
Copy number estimation and genotype calling with crlmm

Rob Scharpf

November 13, 2010

Abstract

This vignette estimates copy number for HapMap samples on the Affymetrix 6.0 platform. See [1]
for additional details.

1 Copy number estimation

1.1 Set up

> library(crlmm)

Several genotyping platforms are currently supported. Supported platforms must have a corresponding
annotation package (installed separately) that are listed below.

> annotationPackages()

[1] "pd.mapping50k.hind240"
[2] "pd.mapping50k.xba240"
[3] "pd.mapping50k.hind240,pd.mapping50k.xba240"
[4] "pd.mapping250k.nsp"
[5] "pd.mapping250k.sty"
[6] "pd.mapping250k.nsp,pd.mapping250k.sty"
[7] "pd.genomewidesnp.5"
[8] "pd.genomewidesnp.6"
[9] "genomewidesnp6Crlmm"
[10] "genomewidesnp5Crlmm"
[11] "human370v1cCrlmm"
[12] "human370quadv3cCrlmm"
[13] "human550v3bCrlmm"
[14] "human650v3aCrlmm"
[15] "human610quadv1bCrlmm"
[16] "human660quadv1aCrlmm"
[17] "human1mduov3bCrlmm"
[18] "humanomni1quadv1bCrlmm"

Only the annotation package that end with the ’Crlmm’ postfix are supported for copy number estima-
tion. For instance, ’pd.genomewidesnp6’ and ’genomewidesnp6Crlmm’ are both annotation packages for the
Affymetrix 6.0 platform, but the ’genomewidesnp6Crlmm’ annotation package must be used for copy number
estimation. The annotation package is specified through the ’cdfName’ – the identifier without the ’Crlmm’
postfix. In the following code, we specify the cdf name for Affymetrix 6.0, provide the complete path to the
CEL files, and indicate where intermediate files from the copy number estimation are to be saved.

> cdfName <- "genomewidesnp6"

> pathToCels <- "/thumper/ctsa/snpmicroarray/hapmap/raw/affy/1m"

> if (getRversion() < "2.13.0") {

1

rpath <- getRversion()

} else rpath <- "trunk"

> outdir <- paste("/thumper/ctsa/snpmicroarray/rs/ProcessedData/crlmm/",

rpath, "/copynumber_vignette", sep = "")

> dir.create(outdir, recursive = TRUE, showWarnings = FALSE)

All long computations are saved in the output directory outdir. Users should change these variables as
appropriate. The following code chunk should fail unless the above arguments have been set appropriately.

> if (!file.exists(outdir)) stop("Please specify a valid directory for storing output")

> if (!file.exists(pathToCels)) stop("Please specify the correct path to the CEL files")

Processed data from codechunks requiring long computations are saved to disk by wrapping function
calls in the checkExists function. After running this vignette as a batch job, subsequent calls to Sweave
will load the saved computations from disk. See the checkExists help file for additional details.

1.2 Preprocessing and genotyping.

In the following code chunk, we provide the complete path to the Affymetrix CEL files and define a ’batch’
variable. The batch variable will be used to initialize a container for storing the normalized intensities, the
genotype calls, and the parameter estimates for copy number. Often the chemistry plate or the scan date
of the array is a useful surrogate for batch. For the HapMap CEL files in our analysis, the CEPH (C) and
Yoruban (Y) samples were prepared on separate chemistry plates. In the following code chunk, we extract
the population identifier from the CEL file names and assign these identifiers to the variable batch.

> celFiles <- list.celfiles(pathToCels, full.names = TRUE,

pattern = ".CEL")

> celFiles <- celFiles[substr(basename(celFiles), 13, 13) %in%

c("C", "Y")]

> batch <- as.factor(substr(basename(celFiles), 13, 13))

The preprocessing steps for copy number estimation includes quantile normalization of the raw intensities
for each probe and a step that summarizes the intensities of multiple probes at a single locus. For example,
the Affymetrix 6.0 platform has 3 or 4 identical probes at each polymorphic locus and the normalized
intensities are summarized by a median. For the nonpolymorphic markers on Affymetrix 6.0, only one probe
per locus is available and the summarization step is not needed.

After preprocessing the arrays, the crlmm package estimates the genotype and provides a confidence score
at each polymorphic locus. Unless the dataset is small (e.g., fewer than 50 samples), we suggest installing
and loading the R package ff to reduce the RAM required for preprocessing and genotyping. Loading the ff
package at this point will automatically enable large data support (LDS).

The function genotype checks to see whether the ff is loaded. If loaded, the normalized intensities and
genotype are stored as ff objects on disk. Otherwise, the genotypes and normalized intensities are stored in
matrices. A word of caution: the genotype function without ff requires a potentially large amount of RAM.
A more RAM-friendly approach to preprocessing and genotyping requires the ff package. In particular,
the functions ocProbesets and ocSamples can be used to manage how many probesets and samples are
to processed at a time and can therefore be used to fine tune the needed RAM for a particular job. The
function ldPath indicates that ff objects will be stored in the directory outdir.

> library(ff)

> ldPath(outdir)

> ocProbesets(1e+05)

> ocSamples(200)

With LDS enabled, we preprocess and genotype 180 samples from the CEPH and Yoruban populations.
Users interested only in the genotypes should instead use the R function crlmm or crlmm2. We wrap the call
to genotype in checkExists so that subsequent calls to Sweave can be run interactively.

2

> if (!file.exists(file.path(outdir, "cnSet.rda"))) {

gtSet <- checkExists("gtSet", .path = outdir, .FUN = genotype,

filenames = celFiles, cdfName = cdfName, batch = batch)

}

The value returned by genotype is an instance of the class CNSet. In addition to the normalization and
genotyping, the genotype function initializes a container that will store summary statistics for the batches
and parameters needed for copy number estimation. At this point, the batch summaries and parameters for
copy number are all NA’s.

1.3 Copy number estimation.

The crlmmCopynumber performs the following steps:

� computes summary statistics for each batch

� imputes unobserved genotype centers (for each batch)

� shrinks the within-genotype variances

� estimates parameters for allele-specific copy number

With verbose=TRUE, the above steps for CN estimation are displayed during the processing.

> cnSet <- checkExists("cnSet", .path = outdir, .FUN = crlmmCopynumber,

object = gtSet)

In an effort to reduct I/O, the crlmmCopynumber function no longer stores the allele-specific estimates
of copy number as part of the object. Rather, several functions are available that will compute relatively
quickly the allele-specific estimates from the stored normalized intensities and the linear model parameters.
At allele k, marker i, sample j, and batch p, the estimate of allele-specific copy number is computed by
subtracting the estimated background from the observed intensity and scaling by the slope coefficient.

ĉk,ijp = max

{
1

φ̂k,ip

(Ik,ijp − ν̂k,ip) , 0

}
for k ∈ {A,B}. (1)

See [1] for details.
For large datasets, the above computation will not be instantaneous as the I/O can be substantial. The

functions CA, CB, and totalCopynumber should be used to extract CN estimates from the CNSet container.
The following code chunks illustrate several examples, as well as some of the useful accessors for extracting
which markers are SNPs, which are chromosomes, etc.

> snp.index <- which(isSnp(cnSet) & !is.na(chromosome(cnSet)))

> ca <- CA(cnSet, i = snp.index, j = 1:5)

> cb <- CB(cnSet, i = snp.index, j = 1:5)

> ct <- ca + cb

Alternatively, total copy number can be obtained by

> ct2 <- totalCopynumber(cnSet, i = snp.index, j = 1:5)

> stopifnot(all.equal(ct, ct2))

At nonpolymorphic loci, either the CA or totalCopynumber functions can be used to obtain estimates of
total copy number.

3

Nonpolymorphic markers on chromosome X:

> npx.index <- which(chromosome(cnSet) == 23 & !isSnp(cnSet))

> M <- sample(which(cnSet$gender == 1), 5)

> F <- sample(which(cnSet$gender == 2), 5)

> cn.M <- CA(cnSet, i = npx.index, j = M)

> cn.F <- CA(cnSet, i = npx.index, j = F)

> boxplot(data.frame(cbind(cn.M, cn.F)), pch = ".", col = "grey60",

outline = FALSE)

NA10846_GW6_C.CEL NA19210_GW6_Y.CEL NA18517_GW6_Y.CEL NA19209_GW6_Y.CEL

0.
0

1.
0

2.
0

3.
0

Figure 1: Copy number estimates for nonpolymorphic loci on chromosome X (5 men, 5 women). crlmm
assumes that the median copy number across samples at a given marker on X is 1 for men and 2 for women.

> marker.index <- which(!isSnp(cnSet) & chromosome(cnSet) <

23)

> ct <- CA(cnSet, i = marker.index, j = 1:5)

> stopifnot(all(CB(cnSet, i = marker.index, j = 1:5) ==

0))

> ct2 <- totalCopynumber(cnSet, i = marker.index, j = 1:5)

> stopifnot(all.equal(ct, ct2))

Accessors for physical position and chromosome are also provided. In the following codechunk we extract
the position and chromosome for the first 10 markers in the cnSet object.

> position(cnSet)[1:10]

[1] 1156131 2234251 2329564 2553624 2936870 2951834 3095126 3165267
[9] 3302871 3705226

> chromosome(cnSet)[1:10]

[1] 1 1 1 1 1 1 1 1 1 1

2 The CNSet container

The objects returned by the genotype and crlmmCopynumber have assay data elements that are pointers
to ff objects stored in the directory outdir. Had we not loaded the ff prior to running these functions,
the AssayData elements would be ordinary matrices, though the RAM required for running the algorithm

4

> X.markers <- which(isSnp(cnSet) & chromosome(cnSet) ==

23)

> ca.M <- CA(cnSet, i = X.markers, j = M)

> cb.M <- CB(cnSet, i = X.markers, j = M)

> ca.F <- CA(cnSet, i = X.markers, j = F)

> cb.F <- CB(cnSet, i = X.markers, j = F)

> cn.M <- ca.M + cb.M

> cn.F <- ca.F + cb.F

> boxplot(data.frame(cbind(cn.M, cn.F)), pch = ".", outline = FALSE,

col = "grey60")

> abline(h = c(1, 2))

> cn2 <- totalCopynumber(cnSet, i = X.markers, j = c(M,

F))

> stopifnot(all.equal(cbind(cn.M, cn.F), cn2))

NA10846_GW6_C.CEL NA19210_GW6_Y.CEL NA18517_GW6_Y.CEL NA19209_GW6_Y.CEL

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 2: Copy number estimates for polymorphic markers on chromosome X. crlmm assumes that the
median copy number across samples at a given marker on X is 1 for men and 2 for women.

would be substantial. The functions open and close open and close the connections to the assayData
elements. Subsetting an ff object pulls the data from disk into memory and should be used with caution.
In particular, subsetting the gtSet would subset each element in the assayData slot, returning an object of
the same class but with assayData elements that are matrices. Such an operation can be exceedingly slow
when performed over a network and require subsantial RAM. The preferred approach is to extract only the
assay data element that is needed. In the example below, we extract the genotype calls for the the first 50
samples.

> dims(cnSet)

alleleA alleleB call callProbability
Features 1852215 1852215 1852215 1852215
Samples 180 180 180 180

> print(object.size(cnSet), units = "Mb")

134.3 Mb

> invisible(open(calls(cnSet)))

> gt <- calls(cnSet)[, 1:50]

5

The CNSet class also contains the slot batchStatistics that contains batch-specific summaries needed
for copy number estimation. In particular, each element is a matrix (or an ff object) with R rows and C
columns, correspoinding to R markers and C batches. The summaries includes the within genotype cluster
medians and median absolute deviations (mads), but also parameters estimated from the linear model. (For
unobserved genotypes, the medians are imputed and the variance is obtained the median variance (across
markers) within a batch.) The elements of the slot can be listed as follows.

> assayDataElementNames(batchStatistics(cnSet))

[1] "corrAA" "corrAB" "corrBB" "flags" "madA.AA"
[6] "madA.AB" "madA.BB" "madB.AA" "madB.AB" "madB.BB"
[11] "medianA.AA" "medianA.AB" "medianA.BB" "medianB.AA" "medianB.AB"
[16] "medianB.BB" "N.AA" "N.AB" "N.BB" "nuA"
[21] "nuB" "phiA" "phiB" "phiPrimeA" "phiPrimeB"
[26] "tau2A.AA" "tau2A.BB" "tau2B.AA" "tau2B.BB"

Note that for the Affymetrix 6.0 platform the assay data elements each have a row dimension corre-
sponding to the total number of polymorphic and nonpolymorphic markers interrogated by the Affymetrix
6.0 platform. A consequence of keeping the rows of the assay data elements the same for all of the statistical
summaries is that the matrix used to store genotype calls is larger than necessary. Also, note the additional
overhead of some operations when using ff objects. For instance, the posterior probabilities for the CRLMM
genotype calls are represented as integers. The accessor snpCallProbability can be used to access these
confidence scores. When stored as matrices, converting the integer representation back to the probability
scale is straightforward as shown below. However, for the ff objects we must first convert the ff object to a
matrix. One could use the function [,] but this could be slow and require a lot of RAM depending on the
size of the dataset. We suggest pulling only the needed rows and columns from memory. In the following
example, we convert the integer scores to probabilities for the CEPH samples. As genotype confidence scores
are not applicable to the nonpolymorphic markers, we extract only the polymorphic markers using the isSnp
function.

> rows <- which(isSnp(cnSet))

> cols <- which(batch == "C")

> invisible(open(snpCallProbability(cnSet)))

> posterior.prob <- tryCatch(i2p(snpCallProbability(cnSet)),

error = function(e) print("This will not work for an ff object."))

[1] "This will not work for an ff object."

Accessors for the quantile normalized intensities for the A allele at polymorphic loci:

> snp.index <- which(isSnp(cnSet))

> np.index <- which(!isSnp(cnSet))

> invisible(open(A(cnSet)))

> a <- (A(cnSet))[snp.index,]

> dim(a)

[1] 906600 180

The extra set of parentheses surrounding A(cnSet2) above is added to emphasize the appropriate order
of operations. Subsetting the entire cnSet object in the following, unevaluated codechunk should be avoided
for large datasets.

> a <- A(cnSet[snp.index,])

The quantile-normalized intensities for nonpolymorphic loci are obtained by:

> npIntensities <- (A(cnSet))[np.index,]

6

Quantile normalized intensities for the B allele at polymorphic loci:

> invisible(open(B(cnSet)))

> b.snps <- (B(cnSet))[snp.index,]

Note that NA’s are stored in the slot for normalized ’B’ allele intensities:

> all(is.na(B(cnSet)[np.index,]))

[1] TRUE

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3292273 175.9 4953636 264.6 4953636 264.6
Vcells 93656247 714.6 433523068 3307.6 517156071 3945.6

2.1 Other accessors

Information on physical position and chromosome can be accessed as follows:

> xx <- position(cnSet)

> yy <- chromosome(cnSet)

Parameters from the linear model used to estimate copy number are stored in the slot batchStatistics.
TODO: Describe accessors for batch-level summaries.

3 Suggested visualizations

SNR. A histogram of the signal to noise ratio for the HapMap samples:

One sample at a time: locus-level estimates Figure 4 plots physical position (horizontal axis) versus
copy number (vertical axis) for the first sample. There is less information to estimate copy number at
nonpolymorphic loci; improvements to the univariate prediction regions at nonpolymorphic loci are a future
area of research. If the SNPchip is available, an idiogram can be added to the existing plotting coordinates
as indicated in the following example.

> marker.index <- which(chromosome(cnSet) == 1)

> cn <- totalCopynumber(cnSet, i = marker.index, j = 1)

> x <- position(cnSet)[marker.index]

> par(las = 1, mar = c(4, 5, 4, 2))

> plot(x, cn, pch = ".", cex = 2, xaxt = "n", col = "grey60",

ylim = c(0, 6), ylab = "copy number", xlab = "physical position (Mb)",

main = paste(sampleNames(cnSet)[1], ", CHR: 1"))

> axis(1, at = pretty(x), labels = pretty(x)/1e+06)

> require(SNPchip)

> invisible(plotCytoband(1, new = FALSE, cytoband.ycoords = c(5.5,

6), label.cytoband = FALSE))

7

> open(cnSet$SNR)

[1] FALSE

> hist(cnSet$SNR[,], xlab = "SNR", main = "", breaks = 25)

SNR

F
re

qu
en

cy

6.0 6.5 7.0 7.5 8.0 8.5 9.0

0
5

10
15

Figure 3: Signal to noise ratios for the HapMap samples. SNRs below 5 for the Affymetrix platform are
often samples of lower quality. Such samples will tend to have much more variable estimates of copy number.

0

1

2

3

4

5

6

NA06985_GW6_C.CEL , CHR: 1

physical position (Mb)

co
py

 n
um

be
r

0 50 100 150 200 250

Figure 4: Total copy number (y-axis) for chromosome 1 plotted against physical position (x-axis) for one
sample. Estimates at nonpolymorphic loci are plotted in light blue.

8

One SNP at a time Scatterplots of the A and B allele intensities (log-scale) can be useful for assessing
the biallelic genotype calls. This section of the vignette is currently under development.

4 Session information

> toLatex(sessionInfo())

� R version 2.12.0 Patched (2010-11-13 r53582), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.iso885915, LC_NUMERIC=C, LC_TIME=en_US.iso885915,
LC_COLLATE=en_US.iso885915, LC_MONETARY=C, LC_MESSAGES=en_US.iso885915,
LC_PAPER=en_US.iso885915, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.iso885915, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.10.0, bit 1.1-6, crlmm 1.8.3, ff 2.2-1, oligoClasses 1.12.1, SNPchip 1.14.0

� Loaded via a namespace (and not attached): affyio 1.18.0, annotate 1.28.0, AnnotationDbi 1.12.0,
Biostrings 2.18.0, DBI 0.2-5, ellipse 0.3-5, genefilter 1.32.0, IRanges 1.8.2, mvtnorm 0.9-92,
preprocessCore 1.12.0, RSQLite 0.9-3, splines 2.12.0, survival 2.36-1, xtable 1.5-6

References

References

[1] Robert B Scharpf, Ingo Ruczinski, Benilton Carvalho, Betty Doan, Aravinda Chakravarti, and Rafael
Irizarry. A multilevel model to address batch effects in copy number estimation using snp arrays. Bio-
statistics, 2010.

9

