
baySeq
April 20, 2011

baySeq-classes baySeq - classes

Description

The countData class is used to define summaries of count data and establishing prior and poste-
rior parameters on distributions defined upon the count data.

Slots

Objects of the ’countData’ class should contain the following components:

data: Count data (matrix).
libsizes: Vector of library size for each sample.
groups: Group (model) structure to test on the data (list).
annotation: Annotation data for each count (data.frame).
priorType: Character string describing the type of prior information available in slot ’priors’.
priors: Prior parameter information. Calculated by the functions described in getPriors.
posteriors: Estimated posterior likelihoods for each group (matrix). Calculated by the functions described in getLikelihoods.
estProps: Estimated proportion of tags belonging to each group (numeric). Calculated by the functions described in getLikelihoods.
nullPosts: If calculated, the posterior likelihoods for the data having no true expression of any kind.
seglens: Lengths of segments containing the counts described in data. A matrix, but may be initialised with a vector, or ignored altogether. See Details.

Details

The seglens slot describes, for each row of the data object, the length of the ’segment’ that
contains the number of counts described by that row. For example, if we are looking at the number
of hits matching genes, the seglens object would consist of transcript lengths. Exceptionally, we
may want to use different segment lengths for different samples and so the slot takes the form of a
matrix. If the matrix has only one column, it is duplicated for all samples. Otherwise, it should have
the same number of columns as the ’@data’ slot. If the slot is the empty matrix, then it is assumed
that all segments have the same length.

Methods

Methods ’new’, ’dim’, ’[’ and ’show’ have been defined for this class.

1

2 baySeq-package

Author(s)

Thomas J. Hardcastle

Examples

library(baySeq)

data(simCount)
data(libsizes)

replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))

#create new 'countData' object
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups = groups)

CD[1:10,]
dim(CD)

baySeq-package Empirical Bayesian analysis of patterns of differential expression in
count data.

Description

This package is intended to identify differential expression in high-throughput ’count’ data, such
as that derived from next-generation sequencing machines. We achieve this by empirical bayesian
methods, first bootstrapping to estimate prior parameters from the data and then assessing posterior
likelihoods of the models proposed.

Details

Package: baySeq
Type: Package
Version: 1.1.1
Date: 2009-16-05
License: GPL-3
LazyLoad: yes

To use the package, construct a countData object and use the functions documented in getPriors
to empirically determine priors on the data. Then use the functions documented in getLikelihoods
to establish posterior likelihoods for the models proposed. A few convenience functions, getTPs
and topCounts are also included.

The package (optionally) makes use of the ’snow’ package for parallelisation of computationally
intensive functions. This is highly recommended for large data sets.

See the vignette for more details.

factCount 3

Author(s)

Thomas J. Hardcastle

Maintainer: Thomas J. Hardcastle <tjh48@cam.ac.uk>

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

Examples

See vignette for more examples.

load test data
data(simCount)
data(libsizes)

replicate structure of data
replicates <- c(1,1,1,1,1,2,2,2,2,2)

define hypotheses on data
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))

construct 'countData' object
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups = groups)
CD[1:10,]

estimate prior distributions on 'countData' object using Poisson
method. Other methods are available - see getPriors
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, takemean = TRUE, cl = NULL)

estimate posterior likelihoods for each row of data belonging to each hypothesis
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5), pET = "BIC", cl = NULL)

display the rows of data showing greatest association with the second
hypothesis (differential expression)
topCounts(CDPost.Poi, group = 2, number = 10)

find true positive selection rate
getTPs(CDPost.Poi, group = 2, TPs = 1:100)[1:100]

factCount Simulated data for testing the baySeq package methods; simulated
counts from a factorial design differential expression analysis

Description

This data set is a matrix of simulated counts from a simple pairwise expression analysis. It is
simulated according to a negative binomial distribution with varying parameters for each row. The
first hundred rows of the data are truly differentially expressed between the first four samples and
the second four samples. The second hundred rows of the data are truly differentially expressed
between samples 1,2,5,6 and samples 3,4,7,8.

4 factlibsizes

Usage

factCount

Format

A matrix of which each of the eight columns represents a sample, and each row some discrete data
(acquired by sequencing).

Source

Simulation.

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

See Also

factlibsizes

factlibsizes Simulated data for testing the baySeq package methods; simulated li-
brary sizes from a pairwise differential expression analysis

Description

This data set is a vector of library sizes for the factCount matrix.

Usage

factlibsizes

Format

A vector containing library sizes for the ten libraries whose data is given in the factCountmatrix.

Source

Simulation.

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

See Also

factCount

getLikelihoods 5

getLikelihoods Finds posterior likelihoods for each count as belonging to some hy-
pothesis.

Description

These functions calculate posterior probabilities for each of the ’counts’ in the countDP object
belonging to each of the groups specified. The choice of function depends on the prior belief about
the underlying distribution of the data. It is essential that the method used for calculating priors
matches the method used for calculating the posterior probabilites.

For a comparison of the methods, see Hardcastle & Kelly, 2009.

Usage

getLikelihoods(cD, prs, pET = "BIC", marginalise = FALSE, subset = NULL,
priorSubset = NULL, verbose = TRUE, ..., cl)
getLikelihoods.Dirichlet(cD, prs, pET = "BIC", marginalise = FALSE, subset = NULL,
priorSubset = NULL, verbose = TRUE, cl)
getLikelihoods.Pois(cD, prs, pET = "BIC", marginalise = FALSE, subset = NULL,
priorSubset = NULL, distpriors = FALSE, verbose = TRUE, cl)
getLikelihoods.NB(cD, prs, pET = "BIC", marginalise = FALSE, subset = NULL,
priorSubset = NULL, bootStraps = 1, conv = 1e-4, nullData = FALSE,
returnAll = FALSE, verbose = TRUE, cl)

Arguments

cD An object of type countData, or descending from this class.

prs (Initial) prior probabilities for each of the groups in the ’countDP’ object. Should
sum to 1, unless nullData is TRUE, in which case it should sum to less than 1.

pET What type of prior re-estimation should be attempted? Defaults to "BIC"; "none"
and "iteratively" are also available.

marginalise Should an attempt be made to numerically marginalise over a prior distribution
iteratively estimated from the posterior distribution? Defaults to FALSE, as in
general offers little performance gain and increases computational cost consid-
erably.

subset Numeric vector giving the subset of counts for which posterior likelihoods should
be estimated.

priorSubset Numeric vector giving the subset of counts which may be used to estimate prior
probabilities on each of the groups. See Details.

distpriors Should the Poisson method use an empirically derived distribution on the prior
parameters of the Poisson distribution, or use the mean of the maximum likeli-
hood estimates (default).

bootStraps How many iterations of bootstrapping should be used in the (re)estimation of
priors in the negative binomial method.

conv If not null, bootstrapping iterations will cease if the mean squared difference
between posterior likelihoods of consecutive bootstraps drops below this value.

nullData If TRUE, looks for segments or counts with no true expression. See Details.

6 getLikelihoods

returnAll If TRUE, and bootStraps > 1 instead of returning a single countData object, the
function returns a list of countData objects; one for each bootstrap. Largely used
for debugging purposes.

verbose Should status messages be displayed? Defaults to TRUE.

cl A SNOW cluster object.

... Any additional information to be passed by the ’getLikelihoods’wrapper
function to the individual functions which calculate the likelihoods.

Details

These functions estimate, under the assumption of various distributions, the (log) posterior likeli-
hoods that each count belongs to a group defined by the @group slot of the countData object.
The posterior likelihoods are stored on the natural log scale in the @posteriors slot of the
countData object generated by this function. This is because the posterior likelihoods are cal-
culated in this form, and ordering of the counts is better done on these log-likelihoods than on the
likelihoods.

If ’pET = "none"’ then no attempt is made to re-estimate the prior likelihoods given in the
’prs’ variable. However, if ’pET = "BIC"’, then the function will attempt to estimate the
prior likelihoods by using the Bayesian Information Criterion to identify the proportion of the data
best explained by each model and taking these proportions as prior. Alternatively, an iterative re-
estimation of priors is possible (’pET = "iteratively"’), in which an inital estimate for
the prior likelihoods of the models is used to calculated the posteriors and then the priors are up-
dated by taking the mean of the posterior likelihoods for each model across all data. This often
works well, particularly if the ’BIC’ method is used (see Hardcastle & Kelly 2010 for details).
However, if the data are sufficiently non-independent, this approach may substantially mis-estimate
the true priors. If it is possible to select a representative subset of the data by setting the variable
’subsetPriors’ that is sufficiently independent, then better estimates may be acquired.

The Dirichlet and Poisson methods produce almost identical results in simulation. The Negative
Binomial method produces results with much lower false discovery rates, but takes considerably
longer to run.

Filtering the data may be extremely advantageous in reducing run time. This can be done by passing
a numeric vector to ’subset’ defining a subset of the data for which posterior likelihoods are required.

If ’nullData = TRUE’, the algorithm attempts to find those counts or segments that have no true
expression in all samples. This means that there is another, implied group where all samples are
equal. The prior likelihoods given in the ’prs’ object must thus sum to less than 1, with the residual
going to this group.

See Hardcastle & Kelly (2010) for a full comparison of the methods.

A ’cluster’ object is strongly recommended in order to parallelise the estimation of posterior likeli-
hoods, particularly for the negative binomial method. However, passing NULL to the cl variable
will allow the functions to run in non-parallel mode.

The ’getLikelihoods’ function will infer the correct distribution to use from the information
stored in the ’@priors’ slot of the countData object ’sD’ and call the appropriate function.

Value

A countData object.

Author(s)

Thomas J. Hardcastle

getPosteriors 7

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

See Also

countData, getPriors, topCounts, getTPs

Examples

library(baySeq)

See vignette for more examples.

Create a {countData} object and estimate priors for the
Poisson methods.
data(simCount)
data(libsizes)
replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups = groups)
CDP.Poi <- getPriors.Pois(CD, samplesize = 20,
takemean = TRUE, cl = NULL)

Get likelihoods for data with Poisson method
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5),
pET = "BIC", marginalise = FALSE, cl = NULL)

Alternatively, get priors for negative binomial method
CDP.NB <- getPriors.NB(CD, samplesize = 10^5, estimation = "QL", cl = NULL)

Get likelihoods for data with negative binomial method with bootstrapping

CDPost.NB <- getLikelihoods.NBboot(CDP.NB, prs = c(0.5, 0.5),
pET = "BIC", marginalise = FALSE, bootStraps = 1, cl = NULL)

Alternatively, if we have the 'snow' package installed we
can parallelise the functions. This will usually (not always) offer
significant performance gain.

cl <- NULL
try(library(snow))
try(cl <- makeCluster(4, "SOCK"))

CDP.NB <- getPriors.NB(CD, samplesize = 10^5, estimation = "QL", cl = cl)
CDPost.NB <- getLikelihoods.NB(CDP.NB, prs = c(0.5, 0.5),
pET = "BIC", marginalise = FALSE, cl = cl)

getPosteriors An internal function in the baySeq package for calculating posterior
likelihoods given likelihoods of the data.

8 getPosteriors

Description

For likelihoods of the data given a set of models, this function calculates the posterior likelihoods
of the models given the data. An internal function of baySeq, which should not in general be called
by the user.

Usage

getPosteriors(ps, prs, pET = "none", marginalise = FALSE, groups, priorSubset = NULL, maxit = 100, accuracy =
1e-5, cl = cl)

Arguments

ps A matrix containing likelihoods of the data for each count (rows) under each
model (columns).

prs (Initial) prior probabilities for each of the models.

pET What type of prior re-estimation should be attempted? Defaults to "none";
"BIC" and "iteratively" are also available.

marginalise Should an attempt be made to numerically marginalise over a prior distribution
iteratively estimated from the posterior distribution? Defaults to FALSE, as in
general offers little performance gain and increases computational cost consid-
erably.

groups Group structure from which likelihoods in ’ps’ were defined.

priorSubset If ’estimatePriors = TRUE’, what subset of the data should be used to
re-estimate the priors? Defaults to NULL, implying all data will be used.

maxit What is the maximum number of iterations that should be tried if we are boot-
strapping prior probabilities from the data?

accuracy How small should the difference in estimated priors be before we stop bootstrap-
ping.

cl A SNOW cluster object.

Details

An internal function, that will not in general be called by the user. It takes the log-likelihoods of the
data given the models being tested and returns the posterior likelihoods of the models.

The function may attempt to estimate the prior likelihoods either by using the Bayesian Information
Criterion (’pET = "BIC"’) to identify the proportion of the data best explained by each model
and taking these proportions as prior. Alternatively, an iterative re-estimation of priors is possible
(’pET = "iteratively"’, in which an inital estimate for the prior likelihoods of the mod-
els is used to calculated the posteriors and then the priors are updated by taking the mean of the
posterior likelihoods for each model across all data.

Value

A list containing posteriors: estimated posterior likelihoods of the model for each count (log-scale)
priors: estimated (or given) prior probabilities of the model

Author(s)

Thomas J. Hardcastle

getPriors 9

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

See Also

getLikelihoods

Examples

Simulate some log-likeihoods of data given models (each model
describes one column of the 'ps' object).
ps <- log(rbind(

cbind(runif(10000, 0, 0.1), runif(10000, 0.3, 0.9)),
cbind(runif(10000, 0.4, 0.9), runif(1000, 0, 0.2))))

get posterior log-likelihoods of model, estimating prior likelihoods
of each model from the data.

pps <- getPosteriors(ps, prs <- c(0.5, 0.5), pET = "none", cl =
NULL)

pps$priors

pps$posteriors[1:10,]

getPriors Estimates prior parameters for the underlying distributions of ’count’
data.

Description

These functions estimate, via maximum likelihood methods, the parameters of the underlying dis-
tributions for the different methods of describing the ’count’ data.

Usage

getPriors.Dirichlet(cD, samplesize = 10^5, perSE = 1e-1, maxit = 10^6,
verbose = TRUE)
getPriors.Pois(cD, samplesize = 10^5, perSE = 1e-1, takemean = TRUE,
maxit = 10^5, verbose = TRUE, cl)
getPriors.NB(cD, samplesize = 10^5, samplingSubset = NULL, equalDispersions = TRUE, estimation
= "QL", verbose = TRUE, cl, ...)

Arguments

cD A countData object.

samplesize How large a sample should be taken in estimating the priors?
samplingSubset

If given, the priors will be sampled only from the subset specified.

10 getPriors

perSE What should the relative standard error of the estimated parameters fall below?

maxit Over how many iterations (at most) should we take samples and re-estimate the
priors in order to achieve convergence?

takemean If TRUE (recommended), we take the mean of the estimated priors to define a
gamma distribution. If FALSE, we use all estimated priors to define an empirical
distribtion on the parameters of the gamma distribution.

equalDispersions
Should we assume equal dispersions of data across all groups in the ’cD’ ob-
ject? Defaults to TRUE; see Details.

estimation Defaults to "QL", indicating quasi-likelihood estimation of priors. Currently, the
only other possibilities are "ML", a maximum-likelihood method, and "edgeR",
the moderated dispersion estimates produced by the ’edgeR’ package. See De-
tails.

verbose Should status messages be displayed? Defaults to TRUE.

cl A SNOW cluster object.

... Additional parameters to be passed to the estimateTagwiseDisp function
if ’estimation = "edgeR"’.

Details

These functions empirically estimate prior parameters for different distributions used in estimating
posterior likelihoods of each count belonging to a particular group. The choice of which function
to use for estimating the prior parameters will depend on the choice of which method is being used
to estimate the posterior likelihoods (see getLikelihoods).

For priors estimated for the negative binomial methods, three options are available. Differences
in the options focus on the way in which the dispersion is estimated for the data. In simulation
studies, quasi-likelihood methods (’estimation = "QL"’) performed best and so these are
used by default. Alternatives are maximum-likelihood methods (’estimation = "ML"’), and
the ’edgeR’ packages moderated dispersion estimates (’estimation = "edgeR"’).

The priors estimated for the negative binomial methods (’getPriors.NB’) may assume that the
dispersion of data for a given row is identical for all group structures defined in ’cD@groups’
(’equalDispersions = TRUE’). Alternatively, the dispersions may be estimated individu-
ally for each group structure (’equalDispersions = FALSE’). Unless there is a strong rea-
son for believing that the data are differently dispersed between groups, ’equalDispersions
= TRUE’ is recommended. If ’estimation = "edgeR"’ then this parameter is ignored and
dispersion is assumed identical for all group structures.

A ’cluster’ object is recommended in order to estimate the priors for the negative binomial distribu-
tion. Passing NULL to this variable will cause the function to run in non-parallel mode.

getPriors.Dirichlet and getPriors.Pois will issue warnings if the estimation of any priors fails to
achieve less than the relative standard error specified in the maximum number of iterations.

Value

A countData object.

Author(s)

Thomas J. Hardcastle

getTPs 11

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

See Also

countData, getLikelihoods

Examples

See vignette for more examples.

Create a {countData} object.
data(simCount)
data(libsizes)
replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups =
groups)

If we have the 'snow' package installed we can parallelise the prior
estimation. This will usually (depending on your parallelisation
set-up) offer significant performance gains.

cl <- NULL
try(library(snow))
try(cl <- makeCluster(4, "SOCK"))

Estimate priors using Poisson method.
DP.Poi <- getPriors.Pois(CD, samplesize = 20, takemean = TRUE, cl = cl)

Alternatively, get priors for negative binomial method.

CDP.NBML <- getPriors.NB(CD, samplesize = 10^5, estimation = "QL", cl = cl)

getTPs Gets the number of true positives in the top n counts selected by ranked
posterior likelihoods

Description

If the true positives are known, this function will return a vector, the ith member of which gives the
number of true positives identified if the top i counts, based on estimated posterior likelihoods, are
chosen.

Usage

getTPs(cD, group, decreasing = TRUE, TPs)

12 getTPs

Arguments

cD countData object, containing posterior likelihoods for each group.

group Which group should we give the counts for? See Details.

decreasing Ordering on posterior likelihoods.

TPs Known true positives.

Details

In the rare (or simulated) cases where the true positives are known, this function will calculate the
number of true positives selected at any cutoff.

If group = NULL, then the function looks at the posterior likelihoods that the data have no true
differential expression (if calculated).

Value

A vector, the ith member of which gives the number of true positives identified if the top i counts
are chosen.

Author(s)

Thomas J. Hardcastle

See Also

countData

Examples

Create a {countData} object and estimate priors for the Poisson methods.
data(simCount)
data(libsizes)
replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups = groups)
CDP.Poi <- getPriors.Pois(CD, samplesize = 20,
takemean = TRUE, cl = NULL)

Get likelihoods for data with Poisson method
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5),
pET = "BIC", cl = NULL)

If the first hundred rows in the 'simCount' matrix are known to be
truly differentially expressed (the second hypothesis defined in the
'groups' list) then we find the number of true positives for the top n
genes selected as the nth member of

getTPs(CDPost.Poi, group = 2, decreasing = TRUE, TPs = 1:100)

libsizes 13

libsizes Simulated data for testing the baySeq package methods; simulated li-
brary sizes from a pairwise differential expression analysis

Description

This data set is a vector of library sizes for the simCount matrix.

Usage

libsizes

Format

A vector containing library sizes for the ten libraries whose data is given in the simCount matrix.

Source

Simulation.

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

See Also

simCount

plotMA.CD ’MA’-plot for count data.

Description

This function creates an MA-plot from two sets of samples. For those data where the log-ratio
is infinite (because in one set of sample data all observed counts are zero), we plot instead the
log-values of the other group.

Usage

plotMA.CD(cD, samplesA, samplesB, ...)

Arguments

cD A countData object.

samplesA A numerical vector giving the columns of data in the ’countData’ object
that forms sample set A.

samplesB A numerical vector giving the columns of data in the ’countData’ object
that forms sample set B.

... Any other parameters to be passed to the plot function.

14 plotPosteriors

Value

Plotting function.

Author(s)

Thomas J. Hardcastle

See Also

countData

Examples

data(simCount)
data(libsizes)
replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups = groups)

plotMA.CD(CD, samplesA = 1:5, samplesB = 6:10)

plotPosteriors Plots the posterior likelihoods estimated for a ’countData’ object
against the log-ratios observed between two sets of sample data.

Description

This function plots the posterior likelihoods estimated for a ’countData’ object against the log-ratios
observed between two sets of sample data. For those data where the log-ratio is infinite (because
in one set of sample data all observed counts are zero), we plot instead the log-values of the other
group.

Usage

plotPosteriors(cD, group = 1, samplesA, samplesB, ...)

Arguments

cD A countData object, for which posterior likelihoods have been estimated (see
getPosteriors).

group From which group (as defined in the ’cD@groups’ slot) should posterior like-
lihoods be shown?

samplesA A numerical vector giving the columns of data in the ’countData’ object
that forms sample set A.

samplesB A numerical vector giving the columns of data in the ’countData’ object
that forms sample set B.

... Any other parameters to be passed to the plot function.

Value

Plotting function.

plotPriors 15

Author(s)

Thomas J. Hardcastle

See Also

getPosteriors

Examples

data(simCount)
data(libsizes)
replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups = groups)

Get priors for negative binomial method
CDP.NB <- getPriors.NB(CD, samplesize = 10^5, estimation = "QL", cl = NULL)

Get likelihoods for data with negative binomial method

CDPost.NB <- getLikelihoods.NB(CDP.NB, prs = c(0.5, 0.5),
pET = "BIC", cl = NULL)

plotPosteriors(CDPost.NB, group = 1, samplesA = 1:5, samplesB = 6:10)

plotPriors Plots the density of the log values estimated for the mean rate in the
prior data for the Negative Binomial approach to detecting differential
expression

Description

This function plots the density of the log values estimated for the mean rate in the data used to
estimate a prior distribution for data under the assumption of a Negative Binomial distribution.
This function is useful for looking for bimodality of the distributions, and thus determining whether
we should try and identify data with no true expression.

Usage

plotPriors(cD, group)

Arguments

cD countData object, for which priors have been estimated using the assumption
of a Negative Binomial distribution (see getPriors.NB).

group Which group should we plot the priors for? In general, should be the group that
defines non-differentially expressed data.

Details

If the plot of the data appears bimodal, then it may be sensible to try and look for data with no true
expression by using the option nullPosts = TRUE in getLikelihoods.NBboot.

16 simCount

Value

Plotting function.

Author(s)

Thomas J. Hardcastle

See Also

getPriors.NB, getLikelihoods.NB

Examples

Create a {countData} object and estimate priors for the Poisson methods.
data(simSeg)
data(libsizes)
replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simSeg[,-1], replicates = replicates, seglens = simSeg[,1], libsizes = libsizes, groups = groups)
CDP.NB <- getPriors.NB(CD, samplesize = 1000, estimation = "QL", cl = NULL)

plotPriors(CDP.NB, group = 1)

simCount Simulated data for testing the baySeq package methods; simulated
counts from a pairwise differential expression analysis

Description

This data set is a matrix of simulated counts from a simple pairwise expression analysis. It is
simulated according to a negative binomial distribution with varying parameters for each row. The
first hundred rows of the data are truly differentially expressed, the remainder have no differential
expression. Library sizes for these data sets are given in libsizes.

Usage

simCount

Format

A matrix of which each of the ten columns represents a sample, and each row some discrete data
(acquired by sequencing).

Source

Simulation.

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

simSeg 17

See Also

libsizes

simSeg Simulated data for testing the baySeq package methods; simulated
counts and segment lengths from a pairwise differential expression
analysis

Description

This data set is a matrix of simulated counts from a simple pairwise expression analysis of genomic
regions. The first column of the data is the length of the segment, simulated from a negative bino-
mial distribution. The remaining columns of the data are simulated according to a negative binomial
distribution with varying parameters for each row, such that the rate of expression is proportional
to the length of the segment. The first hundred rows of the data are truly differentially expressed,
the second hundred rows have no true expression of any kind, the remainder are expressed but not
differentially expressed. Library sizes for these data are given in libsizes.

Usage

simCount

Format

A matrix of which the first column gives the length of a genomic region, and the following ten
columns represents the discrete data (acquired by sequencing) observed at each region.

Source

Simulation.

References

Hardcastle T.J., and Kelly, K. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010)

See Also

libsizes

18 topCounts

topCounts Get the top counts corresponding to some group from a ’countData’
object

Description

Takes posterior likelihoods and returns the counts with highest (or lowest) likelihood of association
with a given group.

Usage

topCounts(cD, group, decreasing = TRUE, number = 10, normaliseData = FALSE)

Arguments

cD countData object, containing posterior likelihoods for each group.

group Which group should we give the counts for? See Details.

decreasing Ordering on posterior likelihoods.

number How many results should be returned?
normaliseData

Should the displayed counts be normalised by library size? Defaults to FALSE.

Value

A dataframe of the top counts associated with some model (group), described by annotation drawn
from the ’@annotation’ slot of the ’cD’ object and the raw data from the ’@data’ slot, together with
the posterior log-likelihoods.

If group = NULL, then the function looks at the posterior likelihoods that the data have no true
differential expression (if calculated).

Author(s)

Thomas J. Hardcastle

See Also

countData

Examples

data(simCount)
data(libsizes)

Make 'countData' object and calculate posterior likelihoods for each
item belonging to each hypothesis.
replicates <- c(1,1,1,1,1,2,2,2,2,2)
groups <- list(c(1,1,1,1,1,1,1,1,1,1), c(1,1,1,1,1,2,2,2,2,2))
CD <- new("countData", data = simCount, replicates = replicates, libsizes = libsizes, groups = groups)
CDP.Poi <- getPriors.Pois(CD, samplesize = 20, cl = NULL)
CDPost.Poi <- getLikelihoods.Pois(CDP.Poi, prs = c(0.5, 0.5), pET = "BIC", cl = NULL)

topCounts 19

Report the top ten rows of data that have highest (log) likelihood of belonging to
group 2 of the data (i.e., differentially expressed)

topCounts(CDPost.Poi, group = 2, number = 10)

Index

∗Topic classes
baySeq-classes, 1

∗Topic datasets
factCount, 3
factlibsizes, 4
libsizes, 13
simCount, 16
simSeg, 17

∗Topic distribution
getLikelihoods, 5
getPriors, 9

∗Topic hplots
plotMA.CD, 13

∗Topic hplot
plotPosteriors, 14
plotPriors, 15

∗Topic manip
getTPs, 11

∗Topic models
getLikelihoods, 5
getPosteriors, 7
getPriors, 9

∗Topic package
baySeq-package, 2

∗Topic print
topCounts, 18

[,countData-method
(baySeq-classes), 1

baySeq (baySeq-package), 2
baySeq-class (baySeq-classes), 1
baySeq-classes, 1
baySeq-package, 2

countData, 2, 5–7, 9–15, 18
countData (baySeq-classes), 1
countData-class (baySeq-classes),

1

dim,countData-method
(baySeq-classes), 1

estimateTagwiseDisp, 10

factCount, 3, 4

factlibsizes, 4, 4

getLikelihoods, 1, 2, 5, 9–11
getLikelihoods.NB, 16
getLikelihoods.NBboot, 15
getPosteriors, 7, 14, 15
getPriors, 1, 2, 7, 9
getPriors.NB, 15, 16
getTPs, 2, 7, 11

libsizes, 13, 16, 17

plot, 13, 14
plotMA.CD, 13
plotPosteriors, 14
plotPriors, 15

show,countData-method
(baySeq-classes), 1

simCount, 13, 16
simSeg, 17

topCounts, 2, 7, 18

20

	baySeq-classes
	baySeq-package
	factCount
	factlibsizes
	getLikelihoods
	getPosteriors
	getPriors
	getTPs
	libsizes
	plotMA.CD
	plotPosteriors
	plotPriors
	simCount
	simSeg
	topCounts
	Index

