coRNAi

October 25, 2011

BoxPlotShorth

Boxplot with horizontal bars at the midpoint of the shorth

Description

Produces a boxplot, but instead of horizontal bars at the median, the bars are at the midpoint of the shorth.

Usage

```
BoxPlotShorth(formula, data = NULL, ...)
```

Arguments

formula for how the boxplot should be drown.

data the data to be used

... other arguments to be passed to the plot function

Value

a boxplot object

Author(s)

Elin Axelsson

See Also

See Also boxplot.formula

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral= "Fluc")
BoxPlotShorth(value~replicate,df)
```

2 InteractGraph

InteractGraph functions to visualize interactions as a graph

Description

visualizes significant interactions as a graph

Usage

InteractGraph(toptable,thresh,sizecutoff=0,by,key=FALSE,file="interactions",colo

Arguments

toptable toptable table from function topTable
thresh numeric, threshold for significance

sizecutoff sizecutoff a minimal absolute size of a interaction for it to be included in

the graph as an edge.

by column in topTable that thresh should be applied to

key optional, data frame with groupings of the genes in the toptable

file file name of the file the results will be outputed to.

colors colors list with colors to be used for pos interactions, neg interactions, key

(nodes in key) and normal nodes.

Value

pdf file with graph

Author(s)

Elin Axelsson

See Also

levelplot

Examples

#see vignette

InteractLevelPlot 3

InteractLevelPlot function to visualize interactions as a levelplot

Description

visualizes significant interactions as a levelplot

Usage

```
InteractLevelPlot(toptable, thresh = 0.001, by = "P.Value", key = FALSE, col.reg
```

Arguments

toptable toptable table from function topTable
thresh numeric, threshold for significance

by column in topTable that thresh should be applied to

key optional, data frame with groupings of the genes in the toptable

col.regions colors to be used

zerolimit zerolimit threshold below which interactions should be colored as 0.

Value

a levelplot, pdf files with graphs

Author(s)

Elin Axelsson

See Also

```
levelplot
```

```
# similated data
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
tt = data.frame("ID"=(unique(df$Pair[df$Type=="comb"])), "size"=runif(length(unique(df$PairInteractLevelPlot(tt,thres=0,by="size"))
```

4 MainFitPlot

stic plot			
-----------	--	--	--

Description

Plots residuals vs fitted values after fitting of main effects.

Usage

```
MainFitPlot(fit, xlab = "Fitted values", ylab = "Residuals", sd.fit = TRUE, main
```

Arguments

fit	a fit from lmmain, rlmmain or similar
xlab	label for x-axis
ylab	label for y-axis
sd.fit	logical, should the local estimator of the standard deviation be plotted
main	main title for the plot
	arguments to be passed on to the plot function

Value

a plot

Author(s)

Elin Axelsson

See Also

locfit

```
## simulated data
fitted.value = rnorm(100,2,1)
residuals = rnorm(100,0,1)
fit = list(fitted.value=fitted.value, residuals = residuals)
class(fit) = "lm"
MainFitPlot(fit)
```

PlotHeatmap 5

Plotheatmap Fiol a nearmap of interactions	Dlatifaatman	Diet a heatman of interactions
	PlotHeatmap	Plot a heatmap of interactions

Description

Plots a heatmap of the mean residuals for each interaction pair.

Usage

```
PlotHeatmap(toptable, colpal = colorRampPalette(c("blue", "white", "yellow")), key=FALSE, margins=c(7,7), na.color="grey", breaks=seq(-1,1,by=0.01),...)
```

Arguments

toptable	a data frame created by with the interaction estimates as "logFC" and pair id as "ID". Usually created by topTable function in limma
colpal	color palette to be used in the plot
key	logical should a color key be included
margins	margins for plot
na.color	color for NA values
breaks	mapping data to colors in colpal
	additional arguments to be passed to heatmap.2 call

Value

a plot

Author(s)

Elin Axelsson

See Also

```
heatmap.2
```

```
# similated data
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
tt = data.frame("ID"=(unique(df$Pair[df$Type=="comb"])), "size"=runif(length(unique(df$PairPlotHeatmap(tt)))
```

6 cellHTS2df

Pplot

Function to plot cumulative p-values

Description

Given a vextor of p-values a cumulative p-value plot is produced

Usage

```
Pplot(x, col = "darkblue", maintitle="", nrpoints = 100, ...)
```

Arguments

```
x vector with p-values
col color to be used
maintitle character, main plot title
nrpoints numeric, how many points should be plotted
... additional arguments passed on to the plot
```

Value

a plot

Author(s)

Wolfgang Huber

Examples

```
x = runif(1000, 0, 1)

Pplot(x,col="red",maintitle="uniform dist.", nrpoints=200)
```

cellHTS2df

converts cellHTS objects to dataframes

Description

converts a cellHTS2 object into a data.frame object and check that all mandatory meta data is included. Adds Directions, replicates and Pair columns.

Usage

```
cellHTS2df(x,neutral)
```

Arguments

```
x a cellHTS object with correct annotationsneutral string stating which RNAi is neutral (negative control)
```

cortestmatrices 7

Value

data.frame, with the data from the cellHTS object in column "value". Meta data from annotation file and the new columns; Directions, Replicate and Pair

Author(s)

Elin Axelsson

See Also

```
cellHTS
```

Examples

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
head(df)
```

cortestmatrices

Function to extract correlations and corresponding p-values from

Description

This is a wrapper function for cor.test, given a matrix of interaction values, correlations and corresponding p-values for the genewise interaction profiles are calculated.

Usage

```
cortestmatrices(mat, method = c("pearson", "kendall", "spearman"))
```

Arguments

mat mat interaction matrix

method character deciding which correlation method should be used

Value

List of two matrices

```
cor.matrix matrix with correlations
p.matrix matrix with p-values
```

Author(s)

Elin Axelsson

See Also

```
cor.test
```

8 data2graph

Examples

```
## simulate data with 2 genes with similar profiles

mat = matrix(rnorm(100*100,0,1),100,100)
pr = sample(2:10,100,replace=TRUE)
mat[1:2,] = mat[1:2,] + matrix(pr,ncol=100,nrow=2,byrow=TRUE)
mat = mat+t(mat)
diag(mat) = NA
dimnames(mat)=list(1:100,1:100)
res = cortestmatrices(mat,method="spearman")
cors= res[[1]]
ps = res[[2]]
print(which(ps==min(ps,na.rm=TRUE),arr.ind=TRUE))
```

data2graph

Function to create .dot files for graph representation of data

Description

From a interaction table or list of data matrices a .dot file is created for visualisation of the interaction/correlation network

Usage

```
data2graph(indata, sizethres=0, thres, thresBy = "P.Value", cols = c("blue", "wh
```

Arguments

fontsize

indata	
sizethres	numerical, lower treshold on the absolute effect size for edges
thres	threshold that should be used for interactions/correlations to be included in graph
thresBy	what data should the threshold by used at. By default the p value from the moderated t test is used but one could also use e.g. the ordinary t or the size
cols	colors to be used in the plot, should be a character vector with the colors for low, neutral and hig values
gamma.col	Factor used to scale the colors
scaleFactor	Scale factor to adjust the distances beteen nodes in the graph
nodecolor	character or character vector, which color(s) should the nodes have. Should either be of lenth 1 (all nodes same color) or same length as the number of nodes.
writedot	logical, should a .dot file be created.
filename	charcter string with name of .dot file
width	width of the nodes
penwidth	width of the lines in the plot
shape	shape of the nodes in the plot
fixedsize	should all nodes have the same size

size of the font in the plot

df2array 9

Value

a .dot file is written if writefile argument is TRUE

ninf Dataframe with information about the nodes in the network
einfo Dataframe with information about the edges in the network

Author(s)

Greg Pau, Elin Axelsson

See Also

Also see Graphviz documantation http://www.graphviz.org/

Examples

#see vignette

df2array

function to do go from data frame to an array with values

Description

The function transforms a float column in a data frame (from cHTS2df) to an array.

Usage

```
df2array(df, what)
```

Arguments

df Data frame (from cellHTS2df) with additional column weights.

what which column contains the data, eg. value or residuals

Value

An array with the data from the data frame.

Author(s)

Elin Axelsson

10 df2fitmatrix

Examples

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral = "Fluc")
df$weights = as.numeric(df$Type=="comb")

aa = df2array(df,what="value")

## see head for first replicate
head(aa[,,1])
```

df2fitmatrix

matrix for lmFit from dataframe

Description

converts a dataframe into the right format for lmFit function

Usage

```
df2fitmatrix(df)
```

Arguments

df

dataframe from cellHTS2df function

Value

A matrix with the genepairs as rows and the replicates as columns. This matrix is in the right format for the lmFit.

Author(s)

Elin Axelsson

See Also

```
df2lmFit
```

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
df = weightDf(df)
lmm = lmmain(df)
df = updateDf(df,lmm)
mfit = df2fitmatrix(df)
head(mfit)
```

df2lmFit 11

df2lmFit

lmFit from dataframe

Description

converts a dataframe into the right format for lmFit function, calls the lmFit from limma and returns the result.

Usage

```
df2lmFit(df)
```

Arguments

df

dataframe from cellHTS2df function

Value

Object of class 'MArrayLM'

Author(s)

Elin Axelsson

See Also

lmFit

Examples

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
df = weightDf(df)
lmm = lmmain(df)
df = updateDf(df,lmm)
mfit = df2lmFit(df)
str(mfit)
```

estmodel

Function to do estimate the main effects from data using median, mean

Description

The function estimates the main effect i from all data with the RNIi against i. It can be done by median, mean or shorth.

Usage

```
estmodel(df, estimate = c("median", "mean", "shorth"), per = NULL)
```

12 faultyscreen

Arguments

df data frame from cellHTS2df function with extra column weight (see weightDf)

estimate median, mean or shorth, decides how the main effects will be esti-

nated.

per for which factor should the analyis be done separetly, eg. batch or replicate.

Value

for per =NULL, a list with

coefficient the estimated main effects

residuals the residual after the main effects have been subtracted from the observations

for other per, a list of lists like the once described above, one for each level of the factor per.

Author(s)

Elin Axelsson

Examples

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
df$weight = as.numeric(df$Type=="comb")
main = estmodel(df,estimate="median")
str(main)
```

faultyscreen

faulty screen

Description

A screen with both systematic errors and sporadic contaminations.

Usage

```
data(faultyscreen)
```

Format

The format is: chr "cellHTS"

```
data(faultyscreen)
## maybe str(faultyscreen); plot(faultyscreen) ...
```

interactiontable 13

interactiontable Returns a list of interactions with associated statistics.

Description

This is a extanded wrapper around the topTable function from the limma package, as an option the ordinary t statistics can be calculated as well.

Usage

```
interactiontable(ebfit, sort = "none", ord.t = FALSE, correction = "BH")
```

Arguments

ebfit	ebfit a MArrayLM object produced by the eBayes function
sort	character string specifying which statistic to rank genes by, possible arguments are none, ID,size, t,B,adj.P.val,P.Value, and if ord.t = TRUE: ord.t, ord.p and ord.p.adj.
ord.t	Logical, should ordinary t statistics be calculted? Default is FALSE.
correction	method used to adjust the p-values for multiple testing. Default is BH. See p.adjust for the complete list of options.

Value

Returns a dataframe where the rows are the interaction pairs and the columns the statistics:

ID: Interaction pair if

size: the average interaction size

t: the moderated t statistics

P.Value: p-value for the moderated t statistics

adj.P.Val: adjusted p-value

B: the b statistics

if the ord.t=TRUE, the ordinary t statistics (ord.t), with corresponding p-values (ord.p) and adjusted p-values (ord.p.adj)

Warning

usage of the ordinary t statistics is not recommended for data sets with few replicates.

Author(s)

Elin Axelsson

See Also

```
p.adjust,topTable
```

14 repplots

Examples

```
## simulated data
    y <- matrix(rnorm(50*4,sd=1),50,4)
    rownames(y) <- paste("Pair",1:50)

# fit and eBayes
    fit <- lmFit(y)
    fit <- eBayes(fit)
    tt = interactiontable(fit,sort="size")
    head(tt)</pre>
```

key

A key to data set screen1, contains (additional) information about the

Description

Contains information about which of the 16 genes in screen1 are cell cycle related. This is used in interaction graphs/plots.

Usage

```
data(key)
```

Format

A data frame with 16 observations on the following 2 variables.

Examples

```
data(key)
table(key$cellCycle)
```

repplots

reproducibility plots

Description

plots reproducibility of replicates within/between screens

Usage

```
BetweenScreenPlot(df, what="value", names, smooth=TRUE) WithinScreenPlot(df, what="value", main="within-screen replicates", ylab = "technic")
```

LS main

Arguments

df dataframe created by the cellHTS2df function
names names optional, character vector with names of the different screens.

what what should be plotted, eg value or residuals
main main title
ylab ylab label for y-axis
xlab xlab label for x-axis
smooth shoud the smoothScatter function be called. Default is TRUE.
... further argument to be passed to the plot function

Value

pairs plot

Author(s)

Elin Axelsson

See Also

```
pairs,plot
```

Examples

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
BetweenScreenPlot(df)
WithinScreenPlot(df)
```

LS main

main effect estimation

Description

for rlmmain the main effects are estimated using rlm function from MASS package, with lmmain the OLS is used.

Usage

```
rlmmain(df,per=NULL)
lmmain(df,per=NULL)
```

Arguments

df dataframe created by function cellHTS2df

per string argument for which factor the analysis should be done separately, eg.

replicate or batch

screen1_raw

Value

lm,rlm

Author(s)

Elin Axelsson

See Also

```
rlm,lm
```

Examples

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
df = weightDf(df,exclude=c("controlP1","controlP2","controlN1","controlN2","controlP1N1",
mains = rlmmain(df)
hist(coef(mains))
```

screen1_raw

screen1 raw data

Description

cellHTS2 object containing the raw data from screen1 (cellcycle related)

Usage

```
data(screen1_raw)
```

Format

The format is: chr "cellHTS"

```
data(screen1_raw)
state(screen1_raw)
```

screen2_raw 17

Description

cellHTS2 object containing the raw data from screen2 (phospatatses)

Usage

```
data(screen2_raw)
```

Format

The format is: chr "cellHTS"

Examples

```
data(screen2_raw)
state(screen2_raw)
```

signalplots

plot variation vs signal intensity

Description

plots the variation of replicates vs the mean intensity either by within screen replicate separatly or over all screen replicates.

Usage

```
SDplot(df, xlab="intensity mean",ylab="sd",add=FALSE,main,...)
MAplot(df, main,rank=FALSE)
```

Arguments

df	df dataframe created by cellHTS2df function
main	main character string to be used as main title
xlab	xlab label for x-axis
ylab	ylab label for y-axis
add	add logical, should result be added to existing plot
rank	rank if TRUE the rank of the average intensities will be used
	further arguments to be passed to the plot function.

Value

plot

18 tt2matrix

Author(s)

Elin Axelsson

See Also

```
plot
```

Examples

```
data(screen1_raw)
df=cellHTS2df(screen1_raw,neutral="Fluc")
MAplot(df,main="raw data")
SDplot(df,main="raw data")
```

tt2matrix

Extracting data from a toptable and format it to matrix

Description

Given an dataframe with data, typically from the interactiontable, the gene pair data is converted to a symmetric matrix.

Usage

```
tt2matrix(toptable, what)
```

Arguments

toptable a dataframe with data for the pairwise interactions. Typically from the interaction table

function.

what character indicating which of the columns in the dataframe should be used in

the matrix.

Value

a symmetric matrix with the selected data for gene pair i,j in matrix[i,j] and matrix[j,i]

Author(s)

Elin Axelsson

```
## simulated data
mytoptable = data.frame("ID" = c("A B", "A C", "B C"), "size"=c(1:3), stringsAsFactors=FALS
mat = tt2matrix(mytoptable, what="size")
```

updateDf 19

updateDf

updates dataframe after fitting of main estimates

Description

adds residuals (value-main effects) to a dataframe

Usage

```
updateDf(df, lm, per=NULL)
```

Arguments

df dataframe created by cellHTS2df function

lm lm objects, residuals from fitting main effects to data

per string argument, for which factor the analysis was done separetly, eg. repli-

cate.

Value

data frame with a new column "residuals"

Author(s)

Elin Axelsson

Examples

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
df = weightDf(df,exclude=c("double","controlP1","controlP2","controlN1","controlN2","cont
lmain =lmmain(df)
df = updateDf(df,lmain)
hist(df$residuals)
```

weightDf

Function to indicate which data points should be involved in down

Description

Function to do add weights to the data points in a data frame. At the time being 0 means excluded and everything >0 means included.

Usage

```
weightDf(df, exclude = c("double", "controlN2", "controlP2", "controlP1N1", "con
```

Arguments

df data frame from cellHTS2df

exclude which type of data should be excluded from analysis.

20 weightDf

Details

See also vignette for information about different "Type" types.

Value

A data frame with an added column 'weight'

Author(s)

Elin Axelsson

```
data(screen1_raw)
df = cellHTS2df(screen1_raw,neutral="Fluc")
##stupid example
df = weightDf(df,exclude="controlN2")
head(df)
```

Index

*Topic datasets	pairs, <i>15</i>
faultyscreen, 12	plot, 15, 18
key, 14	PlotHeatmap, 5
*Topic hplot	Pplot, 6
MainFitPlot, 4	
repplots, 14	repplots, 14
*Topic models	rlm, <i>16</i>
df2lmFit, 11	rlmmain (LS main), 15
BetweenScreenPlot (repplots), 14	screen1_raw, 16
boxplot.formula, 1	screen2_raw, 17
BoxPlotShorth, 1	SDplot(signalplots), 17
	signalplots, 17
cellHTS, 7	_ 12
cellHTS2df, 6	topTable, 13
cor.test,7	tt2matrix,18
cortestmatrices, 7	1 + 75 10
	updateDf, 19
data2graph, 8	weightDf, 19
df2array,9	
df2fitmatrix, 10	WithinScreenPlot (repplots), 14
df2lmFit, 10, 11	
estmodel, 11	
faultyscreen, 12	
heatmap.2,5	
<pre>InteractGraph, 2</pre>	
interactiontable, 13	
<pre>InteractLevelPlot, 3</pre>	
key, 14	
levelplot, 2, 3	
lm, 16	
lmFit, 11	
lmmain (LS main), 15	
locfit,4	
LS main, 15	
MainFitPlot,4	
MAplot (signalplots), 17	
p.adjust, 13	