
The ChIPpeakAnno user’s guide

Lihua Julie Zhu∗

October 18, 2010

Contents

1 Introduction 1

2 Examples of using ChIPpeakAnno 2
2.1 Task 1: Find the nearest feature such as gene and the distance to the feature

such as the transcription start site (TSS) of the nearest gene 2
2.2 Task 2: Obtain overlapping peaks for potential transcription factor complex

and determine the significance of the overlapping and generate Venn Diagram 4
2.3 Task 3: Obtain sequences surrounding the peaks for PCR validation or motif

discovery . 7
2.4 Task 3: Obtain enriched gene ontology (GO) terms near the peaks 7

3 References 10

4 Session Info 10

1 Introduction

Chromatin immunoprecipitation (ChIP) followed by high-throughput tag sequencing (ChIP-
seq) and ChIP followed by genome tiling array analysis (ChIP-chip) become more and more
prevalent high throughput technologies for identifying the binding sites of DNA-binding pro-
teins in a genome-wide bases. A number of algorithms have been published to facilitate the
identification of the binding sites of the DNA-binding proteins of interest. The identified
binding sites in the list of peaks are usually converted to BED or WIG file format to be
loaded to UCSC genome browser as custom tracks for investigators to view the proximity
to various genomic features such as genes, exons and conserved elements. However, clicking
through the genome browser could be a daunting task for the biologist if the number of
peaks gets large or the peaks spread widely across the genome. Here we have developed a

∗julie.zhu@umassmed.edu

1

Bioconducor package called ChIPpeakAnno to facilitate the batch annotation of the peaks
identified from either ChIP-seq or ChIP-chip experiments. We have implemented functional-
ity to find the nearest gene, exon, miRNA or custom features supplied by users such as most
conserved elements and other transcription factor binding sites leveraging IRanges. Since
the genome annotation gets updated from time to time, we have leveraged the biomaRt
package from Bioconductor to retrieve the annotation data on the fly if the annotation of
interest is available via the biomaRt package. The users also have the flexibility to pass their
own annotation data as RangedData or pass in annotation data from GenomicFeatures . We
have also leveraged BSgenome and biomaRt package on implementing functions to retrieve
the sequences around the peak identified for peak validation. To understand whether the
identified peaks are enriched around genes with certain GO terms, we have implemented
GO enrichment test in ChIPpeakAnno package leveraging the hypergeometric test phyper

in stats package and integrated with Gene Ontology (GO) annotation from GO.db package
and multiplicity adjustment functions from multtest package.

2 Examples of using ChIPpeakAnno

2.1 Task 1: Find the nearest feature such as gene and the distance
to the feature such as the transcription start site (TSS) of the
nearest gene

We have a list of peaks identified from ChIP-seq or ChIP-chip experiments and we would like
to retrieve the nearest gene and distance to the corresponding gene transcription start site.
We have retrieved all the genomic locations of the genes for human genome as TSS.human.NCBI36
data package for repeated use with function getAnnotation, now we just pass the annotation
to the annotatePeakInBatch function.

> library(ChIPpeakAnno)

> data(myPeakList)

> data(TSS.human.NCBI36)

> annotatedPeak = annotatePeakInBatch(myPeakList[1:6,], AnnotationData = TSS.human.NCBI36)

> as.data.frame(annotatedPeak)

space start end width names peak strand

1 1 703885 703985 101 1_12_703729 ENSG00000197049 1_12_703729 +

2 1 559774 559874 101 1_41_559455 ENSG00000212678 1_41_559455 +

3 1 556660 556760 101 1_93_556427 ENSG00000212875 1_93_556427 +

4 1 1041646 1041746 101 1_11_1041174 ENSG00000131591 1_11_1041174 -

5 1 1270239 1270339 101 1_14_1269014 ENSG00000107404 1_14_1269014 -

6 1 926058 926158 101 1_20_925025 ENSG00000188290 1_20_925025 -

feature start_position end_position insideFeature distancetoFeature

1 ENSG00000197049 711183 712376 upstream -7298

2 ENSG00000212678 559619 560165 inside 155

3 ENSG00000212875 556317 557859 inside 343

4 ENSG00000131591 1007061 1041341 upstream -305

5 ENSG00000107404 1260522 1274623 inside 4384

6 ENSG00000188290 924208 925333 upstream -725

shortestDistance fromOverlappingOrNearest

1 7198 NearestStart

2 155 NearestStart

2

3 343 NearestStart

4 305 NearestStart

5 4284 NearestStart

6 725 NearestStart

To annotate the peaks with other genomic feature, you will need to call function getAn-

notation with featureType, e.g., “Exon” for finding the nearest exon, and “miRNA” for
finding the nearest miRNA, “5utr” or ‘3utr”for finding the overlapping 5 prime UTR or 3
prime UTR. Please refer to getAnnotation function for more details.

We have presented the examples using human genome as annotation source. To anno-
tate your data with other species, you will need to pass to the function getAnnotation

the appropriate dataset for example, drerio gene ensembl for zebrafish genome, mmuscu-
lus gene ensembl for mouse genome and rnorvegicus gene ensembl for rat genome. For a list
of available biomart and dataset, please refer to the biomaRt package documentation (Dur-
inck S. et al., 2005). For fast access, in addition to TSS.human.NCBI36, TSS.mouse.NCBIM37,
TSS.rat.RGSC3.4 and TSS.zebrafish.Zv8 are included as annotation data packages.

You could also pass your own annotation data into the function annotatePeakInBatch.
For example, if you have a list of transcription factor biding sites from literature and are
interested in obtaining the nearest binding site of the transcription factor and distance to it
for the list of peaks.

> myPeak1 = RangedData(IRanges(start = c(967654, 2010897, 2496704,

+ 3075869, 3123260, 3857501, 201089, 1543200, 1557200, 1563000,

+ 1569800, 167889600), end = c(967754, 2010997, 2496804, 3075969,

+ 3123360, 3857601, 201089, 1555199, 1560599, 1565199, 1573799,

+ 167893599), names = c("Site1", "Site2", "Site3", "Site4",

+ "Site5", "Site6", "Site7", "Site8", "Site9", "Site10", "Site11",

+ "Site12")), space = c("1", "2", "3", "4", "5", "6", "2",

+ "6", "6", "6", "6", "5"))

> TFbindingSites = RangedData(IRanges(start = c(967659, 2010898,

+ 2496700, 3075866, 3123260, 3857500, 96765, 201089, 249670,

+ 307586, 312326, 385750, 1549800, 1554400, 1565000, 1569400,

+ 167888600), end = c(967869, 2011108, 2496920, 3076166, 3123470,

+ 3857780, 96985, 201299, 249890, 307796, 312586, 385960, 1550599,

+ 1560799, 1565399, 1571199, 167888999), names = c("t1", "t2",

+ "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10", "t11", "t12",

+ "t13", "t14", "t15", "t16", "t17")), space = c("1", "2",

+ "3", "4", "5", "6", "1", "2", "3", "4", "5", "6", "6", "6",

+ "6", "6", "5"), strand = c(1, 1, 1, 1, 1, 1, -1, -1, -1,

+ -1, -1, -1, 1, 1, 1, 1, 1))

> annotatedPeak2 = annotatePeakInBatch(myPeak1, AnnotationData = TFbindingSites)

> pie(table(as.data.frame(annotatedPeak2)$insideFeature))

> as.data.frame(annotatedPeak2)

space start end width names peak strand feature

1 1 967654 967754 101 Site1 t1 Site1 + t1

2 2 2010897 2010997 101 Site2 t2 Site2 + t2

3 2 201089 201089 1 Site7 t8 Site7 - t8

4 3 2496704 2496804 101 Site3 t3 Site3 + t3

5 4 3075869 3075969 101 Site4 t4 Site4 + t4

6 5 167889600 167893599 4000 Site12 t17 Site12 + t17

7 5 3123260 3123360 101 Site5 t5 Site5 + t5

8 6 1563000 1565199 2200 Site10 t15 Site10 + t15

9 6 1569800 1573799 4000 Site11 t16 Site11 + t16

10 6 3857501 3857601 101 Site6 t6 Site6 + t6

11 6 1543200 1555199 12000 Site8 t13 Site8 + t13

3

12 6 1557200 1560599 3400 Site9 t14 Site9 + t14

start_position end_position insideFeature distancetoFeature

1 967659 967869 overlapStart -5

2 2010898 2011108 overlapStart -1

3 201089 201299 inside 210

4 2496700 2496920 inside 4

5 3075866 3076166 inside 3

6 167888600 167888999 downstream 1000

7 3123260 3123470 inside 0

8 1565000 1565399 overlapStart -2000

9 1569400 1571199 overlapEnd 400

10 3857500 3857780 inside 1

11 1549800 1550599 includeFeature -6600

12 1554400 1560799 inside 2800

shortestDistance fromOverlappingOrNearest

1 5 NearestStart

2 1 NearestStart

3 0 NearestStart

4 4 NearestStart

5 3 NearestStart

6 601 NearestStart

7 0 NearestStart

8 199 NearestStart

9 400 NearestStart

10 1 NearestStart

11 4600 NearestStart

12 200 NearestStart

Both BED format and GFF format are common file format that provides a flexible way to
define the peaks and annotations as the data lines. Therefore, conversion functions Rfunc-
tionBED2RangedData and RfunctionGFF2RangedData were implemented for converting
these data format to RangedData before calling annotatePeakInBatch

Once you annotated the peak list, you can plot the distance to nearest feature such as
TSS.

2.2 Task 2: Obtain overlapping peaks for potential transcription
factor complex and determine the significance of the overlap-
ping and generate Venn Diagram

Here is an example of obtaining overlapping peaks with maximum gap 1kb for two peak
ranges.

> peaks1 = RangedData(IRanges(start = c(967654, 2010897, 2496704,

+ 3075869, 3123260, 3857501, 201089, 1543200, 1557200, 1563000,

+ 1569800, 167889600), end = c(967754, 2010997, 2496804, 3075969,

+ 3123360, 3857601, 201089, 1555199, 1560599, 1565199, 1573799,

+ 167893599), names = c("Site1", "Site2", "Site3", "Site4",

+ "Site5", "Site6", "Site7", "Site8", "Site9", "Site10", "Site11",

+ "Site12")), space = c("1", "2", "3", "4", "5", "6", "2",

+ "6", "6", "6", "6", "5"), strand = as.integer(1))

> peaks2 = RangedData(IRanges(start = c(967659, 2010898, 2496700,

+ 3075866, 3123260, 3857500, 96765, 201089, 249670, 307586,

+ 312326, 385750, 1549800, 1554400, 1565000, 1569400, 167888600),

+ end = c(967869, 2011108, 2496920, 3076166, 3123470, 3857780,

+ 96985, 201299, 249890, 307796, 312586, 385960, 1550599,

+ 1560799, 1565399, 1571199, 167888999), names = c("t1",

+ "t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10",

4

+ "t11", "t12", "t13", "t14", "t15", "t16", "t17")), space = c("1",

+ "2", "3", "4", "5", "6", "1", "2", "3", "4", "5", "6", "6",

+ "6", "6", "6", "5"), strand = c(1, 1, 1, 1, 1, 1, -1, -1,

+ -1, -1, -1, -1, 1, 1, 1, 1, 1))

> t1 = findOverlappingPeaks(peaks1, peaks2, maxgap = 1000, multiple = F,

+ NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2")

Here is a list of overlapping peaks with maximum gap 1kb and a pie graph describing the
distribution of relative position of peaks1 to peaks2 for overlapping peaks.

> overlappingPeaks = t1$OverlappingPeaks

> overlappingPeaks

TF1 chr TF2 TF2_start TF2_end strand TF1_start TF1_end strand1

1 Site1 1 t1 967659 967869 + 967654 967754 +

5 Site2 2 t2 2010898 2011108 + 2010897 2010997 +

10 Site7 2 t8 201089 201299 - 201089 201089 +

6 Site3 3 t3 2496700 2496920 + 2496704 2496804 +

7 Site4 4 t4 3075866 3076166 + 3075869 3075969 +

4 Site12 5 t17 167888600 167888999 + 167889600 167893599 +

8 Site5 5 t5 3123260 3123470 + 3123260 3123360 +

2 Site10 6 t15 1565000 1565399 + 1563000 1565199 +

3 Site11 6 t16 1569400 1571199 + 1569800 1573799 +

9 Site6 6 t6 3857500 3857780 + 3857501 3857601 +

11 Site8 6 t13 1549800 1550599 + 1543200 1555199 +

12 Site9 6 t14 1554400 1560799 + 1557200 1560599 +

overlapFeature shortestDistance

1 overlapStart 5

5 overlapStart 1

10 inside 0

6 inside 4

7 inside 3

4 downstream 601

8 inside 0

2 overlapStart 199

3 overlapEnd 400

9 inside 1

11 includeFeature 4600

12 inside 200

> pie(table(overlappingPeaks$overlapFeature))

Here is the merged overlapping peaks, which can be used to obtain overlapping peaks with
another TF binding sites from a protein complex.

> as.data.frame(t1$MergedPeaks)

space start end width names

1 1 967654 967869 216 TF1-Site1-TF2-t1

2 2 2010897 2011108 212 TF1-Site2-TF2-t2

3 2 201089 201299 211 TF1-Site7-TF2-t8

4 3 2496700 2496920 221 TF1-Site3-TF2-t3

5 4 3075866 3076166 301 TF1-Site4-TF2-t4

6 5 167888600 167893599 5000 TF1-Site12-TF2-t17

7 5 3123260 3123470 211 TF1-Site5-TF2-t5

8 6 1563000 1565399 2400 TF1-Site10-TF2-t15

9 6 1569400 1573799 4400 TF1-Site11-TF2-t16

10 6 3857500 3857780 281 TF1-Site6-TF2-t6

11 6 1543200 1555199 12000 TF1-Site8-TF2-t13

12 6 1554400 1560799 6400 TF1-Site9-TF2-t14

Here is the peaks in peaks1 that overlaps with peaks in peaks2

5

> as.data.frame(t1$Peaks1withOverlaps)

space start end width names strand

1 1 967654 967754 101 Site1 +

2 2 2010897 2010997 101 Site2 +

3 2 201089 201089 1 Site7 +

4 3 2496704 2496804 101 Site3 +

5 4 3075869 3075969 101 Site4 +

6 5 167889600 167893599 4000 Site12 +

7 5 3123260 3123360 101 Site5 +

8 6 1563000 1565199 2200 Site10 +

9 6 1569800 1573799 4000 Site11 +

10 6 3857501 3857601 101 Site6 +

11 6 1543200 1555199 12000 Site8 +

12 6 1557200 1560599 3400 Site9 +

Here is the peaks in peaks2 that overlap with peaks in peaks1

> as.data.frame(t1$Peaks2withOverlaps)

space start end width names strand

1 1 967659 967869 211 t1 +

2 2 2010898 2011108 211 t2 +

3 2 201089 201299 211 t8 -

4 3 2496700 2496920 221 t3 +

5 4 3075866 3076166 301 t4 +

6 5 167888600 167888999 400 t17 +

7 5 3123260 3123470 211 t5 +

8 6 1565000 1565399 400 t15 +

9 6 1569400 1571199 1800 t16 +

10 6 3857500 3857780 281 t6 +

11 6 1549800 1550599 800 t13 +

12 6 1554400 1560799 6400 t14 +

The findOVerlappingPeaks function can be repeatedly called to obtain for example, the
peaks in peaks1 that overlap with peaks in both peaks2 and peaks3.

> peaks3 = RangedData(IRanges(start = c(967859, 2010868, 2496500,

+ 3075966, 3123460, 3851500, 96865, 201189, 249600, 307386),

+ end = c(967969, 2011908, 2496720, 3076166, 3123470, 3857680,

+ 96985, 201299, 249890, 307796), names = c("p1", "p2",

+ "p3", "p4", "p5", "p6", "p7", "p8", "p9", "p10")), space = c("1",

+ "2", "3", "4", "5", "6", "1", "2", "3", "4"), strand = c(1,

+ 1, 1, 1, 1, 1, -1, -1, -1, -1))

> findOverlappingPeaks(findOverlappingPeaks(peaks1, peaks2, maxgap = 1000,

+ multiple = F, NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2")$Peaks1withOverlap,

+ peaks3, maxgap = 1000, multiple = F, NameOfPeaks1 = "TF1TF2",

+ NameOfPeaks2 = "TF3")$Peaks1withOverlap

RangedData with 7 rows and 1 value column across 6 spaces

space ranges | strand

<character> <IRanges> | <character>

Site1 1 [967654, 967754] | +

Site2 2 [2010897, 2010997] | +

Site7 2 [201089, 201089] | +

Site3 3 [2496704, 2496804] | +

Site4 4 [3075869, 3075969] | +

Site5 5 [3123260, 3123360] | +

Site6 6 [3857501, 3857601] | +

Venn Diagram can be generated by the following function call with p-value that indicates
whether the extent of overlapping is significant.

6

> makeVennDiagram(RangedDataList(peaks1, peaks2), NameOfPeaks = c("TF1",

+ "TF2"), maxgap = 0, totalTest = 100, cex = 1, counts.col = "red")

$p.value

[1] 9.837922e-10

$vennCounts

TF1 TF2 Counts

[1,] 0 0 82

[2,] 0 1 6

[3,] 1 0 1

[4,] 1 1 11

attr(,"class")

[1] "VennCounts"

2.3 Task 3: Obtain sequences surrounding the peaks for PCR
validation or motif discovery

Here is an example of obtaining sequences surrounding the peak intervals including 20 bp
upstream and downstream sequence.

> peaks = RangedData(IRanges(start = c(100, 500), end = c(300,

+ 600), names = c("peak1", "peak2")), space = c("NC_008253",

+ "NC_010468"))

> library(BSgenome.Ecoli.NCBI.20080805)

> peaksWithSequences = getAllPeakSequence(peaks, upstream = 20,

+ downstream = 20, genome = Ecoli)

You can easily convert the obtained sequences into fasta format for motif discovery by
calling the function write2FASTA.

> write2FASTA(peaksWithSequences)

>peak1

GGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACAGA

CAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGG

TAACGGTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAGCCCGCACCTGACAGTGCGGGCTTTTTTTTCGACCAAAGG

T

>peak2

AAATCTAACCAACTGGCGCGCGCGGCGGCTCGCCAGGTGGCGGATAACCCTGGCGGTGCCTATAACCCGTTGTTCCTTTA

TGGCGGCACGGGTCTGGGTAAAACTCACCTGCTGCATGCGGTGGGTAACGGCATTATGGCG

2.4 Task 3: Obtain enriched gene ontology (GO) terms near the
peaks

Once you have obtained the annotated peak data from the example above, you can also use
the function getEnrichedGO to obtain a list of enriched gene ontology (GO) terms using
hypergeometric test.

library(org.Hs.eg.db)
enrichedGO = getEnrichedGO (annotatedPeak, orgAnn = “org.Hs.eg.db”, maxP =

0.01, multiAdj = TRUE, minGOterm = 10, multiAdjMethod = “BH”)
Please note that org.Hs.eg.db is the GO gene mapping for Human, for other organisms,

please refer to http://www.bioconductor.org/packages/release/data/annotation/ for addi-
tional org.xx.eg.db packages.

7

> data(enrichedGO)

Here is a list of enriched GO biological process for myPeakList dataset.

> enrichedGO$bp[1:6,]

go.id

1 GO:0000187

2 GO:0002573

3 GO:0002702

4 GO:0002761

5 GO:0002763

6 GO:0006213

go.term

1 activation of MAPK activity

2 myeloid leukocyte differentiation

3 positive regulation of production of molecular mediator of immune response

4 regulation of myeloid leukocyte differentiation

5 positive regulation of myeloid leukocyte differentiation

6 pyrimidine nucleoside metabolic process

Definition

1 The initiation of the activity of the inactive enzyme MAP kinase by phosphorylation by a MAPKK.

2 The process whereby a relatively unspecialized myeloid precursor cell acquires the specialized features of any cell of the myeloid leukocyte lineage.

3 Any process that activates or increases the frequency, rate, or extent of the production of molecular mediator of immune response.

4 Any process that modulates the frequency, rate, or extent of myeloid leukocyte differentiation.

5 Any process that activates or increases the frequency, rate, or extent of myeloid leukocyte differentiation.

6 The chemical reactions and pathways involving any pyrimidine nucleoside, one of a family of organic molecules consisting of a pyrimidine base covalently bonded to a sugar ribose (a ribonucleoside) or deoxyribose (a deoxyribonucleoside).

Ontology count.InDataset count.InGenome pvalue totaltermInDataset

1 BP 17 65 0.001673400 85892

2 BP 19 81 0.004192510 85892

3 BP 4 10 0.005921074 85892

4 BP 13 50 0.004712934 85892

5 BP 8 22 0.001277580 85892

6 BP 4 10 0.005921074 85892

totaltermInGenome

1 644151

2 644151

3 644151

4 644151

5 644151

6 644151

Here is a list of enriched GO molecular functions for myPeakList dataset.

8

> enrichedGO$mf[1:6,]

go.id go.term

1 GO:0003702 RNA polymerase II transcription factor activity

2 GO:0003705 RNA polymerase II transcription factor activity, enhancer binding

3 GO:0004112 cyclic-nucleotide phosphodiesterase activity

4 GO:0004114 3',5'-cyclic-nucleotide phosphodiesterase activity

5 GO:0004659 prenyltransferase activity

6 GO:0004896 cytokine receptor activity

Definition

1 Functions to initiate or regulate RNA polymerase II transcription.

2 Functions to initiate or regulate RNA polymerase II transcription by binding an enhancer region of DNA.

3 Catalysis of the reaction: a nucleoside cyclic phosphate + H2O = a nucleoside phosphate.

4 Catalysis of the reaction: nucleoside 3',5'-cyclic phosphate + H2O = nucleoside 5'-phosphate.
5 Catalysis of the transfer of a prenyl group from one compound (donor) to another (acceptor).

6 Combining with a cytokine to initiate a change in cell activity.

Ontology count.InDataset count.InGenome pvalue totaltermInDataset

1 MF 39 214 0.0065818928 29657

2 MF 11 29 0.0001003699 29657

3 MF 9 26 0.0007622170 29657

4 MF 9 25 0.0005282939 29657

5 MF 9 23 0.0002346785 29657

6 MF 16 66 0.0027160003 29657

totaltermInGenome

1 235991

2 235991

3 235991

4 235991

5 235991

6 235991

Heres is a list of enriched GO cellular components for myPeakList dataset.

> enrichedGO$cc

go.id go.term

1 GO:0005811 lipid particle

2 GO:0005942 phosphoinositide 3-kinase complex

3 GO:0016363 nuclear matrix

4 GO:0034399 nuclear periphery

Definition

1 Any particle of coalesced lipids in the cytoplasm of a cell. May include associated proteins.

2 A complex containing a heterodimer of a catalytic subunit and a regulatory (adaptor) subunit of any phosphoinositide 3-kinase (PI3K).

9

3 The dense fibrillar network lying on the inner side of the nuclear membrane.

4 The portion of the nuclear lumen proximal to the inner nuclear membrane.

Ontology count.InDataset count.InGenome pvalue totaltermInDataset

1 CC 5 15 0.006685158 45317

2 CC 4 11 0.007074546 45317

3 CC 12 49 0.005607016 45317

4 CC 12 52 0.009516449 45317

totaltermInGenome

1 365523

2 365523

3 365523

4 365523

3 References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.
2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple
hypothesis testing under dependency. Annals of Statistics. Accepted.
3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological
biomarts and microarray data analysis. Bioinformatics, 21, 3439-3440.
4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in
microarray experiments.
5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray
data hypothesis, Technical Report #633 of UCB Stat. http://www.stat.berkeley.edu/ gyc
6. R. Gentleman et al. (2004) Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol., 5:R80
7. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance,
Biometrika. Vol. 75: 800-802.
8. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J.
Statist.. Vol. 6: 65-70.
9. N. L. Johnson,S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second
Edition. New York: Wiley
10. G. Robertson et al. (2007) Genome-wide profiles of STAT1 DNA association using
chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 4:651-7.
11. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq
and ChIP-chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237.

4 Session Info

> sessionInfo()

10

R version 2.12.0 (2010-10-15)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] ChIPpeakAnno_1.6.0 limma_3.6.0

[3] org.Hs.eg.db_2.4.6 GO.db_2.4.5

[5] RSQLite_0.9-2 DBI_0.2-5

[7] AnnotationDbi_1.12.0 BSgenome.Ecoli.NCBI.20080805_1.3.16

[9] BSgenome_1.18.0 GenomicRanges_1.2.0

[11] Biostrings_2.18.0 IRanges_1.8.0

[13] multtest_2.6.0 Biobase_2.10.0

[15] biomaRt_2.6.0

loaded via a namespace (and not attached):

[1] MASS_7.3-8 RCurl_1.4-3 XML_3.2-0 splines_2.12.0

[5] survival_2.35-8 tools_2.12.0

11

	Introduction
	Examples of using ChIPpeakAnno
	Task 1: Find the nearest feature such as gene and the distance to the feature such as the transcription start site (TSS) of the nearest gene
	Task 2: Obtain overlapping peaks for potential transcription factor complex and determine the significance of the overlapping and generate Venn Diagram
	Task 3: Obtain sequences surrounding the peaks for PCR validation or motif discovery
	Task 3: Obtain enriched gene ontology (GO) terms near the peaks

	References
	Session Info

