logLikDerP(this.p,y,d$samples$lib.size,r=1.5,der=1)

maPlot Plots Log-Fold Change versus Log-Concentration (or, M versus A) for

Description

To represent counts that were low (e.g. zero in 1 library and non-zero in the other) in one of the two
conditions, a ’smear’ of points at low A value is presented.

Usage

maPlot(x, y, logAbundance=NULL, logFC=NULL, normalize=FALSE, smearWidth = 1, col = NULL, allCol = "black", lowCol = "orange", deCol="red", de.tags=NULL, smooth.scatter=FALSE, lowess=FALSE, ...)

Arguments

x vector of counts or concentrations (group 1)

y vector of counts or concentrations (group 2)

logAbundance vector providing the abundance of each tag on the log2 scale. Purely optional
(default is NULL), but in combination with logFC provides a more direct way
to create an MA-plot if the log-abundance and log-fold change are available.

logFC vector providing the log-fold change for each tag for a given experimental con-
trast. Default is NULL, only to be used together with logAbundance as both
need to be non-null for their values to be used.

normalize logical, whether to divide x and y vectors by their sum

smearWidth scalar, width of the smear

col vector of colours for the points (if NULL, uses allCol and lowCol)

allCol colour of the non-smeared points

lowCol colour of the smeared points

deCol colour of the DE (differentially expressed) points

de.tags indices for tags identified as being differentially expressed; use exactTest to
identify DE genes

smooth.scatter
logical, whether to produce a ’smooth scatter’ plot using the KernSmooth::smoothScatter
function or just a regular scatter plot; default is FALSE, i.e. produce a regular
scatter plot

lowess logical, indicating whether or not to add a lowess curve to the MA-plot to give
an indication of any trend in the log-fold change with log-concentration

... further arguments passed on to plot



maximizeInterpolant 53

Details

The points to be smeared are identified as being equal to the minimum in one of the two groups.
The smear is created by using random uniform numbers of width smearWidth to the left of the
minimum A value.

Value

a plot to the current device

Author(s)

Mark Robinson, Davis McCarthy

See Also

plotSmear

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
maPlot(y[,1], y[,2])

maximizeInterpolant
Maximize a function given a table of values by spline interpolation.

Description

Maximize a function given a table of values by spline interpolation.

Usage

maximizeInterpolant(x, z, maxit=10, eps=1e-7, plot=FALSE)

Arguments

x numeric vector of the inputs of the function.

z numeric vector of the values of the function at the inputs given by x.

maxit numeric scalar giving the maximum number of iterations for the Newton-Raphson
algorithm.

eps numeric scalar giving the convergence tolerance.

plot logical, whether or not to plot the function on those given points.

Details

maximizeInterpolant calls the function splinefun to fit cubic spline interpolation given
a set of points.

maximizeInterpolant uses Newton-Raphson algorithm in finding the maximum of the func-
tion performing the interpolation.



54 meanvar

Value

maximizeInterpolant returns a single value which maximizes the spline interpolation.

Author(s)

Gordon Smyth

See Also

splinefun

Examples

x <- seq(0,1,length=1000)
y <- rnorm(1000,1,1)
maximizeInterpolant(x,y)

meanvar Explore the mean-variance relationship for DGE data

Description

Appropriate modelling of the mean-variance relationship in DGE data is important for making in-
ferences about differential expression. Here are functions to compute tag/gene means and variances,
as well at looking at these quantities when data is binned based on overall expression level.

Usage

plotMeanVar(object, meanvar=NULL, show.raw.vars=FALSE, show.tagwise.vars=FALSE, show.binned.common.disp.vars=FALSE, show.ave.raw.vars=TRUE, dispersion.method="qcml", scalar=NULL, NBline=FALSE, nbins=100, log.axes="xy", xlab=NULL, ylab=NULL, ...)
binMeanVar(x, conc=NULL, group, nbins=100, common.dispersion=FALSE, object=NULL)
pooledVar(y,group)

Arguments

object DGEList object containing the raw data and dispersion value. According the
method desired for computing the dispersion, either CRDisp or estimateCommonDisp
and (possibly) estimateTagwiseDisp should be run on the DGEList ob-
ject before using plotMeanVar. The argument object must be supplied in
the function binMeanVar if common dispersion values are to be computed for
each bin.

meanvar list (optional) containing the output from binMeanVar or the returned value
of plotMeanVar. Providing this object as an argument will save time in com-
puting the tag/gene means and variances when producing a mean-variance plot.

show.raw.vars
logical, whether or not to display the raw (pooled) gene/tag variances on the
mean-variance plot. Default is FALSE.

show.tagwise.vars
logical, whether or not to display the estimated genewise/tagwise variances on
the mean-variance plot. Default is FALSE.



meanvar 55

show.binned.common.disp.vars
logical, whether or not to compute the common dispersion for each bin of tags
and show the variances computed from those binned common dispersions and
the mean expression level of the respective bin of tags. Default is FALSE.

show.ave.raw.vars
logical, whether or not to show the average of the raw variances for each bin of
tags plotted against the average expression level of the tags in the bin. Averages
are taken on the square root scale as regular arithmetic means are likely to be
upwardly biased for count data, whereas averaging on the square scale gives a
better summary of the mean-variance relationship in the data. The default is
TRUE.

dispersion.method
character string giving the method that has been used to estimate the common
and tagwise dispersion values used to calculate the estimated variances. Default
is "qcml" to indicate that conditional inference methods (e.g. estimateCommonDisp
and estimateTagwiseDisp were used to compute the dispersions; other
option is "coxreid" indicating that the Cox-Reid method for GLMs was used.

scalar vector (optional) of scaling values to divide counts by. Would expect to have this
the same length as the number of columns in the count matrix (i.e. the number
of libraries).

NBline logical, whether or not to add a line on the graph showing the mean-variance
relationship for a NB model with common dispersion.

nbins scalar giving the number of bins (formed by using the quantiles of the genewise
mean expression levels) for which to compute average means and variances for
exploring the mean-variance relationship. Default is 100 bins

log.axes character vector indicating if any of the axes should use a log scale. Default is
"xy", which makes both y and x axes on the log scale. Other valid options are
"x" (log scale on x-axis only), "y" (log scale on y-axis only) and "" (linear
scale on x- and y-axis).

xlab character string giving the label for the x-axis. Standard graphical parameter. If
left as the default NULL, then the x-axis label will be set to "logConc".

ylab character string giving the label for the y-axis. Standard graphical parameter. If
left as the default NULL, then the x-axis label will be set to "logConc".

... further arguments passed on to plot

x matrix of count data, with rows representing tags/genes and columns represent-
ing samples

conc vector (optional) of values for the concentration (i.e. abundance) of each tag

group factor giving the experimental group or condition to which each sample (i.e.
column of x or element of y) belongs

common.dispersion
logical, whether or not to compute the common dispersion for each bin of tags.

y vector of count data

Details

This function is useful for exploring the mean-variance relationship in the data. Raw variances are,
for each gene, the pooled variance of the counts from each sample, divided by a scaling factor (by
default the effective library size). The function will plot the average raw variance for tags split
into nbins bins by overall expression level. The averages are taken on the square-root scale



56 meanvar

as for count data the arithmetic mean is upwardly biased. Taking averages on the square-root
scale provides a useful summary of how the variance of the gene counts change with respect to
expression level (abundance). A line showing the Poisson mean-variance relationship (mean equals
variance) is always shown to illustrate how the genewise variances may differ from a Poisson mean-
variance relationship. Optionally, the raw variances and estimated tagwise variances can also be
plotted. Estimated tagwise variances can be calculated using either qCML estimates of the tagwise
dispersions (estimateTagwiseDisp) or Cox-Reid conditional inference estimates (CRDisp).
A log-log scale is used for the plot.

Value

plotMeanVar produces a mean-variance plot for the DGE data using the options described above.
plotMeanVar and binMeanVar both return a list with the following components:

avemeans vector of the average expression level within each bin of genes, with the average
taken on the square-root scale

avevars vector of the average raw pooled gene-wise variance within each bin of genes,
with the average taken on the square-root scale

bin.means list containing the average (mean) expression level for genes divided into bins
based on amount of expression

bin.vars list containing the pooled variance for genes divided into bins based on amount
of expression

means vector giving the mean expression level for each gene

vars vector giving the pooled variance for each gene

bins list giving the indices of the tags in each bin, ordered from lowest expression bin
to highest

pooledVar returns a scalar for the pooled variance of the given data vector.

Author(s)

Davis McCarthy

See Also

plotMDS.dge, plotSmear and maPlot provide more ways of visualizing DGE data.

Examples

y <- matrix(rnbinom(1000,mu=10,size=2),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
plotMeanVar(d) # Produce a straight-forward mean-variance plot
meanvar <- plotMeanVar(d, show.raw.vars=TRUE) # Produce a mean-variance plot with the raw variances shown and save the means and variances for later use

## If we want to show estimated tagwise variances on the plot, we must first estimate them!
d <- estimateCommonDisp(d) # Obtain an estimate of the dispersion parameter
d <- estimateTagwiseDisp(d) # Obtain tagwise dispersion estimates
plotMeanVar(d, meanvar=meanvar, show.tagwise.vars=TRUE, NBline=TRUE, dispersion.method="qcml") # Use previously saved object to speed up plotting; set dispersion.method to 'qcml' instead of default 'coxreid'
## We could also estimate common/tagwise dispersions using the Cox-Reid methods using CRDisp() with an appropriate design matrix



mglm 57

mglm Fit Negative Binomial Generalized Linear Model to Multiple Response

Description

Fit the same log-link negative binomial or Poisson generalized linear model (GLM) to each row of
a matrix of counts.

Usage

mglmLS(y, design, dispersion=0, offset=0, start=NULL, tol=1e-5, maxit=50, trace=FALSE)
mglmOneGroup(y, dispersion=0, offset=0, maxit=50, trace=FALSE)
mglmOneWay(y, design=NULL, dispersion=0, offset=0, maxit=50, trace=FALSE)
mglmSimple(y, design, dispersion=0, offset=0, weights=NULL)
mglmLevenberg(y, design, dispersion, offset=0, start=NULL)
deviances.function(dispersion)
designAsFactor(design)

Arguments

y numeric matrix containing the negative binomial counts. Rows for tags and
columns for libraries.

design numeric matrix giving the design matrix of the GLM. Assumed to be full column
rank.

dispersion numeric scalar or vector giving the dispersion parameter for each GLM. Can be
a scalar giving one value for all tags, or a vector of length equal to the number
of tags giving tag-wise dispersions.

offset numeric vector or matrix giving the offset that is to be included in the log-linear
model predictor. Can be a scalar, a vector of length equal to the number of
libraries, or a matrix of the same size as y.

weights numeric vector or matrix of non-negative quantitative weights. Can be a vector
of length equal to the number of libraries, or a matrix of the same size as y.

start numeric matrix of starting values for the GLM coefficients. Number of rows
should agree with y and number of columns should agree with design.

tol numeric scalar giving the convergence tolerance.

maxit scalar giving the maximum number of iterations for the Fisher scoring algo-
rithm.

trace logical, whether or not to information should be output at each iteration.

Details

The functions mglmLS, mglmOneGroup and mglmSimple all fit negative binomial generalized
linear models, with the same design matrix but possibly different dispersions, offsets and weights, to
a series of response vectors. mglmLS and mglmOneGroup are vectorized in R for fast execution,
while mglmSimple simply makes tagwise calls to glm.fit in the stats package. The functions
are all low-level functions in that they operate on atomic objects such as matrices. They are used as
work-horses by higher-level functions in the edgeR package.



58 mglm

mglmOneGroup fits the null model, with intercept term only, to each response vector. In other
words, it treats the libraries as belonging to one group. It implements Fisher scoring with a score-
statistic stopping criterion for each tag. Excellent starting values are available for the null model,
so this function seldom has any problems with convergence. It is used by other edgeR functions to
compute the overall abundance for each tag.

mglmLS fits an arbitrary log-linear model to each response vector. It implements a vectorized
approximate scoring algorithm with a likelihood derivative stopping criterion for each tag. A simple
line search strategy is used to ensure that the residual deviance is reduced at each iteration. This
function is the work-horse of other edgeR functions such as glmFit and glmLRT.

mglmSimple is not vectorized, and simply makes tag-wise calls to glm.fit. This has the ad-
vantage that it accesses all the usual information generated by glm.fit. Unfortunately, glm.fit
does not always converge, and the tag-wise fitting is relatively slow. mglmLevenberg is simi-
lar to mglmSimple, but makes tagwise calls to glmnb.fit in the statmod package instead of
glm.fit. glmnb.fit implements a Levenberg-Marquardt modification of the scoring algorithm
to prevent divergence.

All these functions treat the dispersion parameter of the negative binomial distribution as a known
input.

deviances.function simply chooses the appropriate deviance function to use given a scalar or
vector of dispersion parameters. If the dispersion values are zero, then the Poisson deviance function
is returned; if the dispersion values are positive, then the negative binomial deviance function is
returned.

Value

mglmOneGroup produces a vector of length equal to the number of tags/genes (number of rows
of y) providing the single coefficent from the GLM fit for each tag/gene. This can be interpreted as
a measure of the ’average expression’ level of the tag/gene.

mglmLS produces a list with the following components:

coefficients matrix of estimated coefficients for the linear models
fitted.values

matrix of fitted values

fail vector of indices of tags that fail the line search, in that the maximum number
of step-halvings in exceeded

not.converged
vector of indices of tags that exceed the iteration limit before satisying the con-
vergence criterion

mglmSimple produces a list with the following components:

coefficients matrix of estimated coefficients for the linear models

df.residual vector of residual degrees of freedom for the linear models

deviance vector of deviances for the linear models

design matrix giving the experimental design that was used for each of the linear models

offset scalar, vector or matrix of offset values used for the linear models

dispersion scalar or vector of the dispersion values used for the linear model fits

weights matrix of final weights for the observations from the linear model fits
fitted.values

matrix of fitted values



movingAverageByCol 59

deviances.function returns a function to calculate the deviance as appropriate for the given
values of the dispersion.

designAsFactor returns a factor of length equal to nrow(design).

Author(s)

Davis McCarthy, Yunshun Chen, Gordon Smyth

See Also

glmFit, for more object-orientated GLM modelling for DGE data.

Examples

y<-matrix(rnbinom(1000,mu=10,size=2),ncol=4)
dispersion <- 0.1
## Fit the NB GLM to the counts
ave.expression <- mglmOneGroup(y, dispersion=dispersion)
head(ave.expression)
## Fit the NB GLM to the counts with a given design matrix
f1<-factor(c(1,1,2,2))
f2<-factor(c(1,2,1,2))
x<-model.matrix(~f1+f2)
ave.expression <- mglmLS(y, x, dispersion=dispersion)
head(ave.expression$coef)

movingAverageByCol Moving Average Smoother of Matrix Columns

Description

Apply a moving average smoother to the columns of a matrix.

Usage

movingAverageByCol(x, width=5, full.length=TRUE)

Arguments

x numeric matrix

width integer, width of window of rows to be averaged

full.length logical value, should output have same number of rows as input?

Details

If full.length=TRUE, narrower windows are used at the start and end of each column to make
a column of the same length as input. If FALSE, all values are averager of width input values, so
the number of rows is less than input.

Value

Numeric matrix containing smoothed values. If full.length=TRUE, of same dimension as x.
If full.length=FALSE, has width-1 fewer rows than x.



60 plotMDS.dge

Author(s)

Gordon Smyth

Examples

x <- matrix(rpois(20,lambda=5),10,2)
movingAverageByCol(x,3)

plotMDS.dge Multidimensional scaling plot of digital gene expression data

Description

Calculate distances between RNA-seq or DGE libraries, then produce a multidimensional scaling
plot.

Usage

plotMDS.dge(x, top=500, labels=colnames(x), col=NULL, cex=1, dim.plot=c(1,2), ndim=max(dim.plot),...)

Arguments

x any matrix or DGEList object.

top number of top genes used to calculate pairwise distances.

labels character vector of sample names or labels. If x has no column names, then
defaults the index of the samples.

col numeric or character vector of colors for the plotting characters.

cex numeric vector of plot symbol expansions.

dim.plot which two dimensions should be plotted, numeric vector of length two.

ndim number of dimensions in which data is to be represented

... any other arguments are passed to plot.

Details

This function is a variation on the usual multdimensional scaling (or principle coordinate) plot,
in that a distance measure particularly appropriate for the digital gene expression (DGE) context
is used. A set of top genes are chosen that have largest biological variation between the libraries
(those with largest tagwise dispersion treating all libraries as one group). Then the distance between
each pair of libraries (columns) is the biological coefficient of variation (square root of the common
dispersion) between those two libraries alone, using the top genes. See text for possible values
for col and cex.

This function can be slow when there are many libraries.

Value

A plot is created on the current graphics device.

Author(s)

Yunshun Chen and Gordon Smyth



plotSmear 61

See Also

cmdscale, as.dist, plotMDS

Examples

# Simulate DGE data for 1000 genes(tags) and 6 samples.
# Samples are in two groups
# First 300 genes are differentially expressed in second group

x <- 10*runif(1000)
counts <- rnbinom(6000, size = 5, mu = x)
m <- matrix(counts, 1000, 6)
rownames(m) <- paste("Gene",1:1000)
m[1:300,4:6] <- m[1:300,4:6] + 10
plotMDS.dge(m)

# Indexes of samples are plotted.
plotMDS.dge(m, col=c(rep("black",3), rep("red",3)) )

plotSmear Plots log-Fold Change versus log-Concentration (or, M versus A) for

Description

Both of these functions plot the log-fold change (i.e. the log of the ratio of expression levels for
each tag between two experimential groups) against the log-concentration (i.e. the overall average
expression level for each tag across the two groups). To represent counts that were low (e.g. zero in
1 library and non-zero in the other) in one of the two conditions, a ’smear’ of points at low A value
is presented in plotSmear.

Usage

plotSmear(object, pair = NULL, de.tags=NULL, xlab = "logConc", ylab =
"logFC", pch = 19, cex = 0.2, smearWidth = 0.5, panel.first=grid(),
smooth.scatter=FALSE, lowess=FALSE, ...)

Arguments

object DGEList or DGELRT object containing data to produce an MA-plot.

pair pair of experimental conditions to plot (if NULL, the first two conditions are
used)

de.tags rownames for tags identified as being differentially expressed; use exactTest
to identify DE genes

xlab x-label of plot

ylab y-label of plot

pch scalar or vector giving the character(s) to be used in the plot; default value of 19
gives a round point.

cex character expansion factor, numerical value giving the amount by which plotting
text and symbols should be magnified relative to the default; default cex=0.2
to make the plotted points smaller



62 plotSmear

smearWidth width of the smear

panel.first an expression to be evaluated after the plot axes are set up but before any plotting
takes place; the default grid() draws a background grid to aid interpretation
of the plot

smooth.scatter
logical, whether to produce a ’smooth scatter’ plot using the KernSmooth::smoothScatter
function or just a regular scatter plot; default is FALSE, i.e. produce a regular
scatter plot

lowess logical, indicating whether or not to add a lowess curve to the MA-plot to give
an indication of any trend in teh log-fold change with log-concentration

... further arguments passed on to plot

Details

plotSmear is a more sophisticated and superior way to produce an ’MA plot’. plotSmear
resolves the problem of plotting tags that have a total count of zero for one of the groups by adding
the ’smear’ of points at low A value. The points to be smeared are identified as being equal to the
minimum estimated concentration in one of the two groups. The smear is created by using random
uniform numbers of width smearWidth to the left of the minimum A. plotSmear also allows
easy highlighting of differentially expressed (DE) tags.

Value

A plot to the current device

Author(s)

Mark Robinson, Davis McCarthy

See Also

maPlot

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
d <- DGEList(counts=y, group=rep(1:2,each=2), lib.size=colSums(y))
rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".")
d <- estimateCommonDisp(d)
plotSmear(d)

# find differential expression
de<-exactTest(d)

# highlighting the top 500 most DE tags
de.tags <- rownames(topTags(de, n=500)$table)
plotSmear(d, de.tags=de.tags)



q2qnbinom 63

q2qnbinom Quantile to Quantile Mapping between Negative-Binomial Distribu-
tions

Description

Approximate quantile to quantile mapping between negative-binomial distributions with the same
dispersion but different means. The Poisson distribution is a special case.

Usage

q2qpois(x, input.mean, output.mean)
q2qnbinom(x, input.mean, output.mean, dispersion=0)

Arguments

x numeric matrix of unadjusted count data from a DGEList object

input.mean numeric matrix of estimated mean counts for tags/genes in unadjusted libraries

output.mean numeric matrix of estimated mean counts for tags/genes in adjusted (equalized)
libraries, the same for all tags/genes in a particular group, different between
groups

dispersion numeric scalar, vector or matrix of dispersion parameters

Details

This function finds the quantile with the same left and right tail probabilities relative to the out-
put mean as x has relative to the input mean. q2qpois is equivalent to q2qnbinom with
dispersion=0.

This is the function that actually generates the pseudodata for equalizeLibSizes and required
by estimateCommonDisp to adjust (normalize) the library sizes and estimate the dispersion
parameter. The function takes fixed values of the estimated mean for the unadjusted libraries (in-
put.mean) and the estimated mean for the equalized libraries (output.mean) for each tag, as well as
a fixed (tagwise or common) value for the dispersion parameter (phi).

The function calculates the percentiles that the counts in the unadjusted library represent for the
normal and gamma distributions with mean and variance defined by the negative binomial rules:
mean=input.mean and variance=input.mean*(1+dispersion*input.mean). The per-
centiles are then used to obtain quantiles from the normal and gamma distributions respectively, with
mean and variance now defined as above but using output.mean instead of input.mean. The
function then returns as the pseudodata, i.e., equalized libraries, the arithmetic mean of the quan-
tiles for the normal and the gamma distributions. As the actual negative binomial distribution is not
used, we refer to this as a "poor man’s" NB quantile adjustment function, but it has the advantage
of not producing Inf values for percentiles or quantiles as occurs using the equivalent NB functions.
If, for any tag, the dispersion parameter for the negative binomial model is 0, then it is equivalent
to using a Poisson model. Lower tails of distributions are used where required to ensure accuracy.

Value

numeric matrix of the same size as x with quantile-adjusted pseudodata



64 readDGE

Author(s)

Gordon Smyth

Examples

y<-matrix(rnbinom(10000,size=2,mu=10),ncol=4)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000,1010),2))
conc<-estimatePs(d,r=2)
N<-exp(mean(log(d$samples$lib.size)))
in.mean<-matrix(0,nrow=nrow(d$counts),ncol=ncol(d$counts))
out.mean<-matrix(0,nrow=nrow(d$counts),ncol=ncol(d$counts))
for(i in 1:2) {
in.mean[,d$samples$group==i]<-outer(conc$conc.group[,i],d$samples$lib.size[d$samples$group==i])
out.mean[,d$samples$group==i]<-outer(conc$conc.group[,i],rep(N,sum(d$samples$group==i)))
}
pseudo<-q2qnbinom(d$counts, input.mean=in.mean, output.mean=out.mean, dispersion=0.5)

readDGE Read and Merge a Set of Files Containing DGE Data

Description

Reads and merges a set of text files containing digital gene expression data.

Usage

readDGE(files, path=NULL, columns=c(1,2), group=NULL, labels=NULL, ...)

Arguments

files character vector of filenames, or alternatively a data.frame with a column con-
taining the file names of the files containing the libraries of counts and, option-
ally, columns containing the group to which each library belongs, descriptions
of the other samples and other information.

path character string giving the directory containing the files. The default is the cur-
rent working directory.

columns numeric vector stating which two columns contain the tag names and counts,
respectively

group vector, or preferably a factor, indicating the experimental group to which each
library belongs. If group is not NULL, then this argument overrides any group
information included in the files argument.

labels character vector giving short names to associate with the libraries. Defaults to
the file names.

... other are passed to read.delim

Details

Each file is assumed to contained digital gene expression data for one sample (or library), with
transcript identifiers in the first column and counts in the second column. Transcript identifiers are
assumed to be unique and not repeated in any one file. By default, the files are assumed to be
tab-delimited and to contain column headings. The function forms the union of all transcripts and
creates one big table with zeros where necessary.



splitIntoGroups 65

Value

DGEList object

Author(s)

Mark Robinson and Gordon Smyth

See Also

DGEList provides more information about the DGEList class and the function DGEList, which
can also be used to construct a DGEList object, if readDGE is not required to read in and construct
a table of counts from separate files.

Examples

# Read all .txt files from current working directory

## Not run: files <- dir(pattern="*\\.txt$")
RG <- readDGE(files)
## End(Not run)

splitIntoGroups Split the Counts or Pseudocounts from a DGEList Object According
To

Description

Split the counts from a DGEList object according to group, creating a list where each element
consists of a numeric matrix of counts for a particular experimental group. Given a pair of groups,
split pseudocounts for these groups, creating a list where each element is a matrix of pseudocounts
for a particular gourp.

Usage

splitIntoGroups(object)
splitIntoGroupsPseudo(pseudo, group, pair)

Arguments

object DGEList, object containing (at least) the elements counts (table of raw counts),
group (factor indicating group) and lib.size (numeric vector of library
sizes)

pseudo numeric matrix of quantile-adjusted pseudocounts to be split

group factor indicating group to which libraries/samples (i.e. columns of pseudo
belong; must be same length as ncol(pseudo)

pair vector of length two stating pair of groups to be split for the pseudocounts

Value

splitIntoGroups outputs a list in which each element is a matrix of count counts for an in-
dividual group. splitIntoGroupsPseudo outputs a list with two elements, in which each
element is a numeric matrix of (pseudo-)count data for one of the groups specified.



66 subsetting

Author(s)

Davis McCarthy

Examples

# generate raw counts from NB, create list object
y<-matrix(rnbinom(80,size=1,mu=10),nrow=20)
d<-DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts)<-paste("tagno",1:nrow(d$counts),sep=".")
z1<-splitIntoGroups(d)

z2<-splitIntoGroupsPseudo(d$counts,d$group,pair=c(1,2))

subsetting Subset DGEList, DGEExact and DGELRT Objects

Description

Extract a subset of a DGEList, DGEExact or DGELRT object.

Usage

## S3 method for class 'DGEList'
object[i, j, ...]
## S3 method for class 'DGEExact'
object[i, j, ...]
## S3 method for class 'DGELRT'
object[i, j, ...]

Arguments

object object of class DGEList, DGEExact or DGELRT, respectively

i,j elements to extract. i subsets the tags or genes while j subsets the libraries.
Note, columns of DGEExact and DGELRT objects cannot be subsetted.

... not used

Details

i,j may take any values acceptable for the matrix components of object of class DGEList.
See the Extract help entry for more details on subsetting matrices. For DGEExact and DGELRT
objects, only rows (i.e. i) may be subsetted.

Value

An object of class DGEList, DGEExact or DGELRT as appropriate, holding data from the speci-
fied subset of tags/genes and libraries.

Author(s)

Davis McCarthy, Gordon Smyth



systematicSubset 67

See Also

Extract in the base package.

Examples

d <- matrix(rnbinom(16,size=1,mu=10),4,4)
rownames(d) <- c("a","b","c","d")
colnames(d) <- c("A1","A2","B1","B2")
d <- DGEList(counts=d,group=factor(c("A","A","B","B")))
d[1:2,]
d[1:2,2]
d[,2]
d <- estimateCommonDisp(d)
results <- exactTest(d)
results[1:2,]
# NB: cannot subset columns for DGEExact objects

systematicSubset Take a systematic subset of indices.

Description

Take a systematic subset of indices stratified by a ranking variable.

Usage

systematicSubset(n, order.by)

Arguments

n integer giving the size of the subset.

order.by numeric vector of the values by which the indices are ordered.

Value

systematicSubset returns a vector of size n.

Author(s)

Gordon Smyth

See Also

order

Examples

y <- rnorm(100, 1, 1)
systematicSubset(20, y)



68 topTags

thinCounts Binomial Thinning of Counts

Description

Reduce the size of Poisson-like counts by binomial thinning.

Usage

thinCounts(x, prob=0.5)

Arguments

x numeric vector or array of non-negative integers.

prob numeric scalar or vector, the expected proportion of the counts to keep.

Details

This function calls rbinom with size=x and prob=prob to generate the new counts.

Value

A vector or array of the same dimensions as x, with thinned counts.

Author(s)

Gordon Smyth

Examples

x <- rpois(10,lambda=10)
thinCounts(x)

topTags Table of the Top Differentially Expressed Tags

Description

Extracts the top DE tags in a data frame for a given pair of groups, ranked by p-value or absolute
log-fold change.

Usage

topTags(object, n=10, adjust.method="BH", sort.by="p.value")



topTags 69

Arguments

object a DGEExact object (output from exactTest) or a DGELRT object (output
from glmLRT), containing the (at least) the elements table: a data frame
containing the log-concentration (i.e. expression level), the log-fold change in
expression between the two groups/conditions and the p-value for differential
expression, for each tag. If it is a DGEExact object, then topTags will also
use the comparison element, which is a vector giving the two experimental
groups/conditions being compared. The object may contain other elements that
are not used by topTags.

n scalar, number of tags to display/return

adjust.method
character string stating the method used to adjust p-values for multiple testing,
passed on to p.adjust

sort.by character string, indicating whether tags should be sorted by p-value ("p.value")
or absolute log-fold change ("logFC"); default is to sort by p-value.

Value

an object of class TopTags containing the following elements for the top n most differentially
expressed tags as determined by sort.by.

table a data frame containing the elements logConc, the log-average concentra-
tion/abundance for each tag in the two groups being compared, logFC, the
log-abundance ratio, i.e. fold change, for each tag in the two groups being
compared, p.value, exact p-value for differential expression using the NB
model, adj.p.val, the p-value adjusted for multiple testing as found using
p.adjust using the method specified

comparison a vector giving the names of the two groups being compared

There is a show method for this class.

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

Robinson MD, Smyth GK. ’Small-sample estimation of negative binomial dispersion, with appli-
cations to SAGE data.’ Biostatistics. 2008 Apr;9(2):321-32.

Robinson MD, Smyth GK. ’Moderated statistical tests for assessing differences in tag abundance.’
Bioinformatics. 2007 Nov 1;23(21):2881-7.

See Also

exactTest, glmLRT, p.adjust.

Analogous to topTable in the limma package.



70 weightedComLik

Examples

# generate raw counts from NB, create list object
y <- matrix(rnbinom(80,size=1,mu=10),nrow=20)
d <- DGEList(counts=y,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
rownames(d$counts) <- paste("tag",1:nrow(d$counts),sep=".")

# estimate common dispersion and find differences in expression
# here we demonstrate the 'exact' methods, but the use of topTags is
# the same for a GLM analysis
d<-estimateCommonDisp(d)
de<-exactTest(d)

# look at top 10
topTags(de)
# Can specify how many tags to view
tp <- topTags(de, n=15)
# Here we view top 15
tp
# Or order by fold change instead
topTags(de,sort.by="logFC")

weightedComLik Weighted Common Log-Likelihood

Description

Allow a flexible approach to accounting for a potential dependence of the dispersion on the abun-
dance (expression level) of tags/genes by calculating a weighted ’common’ log-likelihood for each
gene.

Usage

weightedComLik(object,l0,prop.used=0.25)
weightedComLikMA(object,l0,prop.used=0.05)

Arguments

object DGEList object with (at least) elements counts (table of unadjusted counts)
and samples (data frame containing information about experimental group,
library size and normalization factor for the library size)

l0 matrix of the conditional log-likelihood evaluated at a variety of values for
the dispersion (on the delta scale, phi/(1 + phi)) for each tag/gene. The
matrix has number of rows equal to the number of tags/genes and number of
columns equal to the number of grid values (between 0 and 1) for the dispersion
at which the conditional log-likelihood is evaluated.

prop.used scalar giving the proportion of tags/genes in the whole dataset to use in com-
puting the weighted common log-likelihood for each tag/gene. Default value is
0.25, i.e. a quarter of the tags/genes in the dataset, for weightedComLik
and 0.05 for weightedComLikMA.



weightedCondLogLikDerDelta 71

Details

Genes are ordered based on abundance (expression level) and for a given gene, a proportion of
the genes close to it are used to compute the common log-likelihood with decreasing weight given
to the genes further from the given gene. Weighting is done using the tricube weighting function
for weightedComLik. Computation can be slow relative to other functions in edgeR, espe-
cially if the number of genes or the number of grid values (i.e. the dimensions of l0) are large.
weightedComLikMA uses a moving average to do the weighting (using movingAverageByCol)
and so is much faster than weightedComLik.

Value

matrix of weighted common log-likelihood values computed for each gene at each grid value for
the dispersion. The matrix returned has the same dimensions as l0.

Author(s)

Davis McCarthy

Examples

counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
d<-estimateCommonDisp(d)
ntags<-nrow(d$counts)
y<-splitIntoGroups(new("DGEList",list(counts=d$pseudo.alt,samples=d$samples)))
grid.vals<-seq(0.001,0.999,length.out=10)
l0<-0
for(i in 1:length(y)) {

l0<-condLogLikDerDelta(y[[i]],grid.vals,der=0,doSum=FALSE)+l0
}
m0 <- ntags*weightedComLik(d,l0,prop.used=0.25) # Weights sum to 1, so need to multiply by number of tags to give this the same weight overall as the regular common likelihood
# Or use the moving-average method
m1 <- ntags*weightedComLikMA(d,l0,prop.used=0.05)

weightedCondLogLikDerDelta
Weighted Conditional Log-Likelihood in Terms of Delta

Description

Weighted conditional log-likelihood parameterized in terms of delta (phi / (phi+1)) for a
given tag/gene - maximized to find the smoothed (moderated) estimate of the dispersion param-
eter

Usage

weightedCondLogLikDerDelta(y, delta, tag, prior.n=10, ntags=nrow(y[[1]]), der=0, doSum=FALSE)



72 weightedCondLogLikDerDelta

Arguments

y list with elements comprising the matrices of count data (or pseudocounts) for
the different groups

delta delta (phi / (phi+1))parameter of negative binomial

tag tag/gene at which the weighted conditional log-likelihood is evaluated

prior.n smoothing paramter that indicates the weight to put on the common likelihood
compared to the individual tag’s likelihood; default 10 means that the common
likelihood is given 10 times the weight of the individual tag/gene’s likelihood in
the estimation of the tag/genewise dispersion

ntags numeric scalar number of tags/genes in the dataset to be analysed

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

doSum logical, whether to sum over samples or not (default FALSE

Details

This function computes the weighted conditional log-likelihood for a given tag, parameterized in
terms of delta. The value of delta that maximizes the weighted conditional log-likelihood is con-
verted back to the phi scale, and this value is the estimate of the smoothed (moderated) dispersion
parameter for that particular tag. The delta scale for convenience (delta is bounded between 0 and
1).

Value

numeric scalar of function/derivative evaluated for the given tag/gene and delta

Author(s)

Mark Robinson, Davis McCarthy

Examples

counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=0)
ll2<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=1)



Index

∗Topic algebra
adjustedProfileLik, 5
betaApproxNBTest, 8
bin.dispersion, 9
dglmStdResid, 17
dispCoxReidInterpolateTagwise,

24
equalizeLibSizes, 28
estimateCommonDisp, 31
estimateCRDisp, 29
estimateGLMCommonDisp, 33
estimateGLMTagwiseDisp, 34
estimateGLMTrendedDisp, 36
estimateTagwiseDisp, 40
exactTest, 41
gof, 48
meanvar, 54
mglm, 57
q2qnbinom, 63
splitIntoGroups, 65
topTags, 68

∗Topic array
as.matrix, 7
dim, 19
dimnames, 20

∗Topic classes
DGEExact-class, 1
DGEGLM-class, 1
DGEList-class, 3
DGELRT-class, 2

∗Topic datasets
Tu102, 5

∗Topic file
approx.expected.info, 6
commonCondLogLikDerDelta, 13
condLogLikDerDelta, 14
condLogLikDerSize, 15
estimatePs, 38
estimateSmoothing, 39
getCounts, 44
getOffsets, 45
logLikDerP, 51
plotSmear, 61

readDGE, 64
weightedComLik, 70
weightedCondLogLikDerDelta,

71
∗Topic hplot

expandAsMatrix, 43
plotMDS.dge, 60

∗Topic htest
binomTest, 10
decideTestsDGE, 16

∗Topic interpolation
maximizeInterpolant, 53

∗Topic manip
subsetting, 66

∗Topic models
dispBinTrend, 21
dispCoxReid, 23
dispCoxReidSplineTrend, 26
glmFit, 46
goodTuring, 50
thinCounts, 68

∗Topic package
edgeR-package, 27

∗Topic smooth
movingAverageByCol, 59

∗Topic subset
systematicSubset, 67

[.DGEExact (subsetting), 66
[.DGELRT (subsetting), 66
[.DGEList (subsetting), 66
[.TopTags (topTags), 68
02.Classes, 20, 21

adjustedProfileLik, 5
approx.expected.info, 6
as.dist, 61
as.matrix, 7, 8
as.matrix.DGEList, 45
as.matrix.RGList, 8

betaApproxNBTest, 8
bin.dispersion, 9
binCMLDispersion

(bin.dispersion), 9

73



74 INDEX

binGLMDispersion, 22
binGLMDispersion

(bin.dispersion), 9
binMeanVar (meanvar), 54
binom.test, 11
binomTest, 10

calcNormFactors, 12
cmdscale, 61
commonCondLogLikDerDelta, 13, 14
condLogLikDerDelta, 14
condLogLikDerSize, 15

decideTests, 16
decideTestsDGE, 16
designAsFactor (mglm), 57
deviances.function (mglm), 57
DGEExact-class, 1
DGEGLM-class, 1
DGEList, 3, 4, 4, 45, 65
DGEList-class, 3
DGELRT-class, 2
dglmStdResid, 17
dim, 19, 20
dimnames, 20, 20, 21
dimnames<-.DGEList (dimnames), 20
dispBinTrend, 21, 37
dispCoxReid, 10, 23, 34
dispCoxReidInterpolateTagwise, 6,

24
dispCoxReidPowerTrend, 37
dispCoxReidPowerTrend

(dispCoxReidSplineTrend),
26

dispCoxReidSplineTrend, 26, 37
dispDeviance, 10, 34
dispDeviance (dispCoxReid), 23
dispPearson, 10, 34
dispPearson (dispCoxReid), 23

edgeR (edgeR-package), 27
edgeR-package, 27
equalizeLibSizes, 28, 42
estimateCommonDisp, 10, 13, 14, 28, 31,

36, 37, 41
estimateCRDisp, 29, 48
estimateGLMCommonDisp, 9, 10, 24, 30,

33, 36, 37
estimateGLMTagwiseDisp, 6, 25, 30,

34, 34, 37
estimateGLMTrendedDisp, 22, 27, 30,

34, 36, 36
estimatePs, 38, 51

estimateSmoothing, 7, 39
estimateTagwiseDisp, 14, 28, 32, 36,

37, 40
exactTest, 41, 69
expandAsMatrix, 43
Extract, 66, 67

getCounts, 44
getDispersions (dglmStdResid), 17
getOffsets, 45
glmFit, 46, 49, 59
glmLRT, 69
glmLRT (glmFit), 46
gof, 48
goodTuring, 50
goodTuringProportions

(goodTuring), 50

length.DGEExact (dim), 19
length.DGEGLM (dim), 19
length.DGEList (dim), 19
length.DGELRT (dim), 19
length.TopTags (dim), 19
logLikDerP, 51

maPlot, 19, 52, 56, 62
maximizeInterpolant, 6, 25, 53
meanvar, 54
mglm, 57
mglmLevenberg (mglm), 57
mglmLS, 44
mglmLS (mglm), 57
mglmOneGroup (mglm), 57
mglmOneWay (mglm), 57
mglmSimple (mglm), 57
movingAverageByCol, 59, 71

NC1 (Tu102), 5
NC2 (Tu102), 5

optim, 26, 27
optimize, 24
order, 67

p.adjust, 16, 69
plotMDS, 61
plotMDS.dge, 19, 56, 60
plotMeanVar, 19
plotMeanVar (meanvar), 54
plotSmear, 19, 53, 56, 61
pooledVar (meanvar), 54

q2qnbinom, 63
q2qpois (q2qnbinom), 63



INDEX 75

readDGE, 64

sage.test, 11
show,DGEExact-method

(DGEExact-class), 1
show,DGEGLM-method

(DGEGLM-class), 1
show,DGELRT-method

(DGELRT-class), 2
show,TopTags-method (topTags), 68
splinefun, 54
splitIntoGroups, 65
splitIntoGroupsPseudo

(splitIntoGroups), 65
subsetting, 66
systematicSubset, 67

TestResults, 16
text, 60
thinCounts, 68
topTable, 69
topTags, 48, 68
TopTags-class (topTags), 68
Tu102, 5
Tu98 (Tu102), 5

uniroot, 24

weightedComLik, 70
weightedComLikMA

(weightedComLik), 70
weightedCondLogLikDerDelta, 14, 71


	DGEExact-class
	DGEGLM-class
	DGELRT-class
	DGEList-class
	DGEList
	Tu102
	adjustedProfileLik
	approx.expected.info
	as.matrix
	betaApproxNBTest
	bin.dispersion
	binomTest
	calcNormFactors
	commonCondLogLikDerDelta
	condLogLikDerDelta
	condLogLikDerSize
	decideTestsDGE
	dglmStdResid
	dim
	dimnames
	dispBinTrend
	dispCoxReid
	dispCoxReidInterpolateTagwise
	dispCoxReidSplineTrend
	edgeR-package
	equalizeLibSizes
	estimateCRDisp
	estimateCommonDisp
	estimateGLMCommonDisp
	estimateGLMTagwiseDisp
	estimateGLMTrendedDisp
	estimatePs
	estimateSmoothing
	estimateTagwiseDisp
	exactTest
	expandAsMatrix
	getCounts
	getOffsets
	glmFit
	gof
	goodTuring
	logLikDerP
	maPlot
	maximizeInterpolant
	meanvar
	mglm
	movingAverageByCol
	plotMDS.dge
	plotSmear
	q2qnbinom
	readDGE
	splitIntoGroups
	subsetting
	systematicSubset
	thinCounts
	topTags
	weightedComLik
	weightedCondLogLikDerDelta
	Index

