
netresponse
April 20, 2011

detect.responses detect.responses

Description

Main function of the NetResponse algorithm. Detecting network responses across the conditions.

Usage

detect.responses(datamatrix, network, initial.responses = 1,
max.responses = 10, max.subnet.size = 20, rseed = 123, verbose =
TRUE, prior.alpha = 1, prior.alphaKsi = 0.01, prior.betaKsi =
0.01, update.hyperparams = 0, implicit.noise = 0, threshold =
1.0e-5, ite = Inf)

Arguments

datamatrix Matrix of samples x features. For example, gene expression matrix with condi-
tions on the rows, and genes on the columns. The matrix contains same features
than the ’network’ object, characterizing the network states across the different
samples.

network Binary matrix that describes pairwise interactions between the features of ’data-
matrix’. This defines a network.

initial.responses
Initial number of components for each subnetwork model. Used to initialize
calculations.

max.responses
Maximum number of responses for each subnetwork. Can be used to limit the
potential number of network states.

max.subnet.size
Numeric. Maximum allowed subnetwork size.

rseed Numeric. Random seed.

verbose Logical. Verbose parameter.
implicit.noise

Implicit noise parameter. Add implicit noise to vdp mixture model. Can help to
avoid overfitting to local optima, if this appears to be a problem.

1

2 get.model.parameters

update.hyperparams
Logical. Indicate whether to update hyperparameters during modeling.

prior.alpha, prior.alphaKsi, prior.betaKsi
Prior parameters for Gaussian mixture model that is calculated for each sub-
network (normal-inverse-Gamma prior). alpha tunes the mean; alphaKsi and
betaKsi are the shape and scale parameters of the inverse Gamma function, re-
spectively.

threshold Minimal free energy improvement after which the algorithm is deemed con-
verged. Used to define convergence limit.

ite Defines maximum number of iterations on posterior update (updatePosterior).
Increasing this can potentially lead to more accurate results, but computation
may take longer.

Value

NetResponseModel object.

Author(s)

Leo Lahti, Olli-Pekka Huovilainen and Antonio Gusmao. Maintainer: Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

Examples

library(netresponse)
data(toydata) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
netw <- toydata$netw # Network

Run NetReponse algorithm
model <- detect.responses(D, netw, verbose = FALSE)

get.model.parameters
get.model.parameters

Description

Retrieve the mixture model parameters of the NetResponse algorithm for a given subnetwork.

Usage

get.model.parameters(model, subnet.id, level = NULL)

get.model.parameters 3

Arguments

model Result from NetResponse (detect.responses function).

subnet.id Subnet identifier. A natural number which specifies one of the subnetworks
within the ’model’ object.

level Agglomeration level to investigate. The agglomerative algorithm grows the sub-
networks step-by-step. This option can be used to select a specific step during
the learning process. Will be included in the next version.

Details

Only the non-empty components are returned. Note: the original data matrix needs to be provided
for function call separately.

Value

A list with the following elements:

mu Centroids for the mixture components. Components x nodes.

sd Standard deviations for the mixture components. A vector over the nodes for
each component, implying the diagonal covariance matrix of the model (i.e.
diag(std^2)). Components x nodes

w Vector of component weights.

nodes List of nodes in the subnetwork.

K Number of mixture components.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

Examples

Load toy data
data(toydata) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
model <- toydata$model # Pre-calculated model

Get model parameters for a given subnet
(Gaussian mixture: mean, covariance diagonal, mixture proportions)
get.model.parameters(model, subnet.id = 1)

4 get.subnets

get.subnets get.subnets

Description

List the detected subnetworks (each is a list of nodes in that subnetwork).

Usage

subnets <- get.subnets(model, level = NULL, get.names = TRUE, stat = NULL, min.size = NULL, max.size = NULL, min.responses = NULL)

Arguments

model Output from the detect.responses function. An object of NetResponseModel
class.

level Agglomeration level to investigate. The agglomerative algorithm grows the sub-
networks step-by-step. This option can be used to select a particular step during
the learning process. Will be included in the next version.

get.names Logical. Indicate whether to return subnetwork nodes using node names (TRUE)
or node indices (FALSE).

stat Subnetwork summary statistics. If this is not readily provided through this op-
tion (i.e. stat = NULL), it will be calculated. Can speed up the get.subnets
function.

min.size, max.size
Numeric. Filter out subnetworks whose size is not within the limits specified
here.

min.responses
Numeric. Filter out subnetworks with less responses (mixture components) than
specified here.

Value

A list of subnetworks.

Author(s)

Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

Examples

library(netresponse)

Load a pre-calculated netresponse model obtained with
model <- detect.responses(toydata$emat, toydata$netw, verbose = FALSE)
data(toydata)

NetResponseModel-class 5

model <- toydata$model

#List the detected subnetworks
#(each is a list of nodes for the given subnetwork):
get.subnets(model)

NetResponseModel-class
Class "NetResponseModel"

Description

A NetResponse model.

Objects from the Class

Returned by detect.responses function.

Slots

moves Subnetwork merging history.

costs Cost function values at the different steps.

rseed Random seed.

last.grouping Subnetworks in the last agglomeration level.

params Parameters.

nodes Node ids from the original modelled data matrix.

samples Sample ids from the original modelled data matrix.

datamatrix Original input datamatrix that was used to learn the model.

network Original input network that was used to learn the model.

Methods

[[signature(x = "NetResponseModel"): ...

show signature(x = "NetResponseModel"): ...

Author(s)

Leo Lahti <leo.lahti@iki.fi>

Examples

showClass("NetResponseModel")

6 netresponse-package

netresponse-package
NetResponse: Global modeling of transcriptional responses in inter-
action networks

Description

Global modeling of transcriptional responses in interaction networks.

Details

Package: netresponse
Type: Package
Version: 0.99.0
Date: 2010-09-23
License: GNU GPL >=2
LazyLoad: yes

Author(s)

Leo Lahti, Olli-Pekka Huovilainen and Antonio Gusmao. Maintainer: Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

Examples

Load the package
library(netresponse)

Define parameters for toy data
Ns <- 200 # number of samples (conditions)
Nf <- 10 # number of features (nodes)
feature.names <- paste("feat", seq(Nf), sep="")
sample.names <- paste("sample", seq(Ns), sep="")

random seed
set.seed(123)

Random network
netw <- pmax(array(sign(rnorm(Nf^2)), dim = c(Nf, Nf)), 0)
in pathway analysis nodes correspond to genes
rownames(netw) <- colnames(netw) <- feature.names

Random responses of the nodes across conditions
D <- array(rnorm(Ns*Nf), dim = c(Ns,Nf), dimnames = list(sample.names, feature.names))
D[1:100, 4:6] <- t(sapply(1:(Ns/2),function(x){rnorm(3, mean = 1:3)}))

response2sample 7

D[101:Ns, 4:6] <- t(sapply(1:(Ns/2),function(x){rnorm(3, mean = 7:9)}))

Compute the model
model <- detect.responses(D, netw)

Subnets (each is a list of nodes)
get.subnets(model)

Retrieve model for the subnetwork with lowest cost function value
means, standard devations and weights for the components
inds <- which(sapply(model@last.grouping, length) > 2)
subnet.id <- names(which.min(model@costs[inds]))
m <- get.model.parameters(model, subnet.id)
print(m)

response2sample response2sample

Description

List the most strongly associated response of a given subnetwork for each sample.

Usage

response2sample(model, subnet.id, component.list = TRUE)

Arguments

model A NetResponseModel object. Result from NetResponse (detect.responses func-
tion).

subnet.id Subnet id. A natural number which specifies one of the subnetworks within the
’model’ object.

component.list
List samples separately for each mixture component (TRUE). Else list the most
strongly associated component for each sample (FALSE).

Value

A list. Each element corresponds to one subnetwork response, and contains a list of samples that are
associated with the response (samples for which this response has the highest probability P(response
| sample)).

Author(s)

Leo Lahti, Olli-Pekka Huovilainen and Antonio Gusmao. Maintainer: Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

8 result.stats

Examples

library(netresponse)

Load example data
data(toydata) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
model <- toydata$model # Pre-calculated model

Find the samples for each response (for a given subnetwork)
response2sample(model, subnet.id = 1)

result.stats result.stats

Description

Subnetwork statistics: size and number of distinct responses for each subnet.

Usage

result.stats(model, level)

Arguments

model Result from NetResponse (detect.responses function).

level Agglomeration level to investigate. The agglomerative algorithm grows the sub-
networks step-by-step. This option can be used to select a specific step during
the learning process. Will be included in the next version.

Value

A ’subnetworks x properties’ data frame containing the following elements.

subnet.size:
Vector of subnetwork sizes.

subnet.responses:
Vector giving the number of responses in each subnetwork.

Author(s)

Leo Lahti, Olli-Pekka Huovilainen and Antonio Gusmao. Maintainer: Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

sample2response 9

Examples

library(netresponse)

Load a pre-calculated netresponse model obtained with
model <- detect.responses(toydata$emat, toydata$netw, verbose = FALSE)
data(toydata)
model <- toydata$model # netresponse model
D <- toydata$emat # data matrix

Calculate summary statistics for the model
stat <- result.stats(model)

sample2response sample2response

Description

Probabilistic sample-response assignments for given subnet.

Usage

sample2response(model, subnet.id)

Arguments

model Result from NetResponse (detect.responses function).

subnet.id Subnet identifier. A natural number which specifies one of the subnetworks
within the ’model’ object.

Value

A matrix of probabilities. Sample-response assignments for given subnet, listing the probability of
each response, given a sample.

Author(s)

Leo Lahti, Olli-Pekka Huovilainen and Antonio Gusmao. Maintainer: Leo Lahti <leo.lahti@iki.fi>

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

10 toydata

Examples

Load toy data
data(toydata) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
netw <- toydata$netw # Network

Detect network responses
model <- detect.responses(D, netw, verbose = FALSE)

Assign samples to responses (soft, probabilistic assignments sum to 1)
response.probabilities <- sample2response(model, subnet.id = 1)

toydata toydata

Description

Toy data for NetResponse examples.

Usage

data(toydata)

Format

Toy data: a list with three elements:

emat: Data matrix (samples x features). This contains the same features that are provided in the
network (toydata$netw). The matrix characterizes measurements of network states across different
conditions.

netw: Binary matrix that describes pairwise interactions between features. This defines an undi-
rected network over the features. A link between two nodes is denoted by 1.

model: A pre-calculated model. Object of NetResponseModel class, resulting from applying the
netresponse algorithm on the toydata with model <- detect.responses(D, netw).

References

Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinfor-
matics (2010).

Examples

data(toydata)
D <- toydata$emat # Response matrix (samples x features)
netw <- toydata$netw # Network between the features
model <- toydata$model # Pre-calculated NetResponseModel obtained with

model <- detect.responses(D, netw)

vdp.mixt 11

vdp.mixt vdp.mixt

Description

Accelerated variational Dirichlet process Gaussian mixture.

Usage

vdp.mixt(dat, prior.alpha = 1, prior.alphaKsi = 0.01, prior.betaKsi =
0.01, do.sort = TRUE, threshold = 1e-05, initial.K = 1, ite = Inf,
implicit.noise = 0, c.max = 10, speedup = FALSE)

Arguments

dat Data matrix (samples x features).

prior.alpha, prior.alphaKsi, prior.betaKsi
Prior parameters for Gaussian mixture model (normal-inverse-Gamma prior).
alpha tunes the mean; alphaKsi and betaKsi are the shape and scale parameters
of the inverse Gamma function, respectively.

do.sort When true, qOFz will be sorted in decreasing fashion by component size, based
on colSums(qOFz). The qOFz matrix describes the sample-component assig-
ments in the mixture model.

threshold Defines the minimal free energy improvement that stops the algorithm: used to
define convergence limit.

initial.K Initial number of mixture components.

ite Defines maximum number of iterations on posterior update (updatePosterior).
Increasing this can potentially lead to more accurate results, but computation
may take longer.

implicit.noise
Adds implicit noise; used by vdp.mk.log.lambda.so and vdp.mk.hp.posterior.so.
By adding noise (positive values), one can avoid overfitting to local optima in
some cases, if this happens to be a problem.

c.max Maximum number of candidates to consider in find.best.splitting. During mix-
ture model calculations new mixture components can be created until this upper
limit has been reached. Defines the level of truncation for a truncated stick-
breaking process.

speedup When learning the number of components, each component is splitted based on
its first PCA component. To speed up, approximate by using only subset of data
to calculate PCA.

Details

Implementation of the Accelerated variational Dirichlet process Gaussian mixture model algorithm
by Kenichi Kurihara et al., 2007.

12 vdp.mixt

Value

prior Prior parameters of the vdp-gm model.
posterior Posterior estimates for the model parameters and statistics.

weights: Mixture proportions, or weights, for the Gaussian mixture components.
centroids: Centroids of the mixture components.
sds: Standard deviations for the mixture model components (posterior modes of
the covariance diagonals square root). Calculated as sqrt(invgam.scale/(invgam.shape
+ 1)).
qOFz: Sample-to-cluster assigments (soft probabilistic associations).
Nc: Component sizes
invgam.shape: Shape parameter (alpha) of the inverse Gamma distribution
invgam.scale: Scale parameter (beta) of the inverse Gamma distribution
Nparams: Number of model parameters
K: Number of components in the mixture model

opts Model parameters that were used.
free.energy

Free energy of the model.

Note

This implementation is based on the Variational Dirichlet Process Gaussian Mixture Model imple-
mentation, Copyright (C) 2007 Kenichi Kurihara (all rights reserved) and the Agglomerative Inde-
pendent Variable Group Analysis package (in Matlab): Copyright (C) 2001-2007 Esa Alhoniemi,
Antti Honkela, Krista Lagus, Jeremias Seppa, Harri Valpola, and Paul Wagner.

Author(s)

Leo Lahti, Olli-Pekka Huovilainen and Antonio Gusmao. Maintainer: Leo Lahti <leo.lahti@iki.fi>

References

Kenichi Kurihara, Max Welling and Nikos Vlassis: Accelerated Variational Dirichlet Process Mix-
tures. In B. Sch\"olkopf and J. Platt and T. Hoffman (eds.), Advances in Neural Information Pro-
cessing Systems 19, 761–768. MIT Press, Cambridge, MA 2007.

Examples

set.seed(123)

Generate toy data with two Gaussian components
dat <- rbind(array(rnorm(400), dim = c(200,2)) + 5,

array(rnorm(400), dim = c(200,2)))

Infinite Gaussian mixture model with
Variational Dirichlet Process approximation
mixt <- vdp.mixt(dat)

Centroids of the detected Gaussian components
mixt$posterior$centroids

Hard mixture component assignments for the samples
apply(mixt$posterior$qOFz, 1, which.max)

Index

∗Topic classes
NetResponseModel-class, 5

∗Topic iteration
detect.responses, 1
vdp.mixt, 11

∗Topic methods
detect.responses, 1
vdp.mixt, 11

∗Topic misc
toydata, 10

∗Topic package
netresponse-package, 6

∗Topic utilities
get.model.parameters, 2
get.subnets, 4
response2sample, 7
result.stats, 8
sample2response, 9

[[,NetResponseModel-method
(NetResponseModel-class), 5

detect.responses, 1, 5

get.model.parameters, 2
get.subnets, 4

netresponse
(netresponse-package), 6

netresponse-package, 6
NetResponseModel-class, 5

response2sample, 7
result.stats, 8

sample2response, 9
show,NetResponseModel-method

(NetResponseModel-class), 5

toydata, 10

vdp.mixt, 11

13

	detect.responses
	get.model.parameters
	get.subnets
	NetResponseModel-class
	netresponse-package
	response2sample
	result.stats
	sample2response
	toydata
	vdp.mixt
	Index

