
Gene Selection Using GeneSelectMMD

Weilianq Qiu
stwxq@channing.harvard.edu,

Wenqing He
whe@stats.uwo.ca,

Xiaogang Wang
stevenw@mathstat.yorku.ca,

Ross Lazarus
ross.lazarus@channing.harvard.edu,

October 18, 2010

1 Introduction

This document demonstrates how to use the GeneSelectMMD package to detect significant genes and to
estimate false discovery rate (FDR), false non-discovery rate (FNDR), false positive rate (FPR), and false
negative rate (FNR), for a real microarray data set based on the method proposed by Qiu et al. (2008). It
also illustrates how to visualize the fit of the model proposed in Qiu et al. (2008) to the real microarray data
set when the marginal correlations among subjects are zero or close to zero.

The GeneSelectMMD package is suitable for the case where there are only two tissue types and for the
case where tissue samples within a tissue type are conditionally independent given the gene (c.f. Qiu et al.,
2008).

2 Methods

MMD assumes that the marginal distribution of a gene profile is a mixture of 3-component multivariate
normal distributions with special structure for mean vectors and covariance matrices. The 3 component
distributions correspond to 3 gene clusters: (1) cluster of genes over-expressed in the treatment group; (2)
cluster of genes non-differentially expressed; and (3) cluster of genes under-expressed in the treatment group.
Specifically, the marginal density of a gene profile is assumed to be

f(x|θ1,θ2,θ3) = π1f1(x|θ1) + π2f2(x|θ2) + π3f3(x|θ3),
π1 + π2 + π3 = 1, πi > 0, i = 1, 2, 3,

(1)

where π1, π2, π3 are mixture proportions. The m× 1 vector x is a realization of the random vector X that
represents the transformed gene profile for a randomly selected gene over m tissue samples (m = mc +mn,
where mc is the number of abnormal tissue samples and mn normal tissue samples); θk, is the parameter
set for the k-th component distribution fk, k = 1, 2, 3; and f1, f2, and f3 are the density functions for
multivariate Normal distributions with the mean vectors

µ1 =
(

µc11mc

µn11mn

)
, µ2 = µ21m, µ3 =

(
µc31mc

µn31mn

)
. (2)

and covariance matrices

Σ1 =
(
σ2

c1
Rc1 0
0 σ2

n1
Rn1

)
, Σ2 = σ2

2R2, Σ3 =
(
σ2

c3
Rc3 0
0 σ2

n3
Rn3

)
, (3)

1

respectively, where correlation matrix

Rt = (1− ρt)
[
Int

+
ρt

(1− ρt)
1nt

1T
nt

]
, (4)

t = c1, n1, 2, c3, or n3. nt = mc if t = c1 or c3; nt = m if t = 2; nt = mn if t = n1, or n3. Here we assume,
without loss of generality, that the first mc elements of the random vector X are for the abnormal tissue sam-
ples and the remaining mn elements are for the normal tissue samples. Let θ1 = (µc1 , σ

2
c1
, ρc1 , µn1 , σ

2
n1
, ρn1)T ,

θ2 = (µ2, σ
2
2 , ρ2)T , θ3 = (µc3 , σ

2
c3
, ρc3 , µn3 , σ

2
n3
, ρn3)T . Note that µc1 > µn1 for component 1 in which genes

are overexpressed in abnormal tissue samples, and µc3 < µn3 for component 3 where genes are underex-
pressed in abnormal samples. Our prior belief is that the majority of genes are usually non-differentially
expressed, so we assume π2 > π1 and π2 > π3.

The model parameters can be estimated using the EM algorithm (Dempster et al., 1977).
The cluster membership of a gene is determined by the posterior probability that the gene belongs to a

cluster given its gene profile. The posterior probability is a function of the 3 component marginal density
functions and the mixing proportions:

Pr(gene i ∈ cluster k|xi) =
πkfk(xi|θk)

π1f1(xi|θ1) + π2f2(xi|θ2) + π3f3(xi|θ3)
,

k =1, 2, 3,
(5)

Specifically, a gene is assigned to the a gene cluster if the posterior probability that the gene belongs to that
gene cluster given its gene profile is larger than the posterior probability that the gene belongs to other gene
clusters given its gene profile:

k0 = arg max
k=1,2,3

Pr(gene i ∈ Ck|xi). (6)

An important task is to assess the performance of a gene selection method so that different methods
can be objectively compared. To evaluate the performance of a gene selection method, investigators usually
compare the error rates, such as FDR, FNDR, FPR, and FNR, via simulation studies. However, when
analyzing a real microarray data set, investigators are more interested in what the values of FDR, FNDR,
FPR, and FNR are for this specific real microarray set. It is challenging to estimate FDR, FNDR, FPR,
and FNR for real microarray data sets since the true gene cluster membership is unknown for real data sets.
However, model-based gene clustering methods, such as Bayesian hierarchical models and MMD, can provide
such estimates since these error rates can be expressed as functions of marginal density functions and mixing
proportions, where the model parameters and mixing proportions can be estimated from the real microarray
data. It is easy to use MMD to estimate the four error rates since MMD describes the distributions of gene
expression levels directly via the marginal distributions, while it is usually difficult to derive the marginal
density functions for Bayesian hierarchical models.

It is of practical importance to evaluate if a model fits a real microarray data set well. If a model does
not fit well for the real microarray data set, then it makes no sense to estimate the error rates based on
the model. Although it is quite challenging to asses the goodness of fit for multivariate data, especially
for non-normal multivariate data, it is possible to do so for some special cases. For example, when tissue
samples are marginally independent, we could pool the gene expression levels across tissue samples for each
type of tissue samples since they are all independent. We then could impose the theoretical density curve
on the histogram of the pooled expression levels for each type of tissue samples. The parameters ρc1, ρn1,
ρ2, ρc3, and ρn3 indicates the marginal correlations among tissue samples. Assuming that the marginal
correlations are ignorable, we then could produce such a plot to evaluate the goodness of fit of MMD to the
real microarray data set.

3 Gene selection via GeneSelectMMD

The GeneSelectMMD includes four functions for gene selection: gsMMD, gsMMD.default, gsMMD2, and gsMMD2.default.

2

The functions gsMMD and gsMMD2 accept the object derived from the class of Bioconductor ’s Expres-
sionSet as data input, while the functions gsMMD.default and gsMMD2.default accept data matrix as data
input.

The functions gsMMD and gsMMD.default will provide initial 3-cluster gene partitions (cluster of genes
over-expressed in treatment group, cluster of genes non-differentially expressed, and cluster of genes under-
expressed in treatment group) based on the gene-wise two-sample t-test or two-sample Wilcoxon rank-sum
test. In situations where the user would like to provide the initial 3-cluster partition other than that
provided by the gene-wise two-sample t-test or two sample Wilcoxon rank-sum test, the functions gsMMD2
and gsMMD2.default could be used.

The rows of the input data matrix (or the data matrix derived from the object derived from the class Ex-
pressionSet) are genes, while the columns are tissue samples. The tissue type of a tissue sample is indicated
by the argument memSubjects, which is a m× 1 vector, m = mc +mn, mc is the number of tissue samples
in the treatment group, and mn is the number of tissue samples in the control group. memSubjects[j]=1
indicates the j-th tissue sample is from the treatment group. memSubjects[j]=0 indicates the j-th tissue
sample is from the control group.

The output of gene selection functions include dat, memGenes, memGenes2, and para.

• dat is a data matrix with the same dimensions as the input data matrix. If no data transformation is
performed, dat is the same as the input data matrix. Otherwise, it will be the transformed input data
matrix.

• memGenes is a G × 1 vector indicating the gene cluster membership, where G is the number of genes
(i.e., the number of rows of the input data matrix). memGenes[g]=1 indicates the g-th gene is assigned
to the cluster of genes over-expressed in treatment group; memGenes[g]=2 indicates the g-th gene is
assigned to the cluster of genes non-differentially-expressed; memGenes[g]=3 indicates the g-th gene is
assigned to the cluster of genes under-expressed in treatment group.

• memGenes2 is a variant of memGenes. memGenes2[g]=1 means the g-th gene is differentially expressed,
while memGenes2[g]=0 means the g-th gene is non-differentially expressed, g = 1, . . . , G.

• para is a 18×1 vector of parameters (π1, π2, π3, µc1, σ2
c1, ρc1, µn1, σ2

n1, ρn1, µ2, σ2
2 , ρ2, µc3, σ2

c3, ρc3, µn3,
σ2

n3, ρn3,) for the model described in Equations (1)- (4), which can be estimated by the EM algorithm.
para[1], para[2], and para[3] are the cluster proportions for the 3 gene clusters (over-expressed, non-
differentially expressed, and under-expressed). para[4], para[5], and para[6] are the marginal mean,
variance, and correlation of gene expression levels of cluster 1 (up-regulated genes) for diseased subjects;
para[7], para[8], and para[9] are the marginal mean, variance, and correlation of gene expression
levels of cluster 1 (up-regulated genes) for non-diseased subjects; para[10], para[11], and para[12]
are the marginal mean, variance, and correlation of gene expression levels of cluster 2 (non-differentially
expressed genes); para[13], para[14], and para[15] are the marginal mean, variance, and correlation
of gene expression levels of cluster 3 (up-regulated genes) for diseased subjects; para[16], para[17],
and para[18] are the marginal mean, variance, and correlation of gene expression levels of cluster 3
(up-regulated genes) for non-diseased subjects.

Note that genes in cluster 2 are non-differentially expressed across abnormal and normal tissue samples.
Hence there are only 3 parameters for cluster 2.

For example, to obtain differentially expressed genes for the ALL data (Chiaretti et al., 2004), we can
run either

> library(GeneSelectMMD)

> library(ALL)

> data(ALL)

> eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

> mem.str <- as.character(eSet1$BT)

3

> nSubjects <- length(mem.str)

> memSubjects <- rep(0, nSubjects)

> memSubjects[mem.str == "T2"] <- 1

> obj.gsMMD <- gsMMD(eSet1, memSubjects, transformFlag = TRUE,

+ transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)

Programming is running. Please be patient...
Data transformation (boxcox) performed
Gene profiles are scaled so that they have mean zero and variance one!
Programming is running. Please be patient...
******** initial parameter estimates method>> Ttest *******
paraIniMat[,i]>>

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.050 0.870 0.080 0.556 0.604 0.003 -0.363 0.947
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
0.001 0.000 1.000 0.000 -0.659 0.513 0.097 0.430

sigma2.n3 rho.n3
0.812 0.028

llkhVec>>
Ttest

-5284.364

Initial parameter estimates>>
Ttest

pi.1 0.050
pi.2 0.870
pi.3 0.080
mu.c1 0.556
sigma2.c1 0.604
rho.c1 0.003
mu.n1 -0.363
sigma2.n1 0.947
rho.n1 0.001
mu.2 0.000
sigma2.2 1.000
rho.2 0.000
mu.c3 -0.659
sigma2.c3 0.513
rho.c3 0.097
mu.n3 0.430
sigma2.n3 0.812
rho.n3 0.028

Initial loglikelihood>>
Ttest

-5308.485

Final parameter estimates based on initial estimates>>
Ttest

4

pi.1 0.049
pi.2 0.906
pi.3 0.044
mu.c1 0.557
sigma2.c1 0.563
rho.c1 -0.069
mu.n1 -0.363
sigma2.n1 0.908
rho.n1 -0.045
mu.2 0.000
sigma2.2 0.974
rho.2 -0.027
mu.c3 -0.808
sigma2.c3 0.292
rho.c3 0.061
mu.n3 0.527
sigma2.n3 0.715
rho.n3 -0.023

Final loglikelihood based on initial estimates>>
Ttest

-5284.364

Final parameter estimates>>
pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

Final loglikelihood>>
Ttest

-5284.364

> para <- obj.gsMMD$para

> print(round(para, 3))

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

or

> library(GeneSelectMMD)

> library(ALL)

> data(ALL)

> eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

5

> mat <- exprs(eSet1)

> mem.str <- as.character(eSet1$BT)

> nSubjects <- length(mem.str)

> memSubjects <- rep(0, nSubjects)

> memSubjects[mem.str == "T2"] <- 1

> obj.gsMMD <- gsMMD.default(mat, memSubjects, iniGeneMethod = "Ttest",

+ transformFlag = TRUE, transformMethod = "boxcox", scaleFlag = TRUE)

Programming is running. Please be patient...
Programming is running. Please be patient...

> para <- obj.gsMMD$para

> print(round(para, 3))

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

If we would like to provide the initial 3-cluster partition via the two sample Wilcoxon rank-sum test, then
we can run either

> library(GeneSelectMMD)

> library(ALL)

> data(ALL)

> eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

> mem.str <- as.character(eSet1$BT)

> nSubjects <- length(mem.str)

> memSubjects <- rep(0, nSubjects)

> memSubjects[mem.str == "T2"] <- 1

> myWilcox <- function(x, memSubjects, alpha = 0.05) {

+ xc <- x[memSubjects == 1]

+ xn <- x[memSubjects == 0]

+ m <- sum(memSubjects == 1)

+ res <- wilcox.test(x = xc, y = xn, conf.level = 1 - alpha)

+ res2 <- c(res$p.value, res$statistic - m * (m + 1)/2)

+ names(res2) <- c("p.value", "statistic")

+ return(res2)

+ }

> mat <- exprs(eSet1)

> tmp <- t(apply(mat, 1, myWilcox, memSubjects = memSubjects))

> colnames(tmp) <- c("p.value", "statistic")

> memIni <- rep(2, nrow(mat))

> memIni[tmp[, 1] < 0.05 & tmp[, 2] > 0] <- 1

> memIni[tmp[, 1] < 0.05 & tmp[, 2] < 0] <- 3

> print(table(memIni))

memIni
1 2 3
7 85 8

6

> obj.gsMMD <- gsMMD2(eSet1, memSubjects, memIni, transformFlag = TRUE,

+ transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)

Programming is running. Please be patient...
Data transformation (boxcox) performed
Gene profiles are scaled so that they have mean zero and variance one!
Programming is running. Please be patient...

Initial parameter estimates>>
pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.070 0.850 0.080 0.494 0.734 0.016 -0.322 0.927
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
0.006 0.000 1.000 0.000 -0.654 0.546 0.096 0.426

sigma2.n3 rho.n3
0.795 0.030

Initial loglikelihood>>
[1] -5313.98

Final parameter estimates>>
pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

Final loglikelihood>>
[1] -5284.364

> para <- obj.gsMMD$para

> print(round(para, 3))

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

or

> library(GeneSelectMMD)

> library(ALL)

> data(ALL)

> eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

> mat <- exprs(eSet1)

> mem.str <- as.character(eSet1$BT)

> nSubjects <- length(mem.str)

> memSubjects <- rep(0, nSubjects)

7

> memSubjects[mem.str == "T2"] <- 1

> myWilcox <- function(x, memSubjects, alpha = 0.05) {

+ xc <- x[memSubjects == 1]

+ xn <- x[memSubjects == 0]

+ m <- sum(memSubjects == 1)

+ res <- wilcox.test(x = xc, y = xn, conf.level = 1 - alpha)

+ res2 <- c(res$p.value, res$statistic - m * (m + 1)/2)

+ names(res2) <- c("p.value", "statistic")

+ return(res2)

+ }

> tmp <- t(apply(mat, 1, myWilcox, memSubjects = memSubjects))

> colnames(tmp) <- c("p.value", "statistic")

> memIni <- rep(2, nrow(mat))

> memIni[tmp[, 1] < 0.05 & tmp[, 2] > 0] <- 1

> memIni[tmp[, 1] < 0.05 & tmp[, 2] < 0] <- 3

> print(table(memIni))

memIni
1 2 3
7 85 8

> obj.gsMMD <- gsMMD2.default(mat, memSubjects, memIni = memIni,

+ transformFlag = TRUE, transformMethod = "boxcox", scaleFlag = TRUE)

Programming is running. Please be patient...
Programming is running. Please be patient...

> para <- obj.gsMMD$para

> print(round(para, 3))

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

Actually, the two sample Wilcoxon rank-sum test is implemented in the GeneSelectMMD . The above
code is used as an illustration on how to use the functions gsMMD2 and gsMMD2.default.

Note that the speed of the four functions is slow for large data sets. So we recommend that the program
be in background mode if it is run in Unix or Linux environment.

4 Error rates estimated for real microarray data sets

For real microarray data sets, the classical gene selection methods, such as two-sample t-test, two-sample
Wilcoxon rank-sum test, could not provide the estimates of error rates such as false discovery rate (denoted
as FDR; it is the percentage of nondifferentially expressed genes among selected genes), false non-discovery
rate (denoted as FNDR; it is the percentage of differentially expressed genes among unselected genes),
false positive rate (denoted as FPR; it is the percentage of selected genes among nondifferentially expressed
genes), and false negative rate (denoted as FNR; it is the percentage of un-selected genes among differentially
expressed genes), since the true gene cluster membership is unknown.

8

However, model-based gene selection methods (e.g., eLNN and eGG proposed by Lo and Gottardo (2007),
and the method proposed by Qiu et al.’s (2008)) could easily estimate these error rates, since these error
rates are functions of some probabilities which are in turn the functions of model parameters.

The function errRates is used to estimate FDR, FNDR, FPR, and FNR based on the objects returned
by the four gene selection functions mentioned in the previous section. This function returns a 4× 1 vector
with elements FDR, FNDR, FPR, and FNR.

For example,

> library(GeneSelectMMD)

> library(ALL)

> data(ALL)

> eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

> mem.str <- as.character(eSet1$BT)

> nSubjects <- length(mem.str)

> memSubjects <- rep(0, nSubjects)

> memSubjects[mem.str == "T2"] <- 1

> obj.gsMMD <- gsMMD(eSet1, memSubjects, transformFlag = TRUE,

+ transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)

Programming is running. Please be patient...
Data transformation (boxcox) performed
Gene profiles are scaled so that they have mean zero and variance one!
Programming is running. Please be patient...
******** initial parameter estimates method>> Ttest *******
paraIniMat[,i]>>

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.050 0.870 0.080 0.556 0.604 0.003 -0.363 0.947
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
0.001 0.000 1.000 0.000 -0.659 0.513 0.097 0.430

sigma2.n3 rho.n3
0.812 0.028

llkhVec>>
Ttest

-5284.364

Initial parameter estimates>>
Ttest

pi.1 0.050
pi.2 0.870
pi.3 0.080
mu.c1 0.556
sigma2.c1 0.604
rho.c1 0.003
mu.n1 -0.363
sigma2.n1 0.947
rho.n1 0.001
mu.2 0.000
sigma2.2 1.000
rho.2 0.000

9

mu.c3 -0.659
sigma2.c3 0.513
rho.c3 0.097
mu.n3 0.430
sigma2.n3 0.812
rho.n3 0.028

Initial loglikelihood>>
Ttest

-5308.485

Final parameter estimates based on initial estimates>>
Ttest

pi.1 0.049
pi.2 0.906
pi.3 0.044
mu.c1 0.557
sigma2.c1 0.563
rho.c1 -0.069
mu.n1 -0.363
sigma2.n1 0.908
rho.n1 -0.045
mu.2 0.000
sigma2.2 0.974
rho.2 -0.027
mu.c3 -0.808
sigma2.c3 0.292
rho.c3 0.061
mu.n3 0.527
sigma2.n3 0.715
rho.n3 -0.023

Final loglikelihood based on initial estimates>>
Ttest

-5284.364

Final parameter estimates>>
pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

Final loglikelihood>>
Ttest

-5284.364

> print(round(errRates(obj.gsMMD), 3))

FDR FNDR FPR FNR

10

0.011 0.005 0.001 0.048

5 Visualizing the fit of the model to a real microarray data set

In general, it is difficult to visualize the fit of the model to a real microarray data set since the data are
in high-dimensional space. However, it is possible to do so for the special case where the tissue samples
within a tissue type are marginally independent. In this case, we can pool all gene expression levels together
since they are all independent, and regard them as one-dimensional data. Next, we can impose the density
estimate onto the histogram of this pooled data.

The function plotHistDensity is used for such purpose. The following R code illustrates the usage of
plotHistDensity:

> library(GeneSelectMMD)

> library(ALL)

> data(ALL)

> eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]

> mem.str <- as.character(eSet1$BT)

> nSubjects <- length(mem.str)

> memSubjects <- rep(0, nSubjects)

> memSubjects[mem.str == "T2"] <- 1

> obj.gsMMD <- gsMMD(eSet1, memSubjects, transformFlag = TRUE,

+ transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)

Programming is running. Please be patient...
Data transformation (boxcox) performed
Gene profiles are scaled so that they have mean zero and variance one!
Programming is running. Please be patient...
******** initial parameter estimates method>> Ttest *******
paraIniMat[,i]>>

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.050 0.870 0.080 0.556 0.604 0.003 -0.363 0.947
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
0.001 0.000 1.000 0.000 -0.659 0.513 0.097 0.430

sigma2.n3 rho.n3
0.812 0.028

llkhVec>>
Ttest

-5284.364

Initial parameter estimates>>
Ttest

pi.1 0.050
pi.2 0.870
pi.3 0.080
mu.c1 0.556
sigma2.c1 0.604
rho.c1 0.003
mu.n1 -0.363
sigma2.n1 0.947

11

rho.n1 0.001
mu.2 0.000
sigma2.2 1.000
rho.2 0.000
mu.c3 -0.659
sigma2.c3 0.513
rho.c3 0.097
mu.n3 0.430
sigma2.n3 0.812
rho.n3 0.028

Initial loglikelihood>>
Ttest

-5308.485

Final parameter estimates based on initial estimates>>
Ttest

pi.1 0.049
pi.2 0.906
pi.3 0.044
mu.c1 0.557
sigma2.c1 0.563
rho.c1 -0.069
mu.n1 -0.363
sigma2.n1 0.908
rho.n1 -0.045
mu.2 0.000
sigma2.2 0.974
rho.2 -0.027
mu.c3 -0.808
sigma2.c3 0.292
rho.c3 0.061
mu.n3 0.527
sigma2.n3 0.715
rho.n3 -0.023

Final loglikelihood based on initial estimates>>
Ttest

-5284.364

Final parameter estimates>>
pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

Final loglikelihood>>
Ttest

-5284.364

12

> para <- obj.gsMMD$para

> print(round(para, 3))

pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.049 0.906 0.044 0.557 0.563 -0.069 -0.363 0.908
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.045 0.000 0.974 -0.027 -0.808 0.292 0.061 0.527

sigma2.n3 rho.n3
0.715 -0.023

> print(round(errRates(obj.gsMMD), 3))

FDR FNDR FPR FNR
0.011 0.005 0.001 0.048

> plotHistDensity(obj.gsMMD, plotFlag = "case", mytitle = "Histogram of gene expression levels for T2\nimposed with estimated density (case)",

+ plotComponent = TRUE, x.legend = c(0.8, 3), y.legend = c(0.3,

+ 0.4), numPoints = 500, cex.main = 1, cex = 1)

Histogram of gene expression levels for T2
imposed with estimated density (case)

expression level

de
ns

ity

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

overall
component1
component2
component3

13

6 Discussion

The speeds of the four gene selection functions described in Section 3 are slow. One way to improve the
speed is to embed Fortran or C code in the R code. We will take such an approach in the future version of
the GeneSelectMMD .

References

[1] Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M., Mandelli, F., Ritz, J., and Foa, R. Gene
expression profile of adult t-cell acute lymphocytic leukemia identifies distinct subsets of patients with
different response to therapy and survival. Blood, 103:2771–2778, 2004.

[2] Dempster, A., Laird, N., and Rubin, D. Likelihood from incomplete data via the em algorithm. Journal
of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

[3] Lo, K. and Gottardo, R. Flexible empirical bayes models for differential gene expression. Bioinformatics,
23:328–335, 2007.

[4] Qiu, W.-L., He, W., Wang, X.-G., and Lazarus, R. A marginal mixture model for selecting differentially
expressed genes across two types of tissue samples. The International Journal of Biostatistics, 4(1):Article
20, 2008.

14

	Introduction
	Methods
	Gene selection via GeneSelectMMD
	Error rates estimated for real microarray data sets
	Visualizing the fit of the model to a real microarray data set
	Discussion

