
Manual for the R gaga package

David Rossell
Department of Bioinformatics & Biostatistics

IRB Barcelona

Barcelona, Spain.

rosselldavid@gmail.com

1 Introduction

Newton et al. [2001] and Kendziorski et al. [2003] introduced the Gamma-
Gamma model to analyze microarray data, an elegant and parsimonious hi-
erachical model that allows for the borrowing of information between genes.
Rossell [2007] showed that the assumptions of this model are too simplistic,
which resulted in a rather poor fit to several real datasets, and developed
two extensions of the model: GaGa and MiGaGa. The gaga library imple-
ments the GaGa and MiGaGa generalizations, which can be used both to
find differentially expressed genes and to predict the class of a future sample
(e.g. given the mRNA measurements for a new patient, predict whether the
patient has cancer or is healthy).

We now briefly outline the GaGa and MiGaGa models. Let xij be the
expression measurement for gene i in array j, and let zj indicate the group
to which array belongs to (e.g. zj = 0 for normal cells and zj = 1 for cancer
cells). The GaGa models envisions the observations as arising from a gamma
distribution, i.e. xij ∼ Ga(αi,zj

, αi,zj
/λi,zj

) (λi,zj
is the mean), where αi,zj

and
λi,zj

arise from a gamma and an inverse gamma distribution, respectively:

λi,k|δi, α0, ν ∼ IGa(α0, α0/ν), indep. for i = 1 . . . n

αi,k|δi, β, µ ∼ Ga(β, β/µ), indep. for i = 1 . . . n

δi|π ∼ Mult(1,π), indep. for i = 1 . . . n. (1)

δ1 . . . δn are latent variables indicating what expression pattern each gene
follows (see Section 3 for more details). For example, if there are only two
groups δi indicates whether gene i is differentially expressed or not.

1

In principle, both the shape and mean parameters are allowed to vary
between groups, and δi compares both parameters between groups (i.e. the
GaGa model allows to compare not only mean expression levels but also the
shape of the distribution between groups). However, the gaga library also
implements a particular version of the model which assumes that the shape
parameter is constant across groups, i.e. αi,k = αi for all k.

The coefficient of variation in the Gamma distribution is equal to the
inverse square root of the shape parameter, and hence assuming constant
αi,k is equivalent to assuming constant CV across groups.

In most routines the user can choose the constant CV model with the
option equalcv=TRUE (the default), and the varying CV model with the
option equalcv=FALSE.

The Bayesian model is completed by specifying priors on the hyper-
parameters that govern the hierarchy:

α0 ∼ Ga(aα0 , bα0); ν ∼ IGa(aν , bν)

β ∼ Ga(aβ, bβ);µ ∼ IGa(aµ, bµ)

π ∼ Dirichlet(p). (2)

The gaga library provides some default values for the prior parameters
that are a reasonable choice when the data has been normalized via the
function just.rma from the R library affy or just.gcrma from the R library
just.gcrma. The MiGaGa model extends GaGa by specifying a mixture of
inverse gammas for ν.

Both models are fit using the routine fitGG: the argument nclust indi-
cates the number of components in the mixture (nclust=1 corresponds to
the GaGa model).

In the remainder of this document we generate a simulated dataset and
we show how to analyze it with the routines provided with the gaga library.
In Section 2 we simulate a dataset based on the parameter estimates obtained
from the Armstrong dataset (Armstrong, 2002) as described in (Rossell, 2007)

Section 3 shows how to fit the model via MCMC sampling and in Section 4
we assess its goodness-of-fit. Finally, in Sections 5 and 7 we conduct inference.
Section 5 shows how to find differentially expressed genes, while Section 7
addresses class prediction.

2 Simulating the data

We start by loading the library and simulating mRNA expression levels for
n=100 genes and 2 groups, each with 6 samples. We set the seed for random

number generation so that you can reproduce the results presented here. As
we shall see in the future sections, we use the first five samples from each
group to fit the model. We will then use the model to predict the class for
the sixth sample.

> library(gaga)

> set.seed(10)

> n <- 100

> m <- c(6, 6)

> a0 <- 25.5

> nu <- 0.109

> balpha <- 1.183

> nualpha <- 1683

> probpat <- c(0.95, 0.05)

> xsim <- simGG(n, m, p.de = probpat[2], a0, nu, balpha, nualpha,

+ equalcv = TRUE)

The object xsim is an ExpressionSet. The simulated expression val-
ues are accessible through exprs(xsim), the parameters through feature-

Data(xsim) and the group that each observation belongs through pData(xsim).
We save in a a matrix containing the gene-specific α parameters (a[,1] con-
tains parameters for the first group, a[,2] for the second). Similarly, we save
the gene-specific means λ in l and the expression values in x.

> xsim

ExpressionSet (storageMode: lockedEnvironment)

assayData: 100 features, 12 samples

element names: exprs

protocolData: none

phenoData

sampleNames: Array 1 Array 2 ... Array 12 (12 total)

varLabels: group

varMetadata: labelDescription

featureData

featureNames: Gene 1 Gene 2 ... Gene 100 (100 total)

fvarLabels: alpha.1 alpha.2 mean.1 mean.2

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

> featureData(xsim)

An object of class "AnnotatedDataFrame"

featureNames: Gene 1 Gene 2 ... Gene 100 (100 total)

varLabels: alpha.1 alpha.2 mean.1 mean.2

varMetadata: labelDescription

> phenoData(xsim)

An object of class "AnnotatedDataFrame"

sampleNames: Array 1 Array 2 ... Array 12 (12 total)

varLabels: group

varMetadata: labelDescription

> a <- fData(xsim)[, c("alpha.1", "alpha.2")]

> l <- fData(xsim)[, c("mean.1", "mean.2")]

> x <- exprs(xsim)

Figure 1(a) shows the marginal distribution (kernel density estimate) of
the simulated gene expression levels. Figure 1(b) plots the simulated mean
and coefficient of variation for group 1. The plots can be obtained with the
following syntax:

> plot(density(x), xlab = "Expression levels", main = "")

> plot(l[, 1], 1/sqrt(a[, 1]), xlab = "Group 1 Mean", ylab = "Group 1 CV")

3 Model fit

To fit the model we use the function fitGG. First, we define the vector groups,
which indicates the group each sample belongs to. Second, we specify the
gene expression patterns or hypotheses that we wish to entertain. In our ex-
ample, since we have two groups there really are only two possible expression
patterns:

Pattern 0 (null hypotheses): group 1 = group 2

Pattern 1 (alternative hypothesis): group 1 6= group 2.

More precisely, under pattern 0 we have that αi1 = αi2 and λi1 = λi2,
while under pattern 1 αi1 6= αi2 and λi2 6= λi2. We specify the patterns with
a matrix with as many rows as patterns and as many columns as groups. For
each row of the matrix (i.e. each hypothesis), we indicate that two groups

(a) (b)

4 6 8 10 12 14 16 18

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Expression levels

D
en

si
ty

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

6 8 10 12 14 16

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Group 1 Mean

G
ro

up
 1

 C
V

Figure 1: (a): marginal density of the simulated data; (b): plot of the simu-
lated (α, λ) pairs

are equal by assigning the same number to their corresponding columns. The
column names of the matrix must match the group codes indicated in groups,
otherwise the routine returns an error. For example, in our two hypothesis
case we would specify:

> groups <- pData(xsim)$group[c(-6, -12)]

> groups

[1] group 1 group 1 group 1 group 1 group 1 group 2 group 2 group 2 group 2

[10] group 2

Levels: group 1 group 2

> patterns <- matrix(c(0, 0, 0, 1), 2, 2)

> colnames(patterns) <- c("group 1", "group 2")

> patterns

group 1 group 2

[1,] 0 0

[2,] 0 1

For illustration, suppose that instead we had 3 groups and 4 hypotheses,
as follows:

Pattern 0: CONTROL = CANCER A = CANCER B

Pattern 1: CONTROL 6= CANCER A = CANCER B

Pattern 2: CONTROL = CANCER A 6= CANCER B

Pattern 3: CONTROL 6= CANCER A 6= CANCER B

In this case we would specify

> patterns <- matrix(c(0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 2), ncol = 3,

+ byrow = TRUE)

> colnames(patterns) <- c("CONTROL", "CANCER A", "CANCER B")

> patterns

CONTROL CANCER A CANCER B

[1,] 0 0 0

[2,] 0 1 1

[3,] 0 0 1

[4,] 0 1 2

That is, the second row indicates that under Pattern 1 cancers of type
A and B are present the same expression levels, since they both have a 1 in
their entries. The last row indicates that they are all different by specifying
a different number in each entry.

Now, to fit the GaGa model to our simulated data we use fitGG, with
nclust=1 (to fit the MiGaGa model we would set nclust to the number of
components that we want in the mixture). We remove columns 6 and 12
from the dataset, i.e. we do not use them for the fit so that we can evaluate
the out-of-sample behavior of the classifier built in Section 7. Here we use
the option trace=FALSE to prevent iteration information from being printed.
There are several available methods to fit the model. method==’EM’ imple-
ments an Expectation-Maximization algorithm which seeks to maximize the
expected likelihood. method==’quickEM’ (the default) is a quicker version
that uses only 1 maximization step. quickEM usually provides reasonably
good hyper-parameter estimates at a low computational cost. In practice
we have observed that the inference derived from the GaGa and MiGaGa
models (e.g. lists of differentially expressed genes) is robust to slight hyper-
parameter miss-specifications, so we believe quickEM to be a good default
option for large datasets. method==’SA’ implements a Simulated Anneal-
ing scheme which searches for a hyper-parameter value with high posterior
density.

The three above-mentioned methods (EM, quickEM, SA) only provide point
estimates. We can obtain credibility intervals with method==’Gibbs’ or
method==’MH’, which fit a fully Bayesian model via Gibbs or Metropolis-
Hastings MCMC posterior sampling, respectively. Of course, obtaining cred-
ibility intervals comes at a higher computational cost. In our experience the
five methods typically deliver similar results.

> patterns <- matrix(c(0, 0, 0, 1), 2, 2)

> colnames(patterns) <- c("group 1", "group 2")

> gg1 <- fitGG(x[, c(-6, -12)], groups, patterns = patterns, nclust = 1,

+ method = "Gibbs", B = 1000, trace = FALSE)

> gg2 <- fitGG(x[, c(-6, -12)], groups, patterns = patterns, method = "EM",

+ trace = FALSE)

> gg3 <- fitGG(x[, c(-6, -12)], groups, patterns = patterns, method = "quickEM",

+ trace = FALSE)

We can obtain iteration plots to visually assess the convergence of the
chain. The component mcmc of gg1 contains an object of type mcmc, as
defined in the library coda.

To obtain parameter estimates and the posterior probability that each
gene is differentially expressed we use the function parest. We discard
the first 100 MCMC iterations with burnin=100, and we ask for 95% pos-
terior credibility intervals with alpha=.05. The slot ci of the returned
object contains the credibility intervals (this option is only available for
method==’Gibbs’ and method==’MH’).

> gg1 <- parest(gg1, x = x[, c(-6, -12)], groups, burnin = 100,

+ alpha = 0.05)

> gg2 <- parest(gg2, x = x[, c(-6, -12)], groups, alpha = 0.05)

> gg3 <- parest(gg3, x = x[, c(-6, -12)], groups, alpha = 0.05)

> gg1

GaGa hierarchical model. Fit via Gibbs sampling (900 iterations kept)

Assumed constant CV across groups

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0 (93.6% genes): group 1 = group 2

Pattern 1 (6.4% genes): group 1 !=group 2

Hyper-parameter estimates

a0 nu balpha nualpha

21.699 0.113 1.326 1399.749

probclus

1

> gg1$ci

$a0

2.5% 97.5%

16.40744 28.17884

$nu

2.5% 97.5%

0.1086822 0.1174830

$balpha

2.5% 97.5%

0.9729274 1.7644992

$nualpha

2.5% 97.5%

1128.568 1711.660

$probclus

[1] 1 1

$probpat

probpat.1 probpat.2

2.5% 0.8689520 0.01912461

97.5% 0.9808754 0.13104796

> gg2

GaGa hierarchical model. Fit via Expectation-Maximization

Assumed constant CV across groups

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0 (94.7% genes): group 1 = group 2

Pattern 1 (6.3% genes): group 1 !=group 2

Hyper-parameter estimates

alpha0 nu balpha nualpha

21.69 0.113 1.33 1392.727

probclus

1.01

> gg3

GaGa hierarchical model.Fit via quick Expectation-Maximization

Assumed constant CV across groups

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0 (94.7% genes): group 1 = group 2

Pattern 1 (6.3% genes): group 1 !=group 2

Hyper-parameter estimates

alpha0 nu balpha nualpha

21.69 0.113 1.271 1403.409

probclus

1.01

Although the parameter estimates obtained from the four methods are
similar to each other, some differences remain. This is due to some extent to
our having a small dataset with only 100 genes. For the larger datasets en-
countered in practice the four methods typically deliver very similar results.
In Section 5 we assess whether the lists of differentially expressed genes ob-
tained with each method are actually the same. The slot pp in gg1 and gg2

contains a matrix with the posterior probability of each expression pattern for
each gene. For example, to find probability that the first gene follows pattern
0 (i.e. is equally expressed) and pattern 1 (i.e. is differentially expressed)
we do as follows.

> dim(gg1$pp)

[1] 100 2

> gg1$pp[1,]

[1] 0.994763952 0.005236048

> gg2$pp[1,]

[1] 0.994892488 0.005107512

4 Checking the goodness of fit

To graphically assess the goodness of fit of the model, one can used prior-
predictive or posterior-predictive checks. The latter, implemented in the
function checkfit, are based on drawing parameter values from the posterior
distribution for each gene, and possibly using then to generate data values,
and then compare the simulated values to the observed data. The data
generated from the posterior predictive is compared to the observed data in
Figure 2(a). Figure 2(b)-(d) compares draws from the posterior of α and
λ with their method of moments estimate, which is model-free. All plots
indicate that the model has a reasonably good fit. The figures were generated
with the following code:

> checkfit(gg1, x = x[, c(-6, -12)], groups, type = "data", main = "")

> checkfit(gg1, x = x[, c(-6, -12)], groups, type = "shape", main = "")

> checkfit(gg1, x = x[, c(-6, -12)], groups, type = "mean", main = "")

> checkfit(gg1, x = x[, c(-6, -12)], groups, type = "shapemean",

+ main = "", xlab = "Mean", ylab = "1/sqrt(CV)")

It should be noted, however, that posterior-predictive plots can fail to
detect departures from the model, since there is a double use of the data.
Prior-predictive checks can be easily implemented using the function simGG

and setting the hyper-parameters to their posterior mean.

5 Finding differentially expressed genes

The function findgenes finds differentially expressed genes, i.e. assigns each
gene to an expression pattern. The problem is formalized as minizing the false
negative rate, subject to an upper bound on the false discovery rate, say fdr-

max=0.05. In a Bayesian sense, this is achieved by assigning to pattern 0 (null

(a) (b)

4 6 8 10 12 14 16 18

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Expression values

D
en

si
ty

Observed data
Posterior predictive

0 2000 4000 6000 8000 10000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

alpha parameters (shape)

D
en

si
ty

Model−based
Moments estimate

4 6 8 10 12 14 16 18

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

mean parameters

D
en

si
ty

Model−based
Moments estimate

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

● ●
●●

●

●

● ●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●
● ●

●
●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

6 8 10 12 14 16

0
20

00
40

00
60

00

Mean

1/
sq

rt
(C

V
)

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●
●●

●

● ● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2: Assessing the goodness of fit. (a): compares samples from the
posterior predictive to the observed data; (b): compares samples from the
posterior of α to the method of moments estimate; (c): compares samples
from the posterior of λ to the method of moments estimate; (d): as (b) and
(c) but plots the pairs (α, λ) instead of the kernel density estimates

hypothesis) all genes for which the posterior probability of following pattern 0
is above a certain threshold (Mueller, 2004). The problem is then to find the
optimal threshold, which can be done parametrically or non-parametrically
through the use of permutations (for details see Rossell, 2007).Here we ex-
plore both options, specifying B=1000 permutations for the non-parametric
option.

> d1 <- findgenes(gg1, x[, c(-6, -12)], groups, fdrmax = 0.05,

+ parametric = TRUE)

> d1.nonpar <- findgenes(gg1, x[, c(-6, -12)], groups, fdrmax = 0.05,

+ parametric = FALSE, B = 1000)

Finding clusters of z-scores for bootstrap... Done

Starting 1000 bootstrap iterations...

> dtrue <- (l[, 1] != l[, 2])

> table(d1$d, dtrue)

dtrue

FALSE TRUE

0 95 1

1 0 4

> table(d1.nonpar$d, dtrue)

dtrue

FALSE TRUE

0 95 1

1 0 4

We set the variable dtrue to indicate which genes were actually differ-
entially expressed (easily achieved by comparing the columns of xsim$l).
Both the parametric and non-parametric versions declare 4 genes to be DE,
all of them true positives. They both fail to find one of the DE genes. To
obtain an estimated frequentist FDR for each Bayesian FDR one can plot
d1.nonpar$fdrest. The result, shown in Figure 2, reveals that setting the
Bayesian FDR at a 0.05 level results in an estimated frequentist FDR around
0.015. That is, calling findgenes with the option parametric=TRUE results
in a slightly conservative procedure from a frequentist point of view.

> plot(d1.nonpar$fdrest, type = "l", xlab = "Bayesian FDR", ylab = "Estimated frequentist FDR")

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Bayesian FDR

E
st

im
at

ed
 fr

eq
ue

nt
is

t F
D

R

Figure 3: Estimated frequenstist FDR vs. Bayesian FDR

Finally, we compare the list of differentially expressed genes with those
obtained when using the other fitting criteria explained in Section 3.

> d2 <- findgenes(gg2, x[, c(-6, -12)], groups, fdrmax = 0.05,

+ parametric = TRUE)

> d3 <- findgenes(gg3, x[, c(-6, -12)], groups, fdrmax = 0.05,

+ parametric = TRUE)

> table(d1$d, d2$d)

0 1

0 96 0

1 0 4

> table(d1$d, d3$d)

0 1

0 96 0

1 0 4

Despite the existence of small differences in the hyper-parameter esti-
mates between methods, the final list of differentially expressed genes is the
same for all of them. This suggests that the GaGa model is somewhat robust
to the hyper-parameter specification.

6 Obtaining fold change estimates

The GaGa and MiGaGa models can be used to obtain fold change estimates,
by computing the posterior expected expression values for each group. As
these posterior expectations are derived from a hierarchical model, they are
obtained by borrowing information across genes. Therefore, in small sample
situations they are preferrable to simply using the group sample means.

The function posmeansGG computes posterior expected values under any
expression pattern. The expression pattern is indicated with the argument
underpattern. In our example (as in most microarray experiments) pattern
0 corresponds to the null hypothesis that no genes are differentially expressed.
Therefore, specifying underpattern=0 would result in obtaining identical
expression estimates for both groups. Instead, one is commonly interested
in computing a different mean for each group, which in our case corresponds
to pattern 1. As the expression measurements were simulated to be in log2
scale, the log-fold change can be computed by taking the difference between
the two group means (if the data were in the original scale, we would divide
instead). The code below computed posterior means and log-fold changes,
and prints out the fold change for the first five genes.

> mpos <- posmeansGG(gg1, x = x[, c(-6, -12)], groups = groups,

+ underpattern = 1)

Computing posterior means under expression pattern 1 ...

> fc <- mpos[, 1] - mpos[, 2]

> fc[1:5]

[1] -0.11041024 -0.01292394 -0.83741320 0.08419900 -0.05508204

7 Class prediction

We now use the fitted model to predict the class of the arrays number 6 and
12, neither of which were used to fit the model. We assume that the prior
probability is 0.5 for each group, though in most settings this will not be
realistical. For example, if groups==2 indicates individuals with cancer, one
would expect the prior probability to be well below 0.5, say around 0.1. But
if the individual had a positive result in some test that was administered
previously, this probability would have increased, say to 0.4.

Class prediction is implemented in the function classpred. The argu-
ment xnew contains the gene expression measurements for the new individ-
uals, x is the data used to fit the model and ngene indicates the number of

genes that should be used to build the classifier. It turns out that array 6
is correctly assigned to group 1 and array 12 is correctly assigned to group
2. classpred also returns the posterior probability that the sample belongs
to each group. We see that for the dataset at hand the posterior probability
of belonging to the wrong group is essentially zero. Similarly good results
are obtained when using setting ngene to either 1 (the minimum value) or to
100 (the maximum value). The fact that adding more gene to the classifier
does not change its performance is not surprising, since the classifier assigns
little weight to genes with small probability of being DE. We have observed
a similar behavior in many datasets. The fact that the classifier works so
well with a single is typically not observed in real datasets, where it is rare
to have a gene with such a high discrimination power.

> pred1 <- classpred(gg1, xnew = x[, 6], x = x[, c(-6, -12)], groups,

+ ngene = 50, prgroups = c(0.5, 0.5))

> pred2 <- classpred(gg1, xnew = x[, 12], x = x[, c(-6, -12)],

+ groups, ngene = 50, prgroups = c(0.5, 0.5))

> pred1

$d

[1] 1

$posgroups

[1] 1.000000e+00 2.326630e-24

> pred2

$d

[1] 2

$posgroups

[1] 9.440358e-22 1.000000e+00

References

C.M. Kendziorski, M.A. Newton, H. Lan, and M.N. Gould. On parametric
empirical bayes methods for comparing multiple groups using replicated
gene expression profiles. Statistics in Medicine, 22:3899–3914, 2003.

M.A. Newton, C.M. Kendziorski, C.S Richmond, F.R. Blattner, and K.W.
Tsui. On differential variability of expression ratios: Improving statistical
inference about gene expression changes from microarray data. Journal of
Computational Biology, 8:37–52, 2001.

D. Rossell. GaGa: a simple and flexible hierarchical model for microarray
data analysis. Technical report, M.D. Anderson cancer center, 2007. URL
http://rosselldavid.googlepages.com.

http://rosselldavid.googlepages.com

	Introduction
	Simulating the data
	Model fit
	Checking the goodness of fit
	Finding differentially expressed genes
	Obtaining fold change estimates
	Class prediction

