
Generally Applicable Gene-set/Pathway Analysis

Weijun Luo

October 18, 2010

Abstract

In this vignette, we demonstrate the gage package for gene set or pathway analysis.
The gage package implement GAGE method and is generally applicable independent
of microarray data attributes including sample sizes, experimental designs and other
types of heterogeneity. We introduce functions and data for routine and advanced gene
set analysis, as well as results presentation and interpretation. We also cover package
installation, data preparation and common application errors.

1 Introduction

Gene set analysis (GSA) is a powerful strategy to infer functional and mechanistic changes
from high through microarray data. GSA focuses on sets of related genes and has es-
tablished major advantages over per-gene based different expression analyses, including
greater robustness, sensitivity and biological relevance. However, classical GSA methods
only have limited usage to a small number of microarray studies as they cannot handle
datasets of different sample sizes, experimental designs and other types of heterogeneity
(Luo et al., 2009). To address these limitations, we present a new GSA method called
Generally Applicable Gene-set Enrichment (GAGE) (Luo et al., 2009). We have validated
GAGE method extensively against the most widely used GSA methods in both applicabil-
ity and performance (Luo et al., 2009). In this manual, we focus on the implementation
and usage of the R package, gage.

In gage package, we provide a series of functions for basic GAGE analysis, result process-
ing and presentation. We have also built pipeline routines for of multiple GAGE analysis
on different comparisons or samples, the comparison of parallel analysis results, and even
the combined analysis of heterogeneous data from different sources/studies.

This package also supplies an example microarray dataset. In GAGE paper (Luo et al.,
2009) and the old versions of gage package, we used a BMP6 microarray experiment as
the demo data. Here we choose to use another published microarray dataset from GEO,
GSE16873 (Emery et al., 2009), as our primary demo data, as to show more and advanced
functionality and applications of GAGE with this update package. GSE16873 is a breast

1

cancer study (Emery et al., 2009), which covers twelve patient cases, each with HN (histo-
logically normal), ADH (ductal hyperplasia), and DCIS (ductal carcinoma in situ) RMA
samples. Hence, there are 12*3=36 microarray hybridizations or samples interesting to us
plus 4 others less interesting in this full dataset. Due to the size limit of this package, we
split this GSE16873 into two halves, each including 6 patients with their HN and DCIS but
not ADH tissue types. Raw data for these two halves were processed using two different
methods, FARMS (Hochreiter et al., 2006) and RMA (Irizarry et al., 2003), respectively
to generate the non-biological data heterogeneity. This gage package, we only include the
first half dataset for 6 patients (processed using FARMS). The second half dataset plus
the full dataset (including all HN, ADH and DCIS samples of all 12 patients, processed
together using FARMS) and the original BMP6 dataset is supplied with a data package,
gageData. Most of our demo analyses will be done on the first half dataset, except for
the advanced analysis where we use both halves datasets with all 12 patients. The gage
package also includes useful human gene set data derived from KEGG pathway and Gene
Ontology databases. We also supply extra gene set data for other species including mouse,
rat and yeast in the data package, gageData, available from the bioconductor website. In
addition, the users may derive other own gene sets using tools like GSEABase package.

The manual is written by assuming the user has minimal R/Bioconductor knowledge.
Some descriptions and code chunks cover very basic usage of R. The more experienced
users may simply omit these parts.

2 Installation

Assume R has been correctly installed and accessible under current directory. Otherwise,
please contact your system admin or follow the instructions on R website.

Start R: from Linux/Unix command line, type R (Enter); for Mac or Windows GUI,
double click the R application icon to enter R console.

End R: type in q() when you are finished with the analysis using R, but not now.
Two options:
Either install with Bioconductor installation script biocLite directly:

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("gage","gageData"))

Or install without using Bioconductor, but require packages graph and multtest to
be installed too: Download gage and gageData packages (make sure with proper version
number and zip format) and save to /your/local/directory/.

> install.packages(c("/your/local/directory/gage_2.0.0.tar.gz",

+ "/your/local/directory/gageData_1.0.0.tar.gz"),

+ repos = NULL, type = "source")

2

http://bioconductor.org/packages/release/data/experiment/
http://www.r-project.org/

3 Get Started

Under R, first we load the gage package:

> library(gage)

To see a brief overview of the package:

> library(help=gage)

To get help on any function (say the main function, gage), use the help command in
either one of the following two forms:

> help(gage)

> ?gage

4 Basic Analysis

GAGE (Luo et al., 2009) is a widely applicable method for gene set or pathway analysis.
In such analysis, we check for coordinated differential expression over gene sets instead of
changes of individual genes. Gene sets are pre-defined groups of genes, which are func-
tionally related. Commonly used gene sets include those derived from KEGG pathways,
Gene Ontology terms, gene groups that share some other functional annotations, including
common transcriptional regulators (like transcription factors, small interfering RNA’s or
siRNA etc), genomic locations etc. Consistent perturbations over such gene sets frequently
suggest mechanistic changes. GSA is much more robust and sensitive than individual gene
analysis (Luo et al., 2009), especially considering the functional redundancy of individual
genes and the noise level of high throughput assay data. GAGE method implemented in
this package makes GSA feasible to all microarray studies, irrespecitve of the sample size,
experiment design, array platform etc. Let’s start with the most basic gene set analysis.

We load and look at the demo microarray data first.

> data(gse16873)

> cn=colnames(gse16873)

> hn=grep('HN',cn, ignore.case =T)

> adh=grep('ADH',cn, ignore.case =T)

> dcis=grep('DCIS',cn, ignore.case =T)

> print(hn)

[1] 1 3 5 7 9 11

> print(dcis)

3

[1] 2 4 6 8 10 12

Check to make sure your gene sets and your expression data are using the same ID
system (Entrez Gene ID, Gene symbol, or probe set ID etc). Entrez Gene IDs are integer
numbers, Gene symbols are characters, and probe set IDs (Affymetrix GeneChip) are
characters with _at suffix.

> data(kegg.gs)

> data(go.gs)

> lapply(kegg.gs[1:3],head)

$`hsa00010 Glycolysis / Gluconeogenesis`
[1] "10327" "124" "125" "126" "127" "128"

$`hsa00020 Citrate cycle (TCA cycle)`
[1] "1431" "1737" "1738" "1743" "2271" "283398"

$`hsa00030 Pentose phosphate pathway`
[1] "2203" "221823" "226" "229" "22934" "230"

> head(rownames(gse16873))

[1] "10000" "10001" "10002" "10003" "100048912" "10004"

We normally do GAGE analysis using gene sets derived from on KEGG pathways or
GO term groups. Here we use the human gene set data coming with this package with
the human microarray dataset GSE16873. Note that the go.gs derived from human GO
database only includes 1000 gene sets due to size limit. For full go.gs or gene sets data for
other species, we may always use the gageData package or compile our own gene set data.

Here we look at the expression changes towards one direction (either up- or down-
regulation) in the gene sets. The results of such 1-directional analysis is a list of two
matrices, corresponding to the two directions. Each result matrix contains multiple columns
of test statistics and p-/q-values for all tested gene sets. Among them, P.erlang is the global
p-value and q.BH is the corresponding FDR q-value. Gene sets are ranked by significance.
Type ?gage for more information.

> gse16873.kegg.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis)

> #go.gs here only the first 1000 entries as a fast example.

> gse16873.go.p <- gage(gse16873, gsets = go.gs,

+ ref = hn, samp = dcis)

> str(gse16873.kegg.p, strict.width='wrap')

4

List of 2
$ greater: num [1:205, 1:11] 0.00191 0.00477 0.00986 0.01228 0.048 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:205] "hsa00190 Oxidative phosphorylation" "hsa03050 Proteasome"

"hsa05012 Parkinson's disease" "hsa04612 Antigen processing and
presentation" ...

.. ..$: chr [1:11] "P.geomean" "stat.mean" "P.erlang" "q.BH" ...
$ less : num [1:205, 1:11] 0.00492 0.0062 0.01623 0.03138 0.0439 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:205] "hsa03010 Ribosome" "hsa04510 Focal adhesion" "hsa04060

Cytokine-cytokine receptor interaction" "hsa04512 ECM-receptor interaction"
...

.. ..$: chr [1:11] "P.geomean" "stat.mean" "P.erlang" "q.BH" ...

> head(gse16873.kegg.p$greater[, 1:5], 4)

P.geomean stat.mean P.erlang
hsa00190 Oxidative phosphorylation 0.001905222 2.776650 3.430131e-11
hsa03050 Proteasome 0.004770830 2.631099 3.925121e-09
hsa05012 Parkinson's disease 0.009863119 2.203538 1.516977e-07
hsa04612 Antigen processing and presentation 0.012278708 1.816170 4.473355e-07

q.BH set.size
hsa00190 Oxidative phosphorylation 5.865524e-09 94
hsa03050 Proteasome 3.355979e-07 39
hsa05012 Parkinson's disease 8.646767e-06 92
hsa04612 Antigen processing and presentation 1.912359e-05 69

> head(gse16873.kegg.p$less[, 1:5], 4)

P.geomean stat.mean
hsa03010 Ribosome 0.004917526 -2.366715
hsa04510 Focal adhesion 0.006197834 -2.058423
hsa04060 Cytokine-cytokine receptor interaction 0.016234602 -1.616012
hsa04512 ECM-receptor interaction 0.031377146 -1.064771

P.erlang q.BH
hsa03010 Ribosome 4.579872e-09 7.831581e-07
hsa04510 Focal adhesion 1.480992e-08 1.266248e-06
hsa04060 Cytokine-cytokine receptor interaction 1.746605e-06 9.955650e-05
hsa04512 ECM-receptor interaction 3.979033e-05 1.701037e-03

set.size
hsa03010 Ribosome 26
hsa04510 Focal adhesion 189

5

hsa04060 Cytokine-cytokine receptor interaction 226
hsa04512 ECM-receptor interaction 76

As described in GAGE paper (Luo et al., 2009), it is worthy to run gage with same.dir=F
option on KEGG pathways too to capture pathways perturbed towards both directions si-
multaneously. Note we normally do not use same.dir=F option on GO groups, which are
mostly gene sets coregulated towards the same direction.

> gse16873.kegg.2d.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis, same.dir = F)

> head(gse16873.kegg.2d.p[,1:5], 4)

P.geomean stat.mean P.erlang
hsa01430 Cell junctions 0.002003813 2.907219 4.464005e-11
hsa04512 ECM-receptor interaction 0.002049143 2.907748 5.016603e-11
hsa04510 Focal adhesion 0.002085338 2.862576 5.496205e-11
hsa05215 Prostate cancer 0.028492673 1.905361 2.540539e-05

q.BH set.size
hsa01430 Cell junctions 3.132837e-09 109
hsa04512 ECM-receptor interaction 3.132837e-09 76
hsa04510 Focal adhesion 3.132837e-09 189
hsa05215 Prostate cancer 1.086081e-03 86

We may also do PAGE analysis (Kim and Volsky, 2005) with or without different
combinations of GAGE style options. The key difference is 1) to use z-test instead of
two-sample t-test and 2) a group-on-group comparison scheme (by setting arguement
compare=""as.group") instead of default one-on-one scheme (compare="paired") as in
GAGE. Here we only used z-test option to compare the net effect of using differet gene set
tests, as detailed in Luo et al. (2009).

> gse16873.kegg.page.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis, saaTest = gs.zTest)

> head(gse16873.kegg.page.p$greater[, 1:5], 4)

P.geomean stat.mean
hsa00190 Oxidative phosphorylation 7.464316e-23 8.923754
hsa04612 Antigen processing and presentation 2.658994e-21 6.856673
hsa03050 Proteasome 1.624050e-16 7.937594
hsa05012 Parkinson's disease 1.037054e-14 7.011998

P.erlang q.BH
hsa00190 Oxidative phosphorylation 3.911518e-123 6.688695e-121
hsa04612 Antigen processing and presentation 5.563730e-114 4.756989e-112

6

hsa03050 Proteasome 7.728614e-86 4.405310e-84
hsa05012 Parkinson's disease 2.864020e-75 1.224368e-73

set.size
hsa00190 Oxidative phosphorylation 94
hsa04612 Antigen processing and presentation 69
hsa03050 Proteasome 39
hsa05012 Parkinson's disease 92

We get much smaller p-/q-values with PAGE than with GAGE. As described in GAGE
paper (Luo et al., 2009), most significant calls made by PAGE are likely false positives.

With gage, we have much more options to tweak than those related to PAGE for more
customized GAGE analysis. Here we show a few other alternative ways of doing GAGE
analysis by setting other arguements. Use t-test statistics instead of fold change as per
gene score:

> gse16873.kegg.t.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis, use.fold = F)

If you are very concerned about the normality of expression level changes or the gene
set sizes are mostly smaller than 10, we may do the non-parametric Mann Whitney U tests
(rank test without distribution assumption) instead of the parametric two-sample t-tests
on gene sets:

> gse16873.kegg.rk.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis, rank.test = T)

Do the non-parametric Kolmogorov-Smirnov tests (like rank test, used in GSEA) in-
stead of the parametric two-sample t-tests on gene sets:

> gse16873.kegg.ks.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis, saaTest = gs.KSTest)

Frequently, the samples are not one-on-one paired in the experiment design. In such
cases, we take the samples as unpaired:

> gse16873.kegg.unpaired.p <- gage(gse16873, gsets = kegg.gs,

+ ref = hn, samp = dcis, compare = "unpaired")

Sometimes we have expression data where genes are labelled by symbols (or other IDs).
Let’s make such a dataset gse16873.sym from gse16873, which is originally lable by Entrez
Gene IDs.

> head(rownames(gse16873))

[1] "10000" "10001" "10002" "10003" "100048912" "10004"

7

> gse16873.sym<-gse16873

> data(egSymb)

> rownames(gse16873.sym)<-eg2sym(rownames(gse16873.sym))

> head(rownames(gse16873.sym))

[1] "AKT3" "MED6" "NR2E3" "NAALAD2" "CDKN2BAS" "NAALADL1"

If we want to do GAGE analysis, we can convert rownames of gse16873.sym back to
Entrez Gene IDs or convert gene set definitions to gene symbols.

> kegg.gs.sym<-lapply(kegg.gs, eg2sym)

> lapply(kegg.gs.sym[1:3],head)

$`hsa00010 Glycolysis / Gluconeogenesis`
[1] "AKR1A1" "ADH1A" "ADH1B" "ADH1C" "ADH4" "ADH5"

$`hsa00020 Citrate cycle (TCA cycle)`
[1] "CS" "DLAT" "DLD" "DLST" "FH" "LOC283398"

$`hsa00030 Pentose phosphate pathway`
[1] "FBP1" "PRPS1L1" "ALDOA" "ALDOB" "RPIA" "ALDOC"

> gse16873.kegg.p2 <- gage(gse16873.sym, gsets = kegg.gs.sym,

+ ref = hn, samp = dcis)

5 Result Presentation and Intepretation

We may output full result tables from the analysis.

> write.table(gse16873.kegg.2d.p, file = "gse16873.kegg.2d.p.txt",

+ sep = "\t")

> write.table(rbind(gse16873.kegg.p$greater, gse16873.kegg.p$less),

+ file = "gse16873.kegg.p.txt", sep = "\t")

Sort and count signficant gene sets based on q- or p-value cutoffs:

> gse16873.kegg.sig<-sigGeneSet(gse16873.kegg.p, dualSig=1)

[1] "there are 16 signficantly up-regulated gene sets"
[1] "there are 12 signficantly down-regulated gene sets"

> str(gse16873.kegg.sig, strict.width='wrap')

8

num [1:28, 1:11] 0.00191 0.00477 0.00986 0.01228 0.048 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:28] "hsa00190 Oxidative phosphorylation" "hsa03050 Proteasome"

"hsa05012 Parkinson's disease" "hsa04612 Antigen processing and
presentation" ...

..$: chr [1:11] "P.geomean" "stat.mean" "P.erlang" "q.BH" ...

> gse16873.kegg.2d.sig<-sigGeneSet(gse16873.kegg.2d.p)

[1] "there are 12 signficantly two-direction perturbed gene sets"

> str(gse16873.kegg.2d.sig, strict.width='wrap')

num [1:12, 1:11] 0.002 0.00205 0.00209 0.02849 0.04745 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:12] "hsa01430 Cell junctions" "hsa04512 ECM-receptor interaction"

"hsa04510 Focal adhesion" "hsa05215 Prostate cancer" ...
..$: chr [1:11] "P.geomean" "stat.mean" "P.erlang" "q.BH" ...

> write.table(gse16873.kegg.sig, file = "gse16873.kegg.sig.txt",

+ sep = "\t")

> write.table(gse16873.kegg.2d.sig, file = "gse16873.kegg.2d.sig.txt",

+ sep = "\t")

There are frequently multiple significant gene sets that share multiple member genes
or represent the same regulatory mechanism. Such redundancy in signficant gene set could
be misleading too. A pathway or functional group itself is not relevant, but may be called
signficant because it share multiple perturbed genes with one really significant gene set.
We derive the non-redundant signficant gene set lists, with result output as tab-delimited
text files automatically below. Here, function esset.grp calls redundant gene sets to be
those overlap heavily in their core genes. Core genes are those member genes that really
contribute to the signficance of the gene set in GAGE analysis. Arguement pc is the cutoff
p-value for the overlap between gene sets, default to 10e-10, may need trial-and-error to
find the optimal value in minor cases. Note that we use small pc because redundant gene
sets are not just signficant in overlap, but are HIGHLY significant so.

> gse16873.kegg.esg.up <- esset.grp(gse16873.kegg.p$greater,

+ gse16873, gsets = kegg.gs, ref = hn, samp = dcis,

+ test4up = T, output = T, outname = "gse16873.kegg.up", make.plot = F)

> gse16873.kegg.esg.dn <- esset.grp(gse16873.kegg.p$less,

+ gse16873, gsets = kegg.gs, ref = hn, samp = dcis,

+ test4up = F, output = T, outname = "gse16873.kegg.dn", make.plot = F)

> names(gse16873.kegg.esg.up)

9

[1] "essentialSets" "setGroups" "allSets"
[4] "connectedComponent" "overlapCounts" "overlapPvals"
[7] "coreGeneSets"

> head(gse16873.kegg.esg.up$essentialSets, 4)

[1] "hsa00190 Oxidative phosphorylation"
[2] "hsa03050 Proteasome"
[3] "hsa04612 Antigen processing and presentation"
[4] "hsa00510 N-Glycan biosynthesis"

> head(gse16873.kegg.esg.up$setGroups, 4)

[[1]]
[1] "hsa00190 Oxidative phosphorylation" "hsa05012 Parkinson's disease"
[3] "hsa05010 Alzheimer's disease"

[[2]]
[1] "hsa03050 Proteasome"

[[3]]
[1] "hsa04612 Antigen processing and presentation"
[2] "hsa05332 Graft-versus-host disease"
[3] "hsa05330 Allograft rejection"

[[4]]
[1] "hsa00510 N-Glycan biosynthesis"

> head(gse16873.kegg.esg.up$coreGeneSets, 4)

$`hsa00190 Oxidative phosphorylation`
[1] "1345" "4720" "4710" "51382" "4709" "51606" "27089" "533" "29796"
[10] "9377" "4711" "528" "514" "10975" "10312" "8992" "518" "4696"
[19] "1537" "1340" "4708" "521" "537" "4694" "4701" "4702" "509"

$`hsa03050 Proteasome`
[1] "5691" "10213" "5684" "5685" "5701" "5688" "51371" "5692" "5714"
[10] "9861" "5705" "5720" "5687" "7979" "5708" "5690" "5696" "5718"
[19] "5707"

$`hsa05012 Parkinson's disease`
[1] "1345" "4720" "9246" "54205" "4710" "4709" "27089" "29796" "9377"

10

[10] "4711" "514" "10975" "292" "518" "4696" "1537" "1340" "4708"
[19] "4694" "4701" "4702" "509"

$`hsa04612 Antigen processing and presentation`
[1] "2923" "10437" "3312" "811" "1508" "3309" "3105" "3117" "3308"
[10] "821" "6890" "1520" "3320" "1514" "5720" "3122" "3106"

We may extract the gene expression data for top gene sets, output and visualize these
expression data for further intepretation. Although we can check expression data in each
top gene set one by one, here we work on the top 3 up-regulated KEGG pathways in a batch.
The key functions we use here are, essGene (for extract genes with substiantial or above-
background expression changes in gene sets) and geneData (for output and visualization
of expression data in gene sets).

> rownames(gse16873.kegg.p$greater)[1:3]

[1] "hsa00190 Oxidative phosphorylation" "hsa03050 Proteasome"
[3] "hsa05012 Parkinson's disease"

> gs=unique(unlist(kegg.gs[rownames(gse16873.kegg.p$greater)[1:3]]))

> essData=essGene(gs, gse16873, ref =hn, samp =dcis)

> head(essData, 4)

HN_1 HN_2 HN_3 HN_4 HN_5 HN_6 DCIS_1
1345 9.109413 9.373454 10.988181 9.161435 11.032016 11.231293 12.675099
5691 8.283191 7.716745 7.553621 8.381538 7.768811 7.635745 8.840405
4720 9.912376 9.151361 10.171523 9.646354 10.536090 10.405265 11.069108
9246 8.745924 8.606955 8.691322 8.613415 8.731895 8.456974 9.850955

DCIS_2 DCIS_3 DCIS_4 DCIS_5 DCIS_6
1345 11.231271 12.547915 8.979639 13.470266 12.156052
5691 8.125168 7.782958 11.910352 7.956182 7.713826
4720 9.357210 10.640057 11.616225 10.372458 10.484068
9246 8.981530 8.849894 9.511018 9.229527 8.642533

> ref1=1:6

> samp1=7:12

> for (gs in rownames(gse16873.kegg.p$greater)[1:3]) {

+ outname = gsub(" |:|/", "_", substr(gs, 10, 100))

+ geneData(genes = kegg.gs[[gs]], exprs = essData, ref = ref1,

+ samp = samp1, outname = outname, txt = T, heatmap = T,

+ Colv = F, Rowv = F, dendrogram = "none", limit = 3, scatterplot = T)

+ }

Figure 1 and 2 show example heatmap and scatter plots generated by the code chunk
above.

11

H
N

_1

H
N

_2

H
N

_3

H
N

_4

H
N

_5

H
N

_6

D
C

IS
_1

D
C

IS
_2

D
C

IS
_3

D
C

IS
_4

D
C

IS
_5

D
C

IS
_6

1346

498

4698

4711

9377

533

51606

4709

51382

4710

4720

1345

−2 −1 0 1
Value

Color Key

7 8 9 10 11 12

7
8

9
10

11
12

Control

E
xp

er
im

en
t

●

●

●

●

●

●

●

●

●●

●

●

● Array 1
Array 2

Figure 1: Example heatmap and scatter plot generated with geneData function. Only HN
(control) and DCIS (experiment) data from the first two patients are plotted in the scatter
plot.

12

6 Advanced Analysis

We frequently need to do GAGE analysis repetitively on mulitple comparisons (with dif-
ferent samples vs references) in a study, or even with different analysis options (paired or
unpaired samples, use or not use rank test etc). We can carry these different analyses
with different sub-datasets all at once using a composite funciton, gagePipe. Different
from gage, gagePipe accepts lists of reference/sample column numbers, with matching
lists/vectors of other arguements. Function gagePipe runs multiple rounds of GAGE in
a batch without interference, and outputs signficant gene set lists in text format and save
the results in .RData format.

> library(gageData)

> data(gse16873.2)

> cn2=colnames(gse16873.2)

> hn2=grep('HN',cn2, ignore.case =T)

> dcis2=grep('DCIS',cn2, ignore.case =T)

> #batch GAGE analysis on the combined dataset

> gse16873=cbind(gse16873, gse16873.2)

> dataname='gse16873' #output data prefix

> sampnames=c('dcis.1', 'dcis.2')
> refList=list(hn, hn2+12)

> sampList=list(dcis, dcis2+12)

> gagePipe(gse16873, gsname = "kegg.gs", dataname = "gse16873",

+ sampnames = sampnames, ref.list = refList, samp.list = sampList,

+ comp.list = "paired")

We may further loaded the .RData results, and do more analysis. For instance, we
may compare the GAGE analysis results from the differen comparisons or different sub-
datasets we have worked on. Here, the main function to use is gageComp. Comparison
rsults between multiple GAGE analyses will be output as text files and optionally, venn
diagram can be plotted in PDF format as shown in Figure 2.

> load('gse16873.gage.RData')
> gageComp(sampnames, dataname, gsname = "kegg.gs",

+ do.plot = TRUE)

GAGE with single array analysis design also provide a framework for combined analysis
accross heterogeneous microarray studies/experiments. The combined dataset of gse16873
and gse16873.2 provids a good example of heterogeneous data. As mentioned above, the
two half-datasets were processed using FARMS (Hochreiter et al., 2006) and RMA (Irizarry
et al., 2003) methods separately. Therefore, the expression values and distributions are
dramatically different between the two halves. Using function heter.gage we can do some
combined analysis on such heterogeneous dataset(s). heter.gage is similar to gagePipe

13

dcis.1 dcis.2

150

57 9

up
141

181 11

down

Figure 2: An example venn diagram generated with gageComp function. Compared are
the lists of up and down regulated KEGG pathways for the two half datasets of GSE16873
when gagePipe was applied above.

in that ref.list and samp.list arguements need to be lists of column numbers with
matching vector of the compare arguement. Different from gagePipe, heter.gage does
one combined GAGE analysis on all data instead of multiple separate analyses on different
sub-datasets/comparisons.

Just to have an idea on how heterogeneous these two half datasets are, we may visualize
the expression level distributions (Figure 3):

> boxplot(data.frame(gse16873))

> gse16873.kegg.heter.p <- heter.gage(gse16873, gsets = kegg.gs,

+ ref.list = refList, samp.list = sampList)

> gse16873.kegg.heter.2d.p <- heter.gage(gse16873, gsets = kegg.gs,

+ ref.list = refList, samp.list = sampList, same.dir = F)

We may compare the results from this combined analysis of the combined dataset vs the
analysis on the first half dataset above. As expected the top gene sets from this combined
analysis are consistent yet with smaller p-values due to the use of more data.

7 Common Errors

• Gene sets and expression data use different ID systems (Entrez Gene ID, Gene symbol
or probe set ID etc). To correct, use functions like eg2sym or sym2eg, or if you

14

●
●

●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●●

●●

●
●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●
●
●●

●

●●●

●

●●

●

●

●

●
●

●

●
●
●

●
●

●●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●
●

●

●
●●

●

●

●

●
●
●●
●

●

●

●

●

●

●
●

●

●
●
●
●

●
●
●
●

●

●

●

●

●
●
●

●

●

●●

●
●
●

●●

●

●●●
●●

●●

●
●

●

●

●●

●

●

●●●

●
●●●●

●

●

●

●
●

●

●
●
●
●

●

●●

●

●●
●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●●●●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●●

●
●●

●
●

●●

●

●

●●
●●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●
●●

●

●

●●
●

●●

●

●●
●
●●

●●

●
●●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●

●

●
●
●●

●

●

●

●

●

●●
●

●●

●●●
●

●

●

●

●
●

●

●●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●●●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●
●
●●

●●
●

●

●

●

●

●

●●

●●

●

●

●
●●

●

●

●

●
●

●●●
●●

●

●●
●

●

●●

●

●
●

●●
●

●

●

●●●

●

●●

●

●

●

●●

●

●●
●●
●
●

●

●
●
●
●

●

●●

●

●

●

●
●

●●●
●

●●
●●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●

●
●
●●

●

●●

●

●

●

●

●

●
●
●●

●
●●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●●

●
●
●
●●
●
●

●

●●
●
●

●

●

●
●●

●
●

●

●

●●
●●
●
●
●

●

●

●

●

●

●

●

●●

●
●
●●
●●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●
●
●●
●

●

●

●

●

●
●

●●●●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●●
●

●
●
●
●

●
●

●

●

●●
●●
●

●
●

●

●

●

●
●

●

●
●

●

●●
●
●●

●

●
●

●

●

●●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●●

●

●
●
●

●

●

●●

●
●

●●

●

●
●
●
●
●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●●

●
●
●
●●

●

●●●●

●
●

●
●
●●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●
●

●●
●●

●
●●
●●
●

●
●
●

●

●
●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●●
●

●

●●

●

●●

●
●

●

●●●

●●

●

●●

●

●

●●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●●●

●●

●●
●

●

●

●

●●
●●●

●

●●
●
●
●

●

●

●
●●●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●●

●

●
●

●
●
●

●

●●

●●

●
●

●

●●

●
●
●
●

●

●

●

●

●●

●●●

●●

●
●
●●

●
●

●

●

●●

●

●●

●

●

●

●
●●●

●

●
●

●

●

●
●

●
●
●
●
●

●

●
●

●

●●●●●

●

●
●

●

●
●
●●
●

●

●
●
●
●

●●●
●●

●●●

●●

●●

●
●
●
●●●

●

●

●

●
●●
●

●

●
●

●●

●
●
●
●●●

●
●

●

●
●●
●●

●

●

●

●
●

●

●
●●

●

●●

●
●
●

●

●●●

●●●●
●●●

●
●

●
●

●

●

●●
●

●

●
●
●●

●

●

●

●

●

●●
●

●

●

●●

●

●●
●
●
●

●
●
●●
●
●

●
●

●
●●
●

●
●

●
●●●●●●

●
●●
●●

●
●
●

●
●
●
●●
●
●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●●

●
●

●
●●

●

●●
●
●
●

●●
●●

●

●

●●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●
●

●
●
●
●
●

●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●
●

●●●

●

●●
●

●●
●
●●

●

●

●

●
●
●

●●

●●●

●
●
●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●●
●●●
●
●●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●
●
●●
●

●

●●

●
●●●

●

●

●

●
●
●

●

●
●
●
●●
●

●

●

●
●
●

●
●

●●●
●●
●
●●●●

●

●

●

●●
●

●

●
●

●

●
●
●
●

●

●

●
●
●
●●
●

●
●●
●

●

●●

●

●

●

●

●
●
●

●

●
●
●

●

●●
●●
●

●

●
●
●
●

●

●●
●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●●●●
●

●

●

●

●●
●

●

●
●

●

●

●●

●

●●
●

●

●●●

●

●●
●●
●

●

●●
●
●●
●

●
●

●

●

●

●

●●

●●
●
●

●

●

●

●

●
●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●
●
●
●
●●

●

●

●●

●
●
●●●●●

●

●●

●

●

●

●●

●●

●

●●

●

●

●●●●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●●

●●
●●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●●●●

●

●

●●

●

●

●

●

●
●
●●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●
●●●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●●●●●
●
●●●●●

●

●●
●

●
●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●●●

●
●

●

●

●

●
●

●

●

●
●●
●
●
●
●

●●

●
●●●

●●

●
●●●
●●
●

●

●

●

●

●●

●

●●●●

●●●

●

●●
●
●

●

●●

●

●
●

●
●
●●
●●

●
●
●
●

●

●

●

●

●
●●
●

●

●●●●
●

●

●

●

●

●

●●
●

●

●
●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●●●

●
●

●
●
●●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●
●●

●

●
●
●●

●●

●●●

●

●

●
●

●●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●●●
●
●
●●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●●
●

●

●
●●●

●

●

●

●

●

●
●●
●

●

●●●

●

●●

●

●

●

●
●●

●●

●●

●

●

●

●

●●
●●
●
●

●

●●
●

●

●●●

●
●
●

●
●
●

●

●●

●●
●
●●

●●
●
●
●●

●

●

●●●

●

●●

●
●
●
●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●
●
●●
●
●

●
●
●

●●

●
●

●

●
●

●

●

●

●
●●

●
●
●

●
●

●

●

●●
●
●
●●

●
●

●

●
●

●●
●
●●

●
●●
●
●

●

●
●●

●

●

●
●

●

●●●●

●

●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●●

●

●
●●●●●
●
●

●
●

●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●

●●

●
●●

●

●
●●●●●

●●

●
●
●●●

●

●

●

●
●●
●●

●●
●

●

●

●

●●
●●

●
●

●
●

●

●

●

●●●●
●
●

●

●●
●●

●

●●
●

●

●

●

●

●

●●●
●●
●●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●●●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●●●
●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●●
●

●

●

●

●●
●
●
●●●

●
●●
●
●●
●●
●

●

●

●
●

●

●
●●
●

●●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●●
●
●
●

●●

●
●
●
●

●
●

●

●

●

●

●●

●
●

●
●

●●
●

●

●

●●
●
●

●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●●

●

●

●
●●
●

●

●
●
●

●

●
●

●

●●●

●

●
●●
●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●●
●

●

●●●

●

●●

●●

●
●

●

●●
●●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●
●●

●

●

●

●
●
●

●●

●●
●
●

●
●
●

●

●

●

●
●

●

●
●
●

●

●●●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●
●
●

●●

●●
●
●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●
●

●
●
●

●

●

●●●
●
●
●
●

●

●●

●

●

●

●

●

●
●●

●
●●
●

●

●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●
●●

●●●
●
●●●

●

●
●

●

●
●●
●
●

●
●

●
●●

●●

●

●

●●●●●

●

●

●

●

●
●

●
●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●
●

●●

●

●

●

●●
●
●
●

●
●

●

●

●

●

●

●

●

●
●●
●

●
●

●
●●
●●

●●
●
●
●●●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●●

●

●

●●
●
●

●
●
●

●

●

●

●

●

●●

●
●
●
●●●●●●

●

●●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●
●●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●●●●
●

●●

●

●●

●

●●

●●

●

●
●●
●

●

●
●

●

●

●
●

●●
●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●●
●

●

●

●
●●
●●

●

●

●

●

●

●

●
●
●
●
●

●

●
●●
●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●●●●

●
●●

●

●

●
●

●●

●

●

●●
●
●
●

●

●
●●

●
●

●

●

●
●
●●●●●
●

●
●

●

●●●

●

●

●●●
●
●
●

●

●

●

●

●

●

●
●

●

●●
●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●●●

●
●
●

●
●●
●

●

●●

●●

●
●

●

●●

●

●●

●

●
●
●

●

●

●

●
●

●

●●
●●

●

●

●

●
●
●●●●

●●
●●

●

●●●

●
●
●
●

●
●

●

●

●

●

●

●

●●

●
●
●
●

●
●
●

●

●

●
●●●

●

●
●
●

●
●

●
●

●

●●
●
●

●
●

●

●

●●

●
●●
●

●

●●

●

●

●●

●

●

●●

●
●

●

●
●

●●

●●●

●●

●

●

●

●●
●
●

●

●

●

●
●●

●●

●

●
●

●

●

●

●
●

●●

●●

●

●●
●

●

●

●

●●

●●●●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●
●

●

●

●
●

●

●

●
●
●

●
●
●
●
●

●

●●

●

●●●

●
●●
●

●

●●

●●●
●

●

●●

●

●
●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●
●●●

●

●

●
●
●●●

●

●

●
●

●●
●

●

●

●●
●●●
●●
●
●
●
●

●

●

●

●

●

●
●

●

●●

●●
●●●

●●●

●●
●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●
●●
●

●
●●
●●●●●
●

●

●●
●●●

●

●

●

●●
●

●●

●

●

●
●●

●

●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●●
●
●●
●

●
●
●
●

●
●●●●
●

●
●

●

●●

●

●

●
●

●

●●●
●

●●

●●
●

●●
●

●
●

●

●●

●
●

●
●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●
●
●
●

●

●
●
●
●●

●

●●

●

●

●
●

●
●
●●●
●
●●●●

●

●●

●

●

●

●●

●●

●

●

●

●●●
●
●

●●

●

●●

●

●

●
●
●

●
●
●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●●●
●●
●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●
●
●

●●●
●

●●●
●●
●

●
●

●●●

●
●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●●
●

●

●●
●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●
●●

●●

●●

●

●
●●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●
●
●
●
●●

●●
●

●

●●
●

●
●●
●

●
●
●
●
●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●●●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●●●
●

●
●
●

●

●

●●

●

●
●

●

●
●
●

●

●

●
●●

●●●●
●

●

●
●

●

●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●●

●
●
●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●
●

●

●

●●

●
●
●

●

●

●
●
●
●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●●●
●●●

●●

●●●

●●
●
●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●
●

●●

●

●

●

●

●

●
●
●●

●

●●
●

●

●

●

●

●
●
●

●
●

●

●
●

●●

●
●

●

●

●●

●
●

●

●

●●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●
●●●
●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●●●
●
●

●

●
●
●
●

●

●
●●●
●

●

●

●

●

●●

●

●

●

●●
●

●●

●
●
●
●

●

●●●
●●●●
●
●

●●

●

●
●
●

●●

●●

●●●

●

●

●

●
●
●

●

●

●
●

●

●●

●●

●

●

●
●

●
●●●
●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●
●
●
●●●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●●
●

●●

●

●
●

●●

●●
●

●

●●

●

●

●

●●
●●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●
●

●

●

●●●

●
●

●

●●

●
●●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●
●
●
●●
●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●
●●

●●●
●
●●
●

●

●

●●

●

●

●

●

●
●

●●
●
●

●●

●

●

●●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●
●
●●

●

●

●
●

●
●

●

●

●

●

●●
●●

●

●

●●

●

●
●

●●
●
●●

●

●

●
●
●

●

●

●●●●●

●●
●

●●
●

●

●

●

●

●
●
●

●
●

●

●

●●●●

●
●

●

●
●●

●

●●

●

●●●

●

●

●

●

●
●
●

●●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●
●

●
●●

●

●●

●

●

●●

●

●

●
●
●

●

●
●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●●
●●●
●
●

●

●
●

●

●
●
●
●

●
●

●

●●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●●
●

●
●
●
●

●
●●

●

●

●

●

●●

●
●●

●

●●

●
●
●
●

●

●

●
●

●

●

●●

●

● ●

●●
●
●
●
●

●●
●●●

●

●
●

●

●●
●●

●

●

●

●

●

●
●●
●
●●

●
●

●

●
●

●

●
●

●●●●

●

●

●

●

●
●

●●

●

●

●
●
●●●●
●
●

●

●

●

●

●
●●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●
●

●

●

●●

●

●
●
●

●
●
●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●
●
●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●●●●

●
●

●

●

●
●●

●
●

●
●
●●

●●●

●

●

●
●
●●●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●●
●

●

●

●

●●●●

●
●

●
●

●

●
●

●

●

●●
●●

●

●
●●

●
●

●

●

●

●
●

●●

●

●
●

●
●
●
●●

●

●
●

●●

●
●●
●●

●●

●

●●

●

●

●

●
●

●
●●●
●●●●
●
●

●

●

●●●

●

●●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●●●●●

●
●

●●●●
●
●
●

●

●
●

●

●

●●

●
●

●
●
●

●

●
●

●
●●

●

●

●
●●●
●

●
●●

●●
●●●
●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●●

●●

●

●

●●●
●

●
●●

●
●●

●

●●

●●

●

●

●

●
●
●
●
●

●
●●
●

●
●
●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●
●
●●

●

●

●

●
●

●●
●
●
●
●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●●
●
●●●●●
●

●

●

●
●●
●

●

●
●●
●

●●●●

●

●●

●

●●

●
●
●

●

●●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●
●
●
●
●

●

●
●

●
●

●
●
●●●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●●

●

●

●●

●

●

HN_1 HN_3 HN_5 HN_7 HN_9 HN_11

4
6

8
10

12
14

Figure 3: Sample-wise gene expression level distributions for GSE16873 with the two dif-
ferently processed half datasets.

15

used customized CDF file based on Entrez Gene to processed the raw data, do:
rownames(gse16873)=gsub('_at', '', rownames(gse16873)).

• Expression data have multiple probesets (as in Affymetrix GeneChip Data) for a
single gene, but gene set analysis requires one entry per gene. You may pick up the
most differentially expressed probeset for a gene and discard the rest, or process the
raw intensity data using customized probe set definition (CDF file), where probes are
re-mapped on a gene by gene base. Check the Methods section of GAGE paper (Luo
et al., 2009) for details.

• Expression data have genes as columns and samples/chips as rows, i.e. in a transposed
form. To correct, do: expdata=t(expdata).

References

Lyndsey A. Emery, Anusri Tripathi, Chialin King, Maureen Kavanah, Jane Mendez,
Michael D. Stone, Antonio de las Morenas, Paola Sebastiani, and Carol L. Rosenberg.
Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer
progression. The American journal of pathology, 2009.

Sepp Hochreiter, Djork-Arne Clevert, and Klaus Obermayer. A new summarization method
for affymetrix probe level data. Bioinformatics, 2006.

Rafael A. Irizarry, Bridget Hobbs, Francois Collin, Yasmin D. Beazer-Barclay, Kristen J.
Antonellis, Uwe Scherf, and Terence P. Speed. Exploration, normalization, and sum-
maries of high density oligonucleotide array probe level data. Biostatistics, 2003. To
appear.

SY Kim and DJ Volsky. Page: parametric analysis of gene set enrichment. BMC Bioin-
formatics, 2005.

Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter Woolf. Gage:
generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics,
2009.

16

	Introduction
	Installation
	Get Started
	Basic Analysis
	Result Presentation and Intepretation
	Advanced Analysis
	Common Errors

