
SJava
April 20, 2011

.JavaArrayConstructor
Create and access elements of Java arrays from R.

Description

These functions allow one to create multi-dimensional Java arrays via R commands using the
.Java function. The get and set accessors work element-wise and not in the vector fashion com-
mon in R and S. One must create and initialize the Java virtual machine before calling any of these
functions. See .JavaInit.

Usage

.JavaArrayConstructor(klass, ..., dim=length(list(...)), .name=NULL,
.convert=FALSE)

.JavaGetArrayElement(jobj,..., .name=NULL, .convert=TRUE)

.JavaSetArrayElement(jobj, value, ..., .dims=list(...), .convert=FALSE)

.JavaArrayLength(jobj)
S3 method for class 'JavaArrayReference':
x[...]
S3 replacement method for class 'JavaArrayReference':
x[...] <- value
S3 method for class 'JavaArrayReference':
length(x)

Arguments

klass Typically a string (character vector of length 1) identifying the name of the class
of the element type in the array to be created. This can also be a foreign reference
to a Java class object obtained via an earlier call to .Java.

... In the .JavaArrayConstructor, these are currently ignored. They are
intended to be initializing values that are used to populate the top-level values
of the new array. That is, they are used to set arr[0], arr[1], arr[2],
....
In the JavaArrayReferencemethods these are indicies passed to .JavaGetArrayElement
and .JavaSetArrayElement.

1

2 .JavaArrayConstructor

dim When creating an array in .JavaArrayConstructor, these specify both
the number of dimensions and the length of each dimension in the array to be
created.

.dims When setting an array element in .JavaSetArrayElement, a list of
integer(1) values corresponding to array dimensions of the element to be
set.

jobj, x This is the reference to the Java array returned from an earlier call to .JavaArrayConstructor
or the return value from a call to .Java.

value the object to be inserted as an element in the Java array. This is converted to a
Java object using the usual conversion rules and then inserted into the Java array.

.name The name to use to store the result in the omegahat named reference database.
If this is missing, an anonymous reference is returned or the value converted to
an R object. If the result of the Java method can be converted, this argument can
be used to prohibit this conversion and leave the Java value in Omegahat for use
in future .Java calls.

.convert a logical value that indicates whether the Omegahat manager should attempt to
convert the result of the method call. This is usually TRUE, but can be explicitly
specified to avoid (arrays of) primitive object being converted to an R object
when it is to be used in a subsequent .Java call.

Details

This uses the .Java to call methods in the Omegahat Evaluator which process the array request.

Value

.JavaArrayConstructor returns a reference to the newly create Java array object.

.JavaArrayLength returns a single integer giving the length of the top-level dimension of the
array.

.JavaGetArrayElement returns the value of the specified element of the given array, con-
verted to an R object as usual. Thus it may be a Java reference.

.JavaSetArrayElement returns NULL.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.javasoft.com, http://www.omegahat.org

See Also

.Java

Examples

if (!isJavaInitialized())
.JavaInit(verbose=TRUE)

a <- .JavaArrayConstructor("java.lang.String", dim=3)
.JavaArrayLength(a)
.JavaSetArrayElement(a, "First", 1)

http://www.javasoft.com
http://www.omegahat.org

convertFromToJava 3

.JavaSetArrayElement(a, "Second", 2)

.JavaSetArrayElement(a, "Third", 3)

.JavaGetArrayElement(a, 2)

convertFromToJava Convert Java instance to R instances and vice versa

Description

These functions convert Java language structures (e.g., a Java vector) to the corresponding R struc-
ture (e.g., an R vector).

Usage

convertListToJava(x, ...)
convertNamedListToJava(x, ...)
convertArrayFromJava(x, ...)
convertOrderedTableFromJava(x, ...)
convertVectorFromJava(x, ...)
simplifyListToVector(x)
setDefaultConverters()

Arguments

x The R object or Java reference to be convereted or simplified.

... Additional (unused) arguments.

Value

The convert functions return the converted R or Java object. setDefaultConverters sets
the converts enumerated here as the default for the corresponding data types.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org, http://www.javasoft.com

http://www.omegahat.org
http://www.javasoft.com

4 OmegahatReference

defaultJavaPath Obtain the Java path or other variable Sys.getenv

Description

This function queries Sys.getenv for the value of the named variable.

Usage

defaultJavaPath(varName="CLASSPATH")

Arguments

varName The variable to be queried.

Value

The value of varName as defined in Sys.getenv.

Author(s)

Duncan Temple Lang

OmegahatReference Accessing Java classes, methods and field

Description

The $ methods allow one to invoke Java methods in the form

jobj$methodName(arg1,arg2,....)

The [[methods allow access to class fields as

jobj[["fieldName"]]

jobj[["fieldName"]] <- value

Usage

S3 method for class 'OmegahatReference':
obj$name
S3 method for class 'OmegahatReference':
x[[name, ...]]
S3 replacement method for class 'OmegahatReference':
x[[name, ...]] <- value
S3 method for class 'OmegahatReference':
print(x, ...)

.javaConfig 5

Arguments

obj A reference to the Java object.
x A reference to the Java object.
name The name of the Java method or field being accessed.
value The value to be assigned to the field.
... Additional arguments; ignored for print.

Details

The $ method is equivalent to .Java(obj, name,)

The [[method is equivalent to .Java(NULL, "getField", name, x).

The [[<- method is equivalent to .Java(NULL, "setField", name, x, value).

Value

The return value of $ is a function which remembers the arguments to this function call and, when
called, results in a call to .Java using those arguments.

The return value of [[is the field value.

print is called for its side effect, i.e., providing a compact represntation of the object.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

.Java

Examples

p <- .Java("System", "getProperties", .convert=FALSE)
p$getProperty("java.class.path")

.javaConfig The default options for initializing the Java Virtual Machine

Description

This is a list containing elements for

classpath elements in which collections of Java classes are found
system properties name-value pairs used to customize the JVM’s environment, the Omegahat

classes and any other classes that read these properties
library path directories in which Java can find shared libraries.

The values in this object are created during the configuration of the package so that they refer to
files in the directories into which the package is installed.

http://www.omegahat.org/RSJava

6 expandClassName

.JavaSigs A vector of Java type specifiers

Description

This is a named vector containing the pairs of Java primitive type names (e.g. double, boolean, etc.)
and the corresponding low-level JNI type identifier. These are things such as The values ca be used
in in the .sigs arguments of .Java and .JavaConstructor.

expandClassName The fully qualified name of a Java class

Description

This takes the partially qualified name of a Java class and queries the Omegahat class list to resolve
the appropriate Java class. This then returns the name (via the Java method getName()) of that
class with all the package information in the name.

Usage

expandClassName(klass)

Arguments

klass the partially qualified name of the Java class which is to be resolved.

Details

This uses the Omegahat evaluator’s class list, including the locally added classes (i.e. those not in
the Java classpath, but added to the Omegahat class search path) and the dynamically generated and
loaded classes.

Value

a character vector of length 1 containing the fully qualified name of the Java class.

Note

Note that this causes the Java class to be loaded. If one wanted to simply determine from which Java
package a partially qualified class name would be loaded without loading it (e.g. one might want
to test whether Vector is from the antlr package or the core java.util package) then one should
loop over the evaluator’s class list (classLists()) object and use its matchesClassName
method.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

http://www.omegahat.org/RSJava

foreignReference 7

See Also

.JClass

Examples

expandClassName("util.Vector")

foreignReference Create a reference to an R object for use by a foreing system.

Description

Create an object that is used to represent a local R object in a call to a foreign system (Java),
optionally specifying a name by which it is to be stored locally and known externally and the name
of one or more classes/interfaces that should be used to represent it. The last of these is interpreted
by the remote system.

Usage

foreignReference(obj, id="", className=NULL, targetClasses=NULL,
register=TRUE)

Arguments

obj The R value/object that is to be represented by this reference. When methods
are invoked on the reference, they are applied to this object.

id An identifier for the reference by which it can be known to foreign systems and
internally. This is just a name.

className Name of the (R) class of this object.
targetClasses

The name of a class or of interfaces which the foreign system should use when
representing this object. This allows the reference to implement different e.g.
Java interfaces so it can be used as an argument to different methods.

register A logical value indicating whether the object should be “exported” by the for-
eign system (TRUE), or otherwise just a local object created to represent the
R value without making it accessible remotely. If no value for id is supplied
and the reference is registered, a counter used to generate unique references is
incremented. (Is this true?)

Value

An object of class foreignReference.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

http://www.omegahat.org/RSJava

8 getForeignReferences

See Also

.Java .JavaConstructor

Examples

data(mtcars)
foreignReference(mtcars, targetClasses="DataFrameInt")

getForeignReferences
Get the names of the objects in the Omegahat system

Description

This queries the Omegahat manager for the names of the different objects it manages for use by
.Java, .JavaConstructor and .OmegahatExpression calls. This allows the elements
of either the named or anonymous or both databases to be queried.

Usage

getForeignReferences(which=c(named = TRUE, anonymous = FALSE))

Arguments

which a logical vector identifying the named (TRUE) and anonymous (FALSE) databases.
The default is both.

Details

This uses the .Java function to invoke the getReferences method of the Omegahat man-
ager/evaluator. This aids one to query and control the interface manager.

Value

A list with the same length as the argument which. Each element is a list of This is not working
as designed yet. We need to add a converter for an InterfaceReference.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

See Also

.Java .JavaConstructor

http://www.omegahat.org/RSJava

getJavaConverterDescriptions 9

Examples

getForeignReferences()

Just the named values
getForeignReferences(TRUE)

Just the anonymous references
getForeignReferences(FALSE)

getJavaConverterDescriptions
Retrieves descriptions for the registered converters between R and
Java objects.

Description

The conversion between R and Java objects is controlled by a list of actions. Each contains a
description string to help the user understand what it does. This function returns these descriptions
for the converters in one or both directions (i.e. from R to Java or vice-versa).

Usage

getJavaConverterDescriptions(which=c(fromJava = FALSE, toJava = TRUE))

Arguments

which A logical vector in which FALSE identifies the converters from Java to R and
TRUE indicates from R to Java.

Details

This examines the internal C data structures used to maintain the conversion tables.

Value

Returns a list with the same length as which in which each element is a character vector containing
the description strings from the different registered conveters for that conversion direction. These
include the default converters that handle the conversion of primitives between the two systems.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

getNumJavaConverters setJavaConvertible

http://www.omegahat.org/RSJava

10 getJavaHandler

Examples

getNumJavaConverters()
getNumJavaConverters(TRUE)
getNumJavaConverters(FALSE)

getJavaHandler Obtains the current R foreign reference manager

Description

This queries the C code to retrieve the R object that manages the exporting of R objects to foreign
systems such as Omegahat and Java.

Usage

getJavaHandler()

Value

A list (or object) that provides the functions needed by a reference manager. See setJavaHandler
and javaHandlerGenerator for a description of these methods.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

See Also

setJavaHandler javaHandlerGenerator

Examples

old <- getJavaHandler()
old$references()
old$total()
old$createReference(rnorm(100))
old$addReference(foreignReference(rnorm(100), "mydata"))
old$remove("mydata")

http://www.omegahat.org/RSJava

getJavaMethods 11

getJavaMethods List the methods or constructors of a Java object.

Description

This is a convenient method for obtaining a list of all the methods a Java object provides.

Usage

getJavaMethods(what)
getJavaConstructors(what)

Arguments

what the (partially qualified) name of a Java class, or a reference to a Java object
managed by the Omegahat evaluator. The latter contains the class name of the
object.

Details

This is a simple use of .Java and the evaluator’s methods getMethods and getConstructors.
The getJavaMethods also adds the names to the resulting R list.

Value

A list of Java Method objects converted to their R equivalents. The names of the elements in the list
are given by the name of the Java method. In the case of getJavaConstructors, no names are
given since these have no explicit name. Each element describes the corresponding Java method in
terms of the number and types of arguments, its accessibility, in which class it was defined, and the
exceptions it may throw.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

.Java .JavaConstructor .JNew

Examples

v <- .JNew("util.Vector")
get all the methods

head(getJavaMethods(v))
get all the add() methods

getJavaMethods(v)[["add"]]

constr <- getJavaConstructors("util.Vector")
length(constr)
constr[[1]]

http://www.omegahat.org/RSJava

12 getNumJavaConverters

getNumJavaConverters
Returns the number of converters registered between R and Java

Description

This returns the number of converters currently registered between R and Java. The argument
specifies the desired direction of the conversion, by default querying both from Java to R and from
R to Java.

Usage

getNumJavaConverters(which=c(fromJava = FALSE, toJava = TRUE))

Arguments

which a logical vector in which FALSE indicates from Java to R and TRUE indicates
from R to Java.

Details

This accesses the internal C data structures that maintain the converter lists. These are in C so that
the low-level JNI code can access them directly without the overhead of converting to reference
objects and losing contextual information.

Value

An integer vector with the same length as the argument which. The value of each element is the
number of registered converters in the corresponding list.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

getJavaConverterDescriptions

Examples

getNumJavaConverters()
getNumJavaConverters(FALSE)
getNumJavaConverters(TRUE)

http://www.omegahat.org/RSJava

interfaceGenerator 13

interfaceGenerator Generates a template "closure" to represent a Java interface/class.

Description

To use an R variable as a Java object, one can create a closure or list of functions that implement
the methods of that Java class. The template of such a closure can be generated automatically using
the reflectance capabilities of both Java and R. This function generates such a template and can be
used as an initial step in implementing an R version of a Java class.

Usage

interfaceGenerator(name, file="")

Arguments

name the name of the Java class or interface whose methods are to be duplicated lo-
cally via R functions. This is resolved using the usual Omegahat rules so this
can be a partially qualified class name.

file The name of a file to which the template functions are written. This can then be
edited to provide an implementation of the Java class via an R object.

Details

This is useful for allowing an R object to be converted to a proxy Java object. For example,
consider using an R object as a callback for a Swing button. The object must implement the
actionPerformed() method of the ActionListener. This function calls the Omegahat
evaluator’s getMethods() method to retrieve a list of Java method descriptions and then con-
verts them to an R closure definition.

Value

This function has the side-effect of writing the definition of a function closure definition to standard
output (the console) or to a file. In the future, we will generate the actual function objects. The idea
is merely to show the possibilities available to us using reflectance.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

foreignReference

Examples

interfaceGenerator("java.awt.event.ActionListener")
interfaceGenerator("java.awt.event.ActionListener", "MyFile")

http://www.omegahat.org/RSJava

14 isJavaInitialized

isJavaInitialized Determines whether the JVM has been created.

Description

This determines whether the Java Virtual machine has already been initialized within this R session,
usually via the .JavaInit This is useful when we want to use the Java interface, but want to avoid
an error being thrown if the user hasn’t already created Java.

Usage

isJavaInitialized(msg=NULL)

Arguments

msg A character string, which if specified and the virtual machine has not been ini-
tialized, is passed as the single argument in a call to stop.

Details

This checks the state of the internal C variables to determine if the user has initialized the JVM. It
does not attempt to create the JVM. This allows the user to specify different arguments to customize
the VM.

Value

A logical value indicating whether the JVM has been created earlier (TRUE) or not (FALSE). If the
msg argument is specified and the JVM has not been initialized, an error is thrown and there is no
return value.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

.JavaInit

Examples

isJavaInitialized("initialize Java with .JavaInit()")
jlabel <- .JavaConstructor("javax.swing.JButton",

"Welcome the R-Java interface")
f <- .JavaConstructor("org.omegahat.Environment.GUITools.GenericFrame",

jlabel, TRUE)

optionally execute code.
if(isJavaInitialized()) {
.Java("System", "getProperty", "java.class.path")

}

http://www.omegahat.org/RSJava

javaConfig 15

javaConfig Returns a configuration object for initializing the Java Virtual Ma-
chine

Description

This integrates user arguments with default values to create an object containing the information
to parameterize the Java Virtual Machine’s and the Omegahat session’s initial environments. The
object includes a classpath specification, system properties for the JVM that can also be read by
the Omegahat system to govern how its elements are instantiated and also a library path for loading
shared libraries as JNI code for Java classes.

Usage

javaConfig(classPath=character(0), properties=character(0),
libraryPath=character(0), options=character(0),
default=if (exists(".javaConfig")) .javaConfig

else JavaConfiguration())

Arguments

classPath a character vector identifying locations of Java classes in the form of URLs,
Jar files or simple directories. This is passed to the JVM as the argument to
classpath. \ If this is not specified, the environment variable CLASSPATH
is queried and if this set, its elements are prefixed to the default ones.

properties a named character vector of system properties that are passed to the JVM ini-
tialization as -Dname=value for each element.

libraryPath a character vector identifying directories which are to be used by Java when
loading shared libraries/DLLs via System.loadLibrary()

options a character vector of strings that are passed as is to the initialization of the vir-
tual machine. These are basically non-property command line arguments that
one can pass when starting the Java virtual machine in the usual way (e.g. call-
ing the java executable). These include arguments such as mx of specifying the
maximum amount of memory (e.g."-Xmx128m" for 128 megabytes), verbose
option (e.g. "-verbose" or "-verbose:gc,class"), etc. See the docu-
mentation for your JVM or "The Java Native Interface" by Sheng Liang (page
250–251) or any JNI book.

default a list containing the default values for each of the 3 fields/groups of parame-
ters to which are added the user-specified values in the corresponding earlier
arguments.

Value

A list that can be used to customize the initialization of the Java Virtual Machine embedded within
the R session.

classPath a character vector whose elements are sources of Java class files. These can be
directories, URLs or Jar files (or any other form understood by the JVM). This
is collapsed and specified as the value of the classpath argument to the JVM
initialization.

16 JavaConfiguration-class

properties a named character vector whose values correspond to name=value pairs that
are passed to the JVM as system properties in the form -Dname=value.

libraryPath a character vector whose elements specify directories which are searched by the
JVM when loading native code for a Java class via the System.loadLibrary()
method.

Author(s)

John Chambers, Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

.JavaInit mergePath mergeProperties .javaConfig

Examples

javaConfig()
javaConfig(classPath=c("/home/duncan/Java", "/home/duncan/xml.jar",

paste(system.file("org","omegahat","Jars"),
"DataStructures.jar",sep="/")))

JavaConfiguration-class
Class "JavaConfiguration"

Description

Establish configuration parameters for SJava sessions

Objects from the Class

Use the constructor JavaConfiguration to create objects from the class.

JavaConfiguration(classPath= defaultJavaPath(), libraryPath = defaultJavaPath("LD_LIBRARY_PATH"),
properties=character(0), options=character(0), args=character(0))

Slots

classPath: character vector of class paths, one class path per element.

libraryPath: character vector of library paths, one path per element.

properties: A character vector of Java VM properties.

options: A character vector of Java VM options.

args: A character vector of Java VM arguments.

http://www.omegahat.org/RSJava

.JavaConstructor 17

Methods

Manipulation.

collapse signature(x = "JavaConfiguration"): re-structure x into the equivalent command-
line representation.

merge signature(x = "JavaConfiguration", y = "JavaConfiguration"): com-
bine the contents of two JavaConfiguration objects, e.g., collating unique class paths.

Examples

showClass("JavaConfiguration")
JavaConfiguration()
collapse(JavaConfiguration())

.JavaConstructor Create a Java object

Description

Creates a Java object by calling a constructor from the desired class. The object is (almost always)
stored in the Omegahat session and a reference to it returned. One must create and initialize the
Java virtual machine before calling this function. See .JavaInit. .JNew is a simple alias of
.JavaConstructor.

Usage

.JavaConstructor(className, ..., .name="", .sigs="", .convert=FALSE)

.JNew(className, ..., .name="", .sigs="", .convert=FALSE)

Arguments

className The name of the Java class to be instantiated. This can be either the full name or
a partially qualified name which will use the Omegahat class locator mechanism
to find the class. It is better (but less convenient) to give the full name as this
avoids the lengthy one-time construction of the class lists in Omegahat. It makes
sense to give partially qualified names for a) the user’s convenience, b) when
one expects to substitute different packages with same-named classes that can
be used in place of each other.

... the arguments used to identify and be passed to the constructor in the target class
being instantiated.

.name The name to use to store the result in the omegahat named reference database.
If this is missing, an anonymous reference is returned or the value converted to
an R object. If the result of the Java method can be converted, this argument can
be used to prohibit this conversion and leave the Java value in Omegahat for use
in future .Java calls.

.sigs A character vector of class identifiers that help to identify the Java method to
be invoked. This is used to avoid ambiguity introduced by Java’s polymor-
phism/overloaded names and the automatic/implicit conversion performed be-
tween R and Java objects.

18 .JavaConstructor

.convert a logical value indicating whether the Omegahat interpreter should attempt to
convert the newly created object to an R object (TRUE) or simply leave it in the
Omegahat database. This is ignored if a value for .name is supplied.
One can also provide a function which will be called with two arguments - a ref-
erence to the Java object and the class name of the Java object. This is the same
as the function converters one can register via setJavaFunctionConverter.
Also, one can specify a native routine (i.e. C/C++/Fortran) address. This can
be done using getNativeSymbolInfo and accessing the address field of
the returned object. See examples in the inst/examples/ directory.

Details

This creates a new Java object by first converting the R arguments to Java objects and then look-
ing for a constructor in the target class that accepts arguments of these types. The resulting Java
object is available for future computations as arguments to .Java, .JavaConstructor, and
.OmegahatExpression. At present, the object must be explicitly freed by the caller. This is
always true if a value is given for the .name argument.

Value

If a value for the argument .name is provided, this returns a NamedReference to a Java ob-
ject stored in the Omegahat session. Otherwise, usually an AnonymousReference is returned.
However, if a converter to R exists for the particular Java class being created and no value for the
.name argument is given in the call, the Java object will be converted directly to an R object.
This is sometimes useful when the constructor populates the object’s fields and one has no fur-
ther user for the object itself, but just its contents. For example, the basic constructor for the class
StatDataURL takes a URL name and reads its contents. A converter could be registered for this
class that returns the lines of text.

Note

Uses the Omegahat interactive Java environment.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

See Also

.Java .OmegahatExpression

Examples

tmp <- .JavaConstructor("util.Vector", as.integer(10))
.Java(tmp, "add", "This is a string")
.Java(tmp, "add", 1.5)

b <- .JavaConstructor("JButton","R Java Button")
.Java(tmp, "add", b)

http://www.omegahat.org/RSJava

javaHandlerGenerator 19

f <- .JavaConstructor("GenericFrame", b)

f <- .JNew("GenericFrame", b)

javaHandlerGenerator
Manages exporting of R objects to Java/Omegahat and calls from the
latter to R objects.

Description

This creates a closure that manages objects exported from the R session to Java/Omegahat as argu-
ments to constructors and methods in that system. When the Java code invokes a method on such
a reference, the R object is resolved by this closure and the appropriate R function invoked on that
object.

Usage

javaHandlerGenerator()

Value

A closure containing the “methods”

handler() brokers a method request for a reference under the management of this handler,
taking care of passing the arguments, identifying the appropriate method, and
catching errors.

createReference()
creates an actual foreignReference object by calling the foreignReference
function.

addReference adds an object to the list being managed by this reference handler. An explicit
name can be provided in the call to this method, or otherwise a unique one is
generated by the manager itself.

remove discards the identified object from the list of objects being managed by this
reference handler.

getReference retrieves a particular object being managed by this reference manager using the
name of the reference.

references returns a (named) list of all the objects being managed by this reference manager.

total returns the number of references that have been managed by this object. This is
used in constructing new unique names when an object is registered without an
explicit identifier.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

http://www.omegahat.org/RSJava

20 .JavaInit

Examples

Not run:
.JavaInit(callbackHandler = javaHandlerGenerator())

End(Not run)

.JavaInit Initialize or terminate the Java Virtual Machine

Description

.JavaInit loads and starts the Java Virtual Machine and the Omegahat session which brokers
requests to Java classes and objects. The arguments to this function control the initial configuration
and environment of the JVM.

Usage

.JavaInit(..., config=NULL, default=javaConfig(), verbose=FALSE,
callbackHandler=javaHandlerGenerator())

Arguments

config an object containing elements to be used in the classpath of the new JVM, system
properties, and libraryPath elements for loading code via JNI (from Java). See
javaConfig

default the default configuration options (classpath, properties, etc.) that are merged
with those from the config argument.

verbose logical value indicating whether diagnostic information should be displayed on
the screen as the JVM and Omegahat session are initialized. This is for use in
debugging failures or anomalies in the startup.

callbackHandler
an object (usually a closure) that handles requests from the Java/Omegahat sys-
tem for method invocations on R objects exported to that foreign system. This
is usually javaHandlerGenerator

... additional arguments passed to JavaConfiguration to influence settings.

Details

Creates and starts the JVM and Omegahat session. Also, registers a function or list of functions
(closure) to handle callbacks from Java to R objects and functions.

Value

A logical value indicating whether the initialization was successful.

Author(s)

Duncan Temple Lang, John Chambers

javaIs 21

References

http://www.omegahat.org/RSJava

See Also

javaConfig

Examples

Not run:
.JavaInit()

End(Not run)

javaIs Performs class comparisons for Java objects

Description

Allows one to test if a Java object (in Omegahat) is an object of a particular class, or implements a
particular Java interface.

Usage

javaIs(obj, klass, instanceof=TRUE)

Arguments

obj the Java object whose class is being queried and compared

klass the name of a Java class or the Class reference object with which the object obj
is being compared.

instanceof a logical value indicating whether the comparison should be done using the
equality of classes or the Java instanceof semantics. The former tests whether
the class of obj is the same as the class identified by klass. The latter identi-
fies whether obj implements the Java interface class klass. (There is also the
assignable from semantics which may or may not be currently present).

Details

This calls the Omegahat evaluator’s is method.

Value

A logical value indicating whether the class of obj is related to klass in the specified comparison.
This is TRUE or FALSE.

Author(s)

Duncan Temple Lang, John Chambers

http://www.omegahat.org/RSJava

22 .Java

References

http://www.omegahat.org/RSJava

See Also

.JNew .Java

Examples

x <- .JNew("java.util.Vector")

TRUE
javaIs(x, "java.util.Vector")
javaIs(x, "java.util.List", TRUE)

FALSE
javaIs(x, "java.util.Hashtable")

.javaMatchFunctions
Symbolic constants for how classes are matched in conversion

Description

The R-Omegahat interface provides 3 built-in routines for determining whether a Java object matches
a particular class or not. These routines are used in determining whether a converter applies to a
particular Java object and is capable of converting it to an R object. This vector is a named integer
vector where the names are symbolic identifiers for the integers that allow the R and C code to
identify which of these 3 built-in routines is meant.

.Java Invokes a Java method

Description

Calls a Java method, transferring R arguments to the Java (Omegahat) system as needed. This
can be used to call methods in the Omegahat evaluator, not just on previously created user-level
objects. One must create and initialize the Java virtual machine before calling this function. See
.JavaInit.

Usage

.Java(.qualifier, .methodName, ..., .name=NULL, .sigs="", .convert=TRUE)

http://www.omegahat.org/RSJava

.Java 23

Arguments

.qualifier The Java object whose method is to be invoked. This is the ‘this’ in the Java call
and is typically a reference obtained as the result of a previous call to .Java
or .JavaConstructor. If this is NULL or omitted, the Omegahat evaluator
looks first for an Omegahat function and then a method within its own object.

.methodName The name of the method (or function if .qualifier is NULL) that is to be
invoked in the Java object.

... arguments to be passed to the Java method call. Any values that are named (i.e.
x = 1) are assigned persistently to the Omegahat named reference database and
can be referenced directly in future calls.

.name The name to use to store the result in the omegahat named reference database.
If this is missing, an anonymous reference is returned or the value converted to
an R object. If the result of the Java method can be converted, this argument can
be used to prohibit this conversion and leave the Java value in Omegahat for use
in future .Java calls.

.sigs A character vector of class identifiers that help to identify the Java method
to be invoked. This is used to avoid ambiguity introduced by Java’s poly-
morphism/overloaded names and the automatic/implicit conversion performed
between R and Java objects. This should have an entry for each argument
passed via . . . and governs how we convert that S value to a Java value. See
.JavaSigs for possible values.

.convert typically a logical value that indicates whether the Omegahat manager should
attempt to convert the result of the method call. This is usually TRUE, but can
be explicitly specified to avoid (arrays of) primitive object being converted to an
R object when it is to be used in a subsequent .Java call. One can also provide
a function which will be called with two arguments - a reference to the Java
object and the class name of the Java object. This is the same as the function
converters one can register via setJavaFunctionConverter.
Also, one can specify a native routine (i.e. C/C++/Fortran) address. This can
be done using getNativeSymbolInfo and accessing the address field of
the returned object. See examples in the inst/examples/ directory.

Details

This invokes a Java method on the target object by first converting the R arguments to Java objects
and then searching the Java object for a method that accepts these Java argument types. Then it
invokes the method and converts the result to a Java object using the basic and extensible conversion
mechanism between Java and R.

Value

The return value of the Java method invocation, converted to an R object. If the Java value is
considered convertible, one of the registered converters is called. By default, these handle primitives
(scalars) and Java collections. The user can register others. If no converter is found, a reference to
the Java object is returned as an R object. If the .name argument was supplied in the call to this R
function, the reference is a NamedReference. Otherwise, it is a AnonymousReference.

Note

Uses the Omegahat interactive Java environment.

24 javaSig

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

See Also

.JavaConstructor .OmegahatExpression getJavaConverterDescriptions

foreignReference

Examples

v <- .JavaConstructor("java.util.Vector", as.integer(10))
.Java(v, "add", "A string element")
.Java(v, "add", .JavaConstructor("java.util.Hashtable", as.integer(3)))
.Java(v, "size")

props <- .Java("System", "getProperties")
props[["java.class.path"]]

props <- .Java("System", "getProperties", .convert=FALSE)
props$getProperty("java.class.path")

javaSig Converts an R type name to a Java type

Description

When specifying a Java type in the .sigs argument of the different method/constructor calls to
influence which method is dispatched in the remote system and how R objects are converted, one
must use the appropriate type specifier. This function converts R types to the corresponding Java
string. This handles converting R primitive types such as integer to "I", double to "D", logical to
"Z", etc. and classes to "Lpkg/subpkg/.../className;"

Usage

javaSig(name)

Arguments

name The name of the R type whose corresponding Java type identifier is being sought.
If this is specified as an object, its mode is take. See RtoJavaSig

Details

This searches the mapping contained in .JavaSigs

Value

a string (character vector of length 1) with the Java type identifier corresponding to the input.

http://www.omegahat.org/RSJava

.JavaTerminate 25

Author(s)

John Chambers, Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

RtoJavaSig

.JavaTerminate Terminates the Java Virtual Machine

Description

Unloads the Java Virtual Machine, releasing its resources and terminating the Omegahat session.
Once the JVM is terminated, it cannot be restarted within this R session.

Usage

.JavaTerminate()

Details

This just calls the internal routine which notifies the JVM that it should terminate. Exactly how this
action is performed depends on the current state of the JVM and the threads that are active.

Value

TRUE indicating that the JVM is terminated and should not be used.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

.JavaInit

http://www.omegahat.org/RSJava
http://www.omegahat.org/RSJava

26 .JClass

Examples

Not run:
active the JVM only to find out what
version of Java it supports.
No further activity can take place in the
Java session.
#

.JavaInit()
jversion <- .Java("System", "getProperty", "java.version")
.JavaTerminate()

End(Not run)

.JClass Returns a reference to a Java class.

Description

This returns the class of the specified object or that found by resolving the (partially qualfied) class
name. The resulting class reference can be used to access static fields and method, and a description
of the class. This is most conveniently done using the $ operator.

Usage

.JClass(x, name = NULL)

Arguments

x a (partially qualified) class name or a reference to a Java object whose class
name is used to resolve the class.

name an optional string to use as the name to use for the resulting class reference in
the Omegahat database. This is passed as the .name argument to .Java.

Details

This calls the Omegahat evaluator’s findClass method with the name of the class to be found.

Value

An anonymous reference to a Java class. This can then be used to access static methods and fields.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

See Also

.Java

http://www.omegahat.org/RSJava

jdynamicCompile 27

Examples

jsys <- .JClass("System")
jsys$getProperties()
jsys$getProperty("java.class.path")

rt <- .JClass("Runtime")$getRuntime()
rt$exec("whoami")
rt$exec(paste("find",system.file("scripts", pkg="Java")))

frame <- .JNew("JFrame")
frame$setBackground(.JClass("Color")$red())

jdynamicCompile Dynamically Compile a Java Class

Description

This uses the dynamic byte-code generator facility in Omegahat to create a new Java class with a
given name. By default, the new class extends the RForeignReference class and implements a
specifiable collection of Java interfaces. Each method in these interfaces is implemented by calling
the corresponding R function in the R reference object.

Usage

jdynamicCompile(interface, newClass,
generatorClass="ForeignReferenceClassGenerator",
load=TRUE)

Arguments

interface the (fully qualified) name of one or more Java interface classes that the new
class should implement. The methods in these interfaces are implemented as
calls to the correspondingly named R function in the R object identified by the
RForeignReference’s key.

newClass the name of the new class to be created.
generatorClass

the name of the Java class to which is to be used as the dynamic compiler.
This is rarely specified, but allows one to use classes that implement the code
differently, e.g. by extending ForeignReferenceClassGenerator.

load logical value indicating whether the new class should be loaded into the Omega-
hat list of available classes. If this is FALSE, one usually writes the newly
generated class definition to a file.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org

http://www.omegahat.org

28 mergePath

Examples

Not run:
jdynamicCompile("java.awt.event.ActionListener", "RActionListener")
l <- .JNew("RActionListener",

foreignReference(list(actionPerformed=function() print("ok"))))
button$add(l)

End(Not run)

Not run:
def <- jdynamicCompile("java.awt.event.ActionListener",

"RActionListener", load=F)
def$write()

End(Not run)

mergePath Merges classpath specifications

Description

Merges two character vectors of classpaths for use in creating arguments to initialize the Java Virtual
Machine within R. This avoids duplicates.

Usage

mergePath(path, default, collapse=NULL)

Arguments

path character vector of path elements

default a character vector containing the default or previous classpath elements

collapse a character vector used the value of a the collapse argument in a call to
paste. If this is non-null, the resulting vector is converted to a single string.
This is usually given as ":" on Unix machines and ";" on Windows machines.

Value

A character vector containing the union of the two arguments. If the collapse argument is
specified, the elements of the resulting character vector are concatenated/pasted together to yield a
single string.

Author(s)

Duncan Temple Lang, John Chambers

References

http://www.omegahat.org/RSJava

See Also

.JavaInit javaConfig

http://www.omegahat.org/RSJava

mergeProperties 29

Examples

mergePath("~/Java/MySQL/mm.mysql-2.0.1/mysql.jar",c("$OMEGA_HOME/Jars/antlr.jar","$OMEGA_HOME/Jars/jhall.jar"))
mergePath("~/Java/MySQL/mm.mysql-2.0.1/mysql.jar",c("$OMEGA_HOME/Jars/antlr.jar","$OMEGA_HOME/Jars/jhall.jar"), collapse=":")

mergeProperties Creates the union of two named character vectors, converting to a
Java-like property table

Description

Utility function to merge the two named objects, with elements single character strings, and convert
the result to a vector of Java property settings.

Usage

mergeProperties(props, default, convert=TRUE)

Arguments

props named character vector of properties.

default named character vector of properties with which the elements in props are to
be merged. The values in props take

convert a logical value which, if TRUE causes the the resulting character vector to be
converted to Java property specifications for use in intializing the Java Virtual
machine, each of the form -Dname=value

Value

Augments the default with the named values that are in props and not in default and also
replaces those shared by both vectors with those in props. If the argument convert is TRUE,
elements of the vector are converted to Java properties suitable for initializing the JVM.

See Also

mergePath .JavaInit javaConfig

Examples

props <- c(java.compiler="", myProperty="abc", "X_Y"="Hi there")
mergeProperties(props, javaConfig()@properties)

30 .OmegahatExpression

.OmegahatExpression
Execute an Omegahat/Java expression

Description

This evaluates the specified expression in the Omegahat sub-system, resolving references from the
Omegahat databases and the list of arguments provided in this call.

This is no longer active in the current version (0.69-0) of the package. This is done to avoid a
dependency on an older version of ANTLR. If this feature is needed, use .Java instead or please
ask for it to be reintroduced.

Usage

.OmegahatExpression(expr, ..., .name=NULL, .sigs="", .convert = TRUE)

Arguments

expr A string value that is a valid Omegahat expression.

... a collection of named arguments which are converted to Java objects and avail-
able to the Omegahat expression when it is evaluated using the names of the
arguments.

.name The name to use to store the result in the omegahat named reference database.
If this is missing, an anonymous reference is returned or the value converted to
an R object. If the result of the Java method can be converted, this argument can
be used to prohibit this conversion and leave the Java value in Omegahat for use
in future .Java calls.

.sigs not really needed here, but can be used to control the conversion of the argu-
ments in . . .

.convert logical value indicating whether the Omegahat interpreter should attempt to con-
vert the result of the expression to an R object (TRUE), or alternatively just as-
sign the value to a local database and return a reference. This is useful when one
wishes to avoid converting an object back to its R counterpart because you wish
to use it in subsequent .OmegahatExpression or .Java calls.

Details

This can be used to create functions, assign multiple values in a single call, create arrays easily,
etc. One of the drawbacks of using this is that the details of the Omegahat and Java languages are
exposed to the code that calls them in this manner. By using the .Java and .JavaConstructor
functions, one can easily subsititute different implementations that for example, use CORBA to
invoke methods in remote objects written in different languages. \ In some ways, this has similarities
to substitute.

Value

The result of the Omegahat evaluation of the expression, converted from a Java object to an R object
using the basic and extensible conversion mechanism between Java and R.

omegahatReference 31

See Also

.Java .JavaConstructor

Examples

.OmegahatExpression("show(1::10)")

.OmegahatExpression("show(1::z);", z=10)

omegahatReference Creates a local object representing a Java reference

Description

On occassion, one can lose a reference to a Java object stored in the Omegahat databases. If one
knows its identifier (i.e. Omegahat name) and whether it is an anonymous or named reference, one
can recreate an R object that refers to this Java object and use this R object in subsequent calls to
the Java interface.

Usage

omegahatReference(key, named=TRUE)

Arguments

key the name used by Omegahat to store the Java object.
named a logical value indicating whether this is a named (TRUE) or anonymous (FALSE)

reference.

Value

An object of class either AnononymousOmegahatReference or NamedOmegahatReference.
This has fields

key The Omegahat name by which the Java object is known. This is the value of the
argument key.

className the class name of the Java object. This is always empty.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

.Java .JavaConstructor

Examples

omegahatReference("x")
omegahatReference("x",FALSE)

http://www.omegahat.org/RSJava

32 removeJavaConverter

removeJavaConverter
Removes a converter for R and Java objects in the R-Java interface.

Description

This manipulates the internal list of object converters that control how objects are transferred from
R to Java and from Java to R. It allows the R user to remove entries and control how objects are
converted.

Usage

removeJavaConverter(id, fromJava=TRUE)

Arguments

id the index or position of the converter to be removed in the specified converter
list.

fromJava logical value indicating which set of converters on which we are operating: from
Java to R (TRUE) or from R to Java (FALSE). The latter is currently not imple-
mented and awaits the next version which will use C++.

Value

Returns a integer identifying the position in the list in which the converter was located. This is a
named vector and the name is the description of the converter. This allows one to ensure that you
got the correct one.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

See Also

setJavaConverter setJavaConvertible the .convert argument of .Java and .JavaConstructor

Examples

remove the Constructor converter
Not run:
removeJavaConverter(3)

add a converter -- userObject must be valid
setJavaConverter(.RSJava.symbol("RealVariableConverter"),

matcher="AssignableFrom",
autoArray=TRUE,
description="Omegahat RealVariable to numeric vector",
userObject="RealVariable")

http://www.omegahat.org/RSJava

.RSJava.symbol 33

and remove it by specifying its description.
removeJavaConverter("Omegahat RealVariable to numeric vector")

add the converter again
cvt <- setJavaConverter(.RSJava.symbol("RealVariableConverter"),

matcher="AssignableFrom",
autoArray=TRUE,
description="Omegahat RealVariable to numeric vector",
userObject="RealVariable")

and remove it by specifying its position
which is given to us by the setJavaConverter call.

removeJavaConverter(cvt$index)

End(Not run)

.RSJava.symbol Expands a name to a C routine name in this package.

Description

In order to avoid conflicts with other packages having the same C routine names, we use a macro
RS_Java to identify the names of C routines. This akes it easy for us to generate unique names.
This function allows callers of these routines from R (via the .C and .Call functions) to refer
to them via their non-expanded name and have this function perform the appropriate expansion.
Currently, this prefixes the regular name with "RS_JAVA_".

Usage

.RSJava.symbol(name)

Arguments

name The unexpanded name of the C routine, i.e. without the prefix.

Value

The string identifying the C routine corresponding to the short (unexpanded) reference given in
name.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.com/RSJava

Examples

.C(.RSJava.symbol("isJVMInitialized"), logical(1))

http://www.omegahat.com/RSJava

34 RtoJavaSig

RtoJavaSig Returns the Java type identifier for an R object

Description

This takes the given object and returns a string that can be used in the This is of most use for prim-
itivesso that one doesn’t have to remember the different Java characters representing its primitive
types. This is currently not useful for non-primitive objects (e.g. lists) until javaSig is enhanced.

Usage

RtoJavaSig(obj)

Arguments

obj Any R object, but the result is currently only meaningful if this is a primitive.

Details

This examines the class and/or mode of the specified object and then calls javaSig to find the
name of the Java class corresponding to the name of the given object’s type.

Value

A character vector of length 1 identifying the Java type (primitive or class) corresponding to the
type of the input object.

Note

This will be enhanced in future versions as more elaborate conversion mechanisms are added.

Author(s)

John Chmabers, Duncan Temple Lang

References

http://www.omegahat.org, http://www.javasoft.com

See Also

javaSig

Examples

javaSig(1)
javaSig(as.integer(10))
javaSig("a string")
javaSig(list(a=1))

http://www.omegahat.org
http://www.javasoft.com

setJavaConvertible 35

setJavaConvertible Register a Java class as being convertible to an R object

Description

When a value is to be returned from Java to R, the Omegahat evaluator examines a table to determine
if an object of that type can be converted to R. This function manipulates that table and allows one
to control for what types of objects conversion is attempted.

This is not used currently. The Java objects are returned directly and the user-level converters
determine whether the object is ‘convertible’.

Usage

setJavaConvertible(klass, ok=TRUE, matching=0)

Arguments

klass The name of a Java class or interface which is to be added or removed from the
set of known convertible classes. This can be a partially qualified class name
that is resolved by the Omegahat evaluator.

ok logical value indicating whether objects of class klass are to be considered
convertible or not by the Omegahat sub-system.

matching an integer value from the set 0, 1 and 2. These values indicate how comparisons
between the registerd class and the object to be converted are performed.

0 An exact match, meaning that the class of the object must be the same as the
class being registered as convertible.

1 the target object must be an instance of the class being registered, meaning
that it implements this Java interface or is an instance of a class that is
derived from the registered one.

2 the target object must be compatible with the registered class in the sense of
isAssignableFrom method between two classes.

These constants are defined in the Java interface ConvertibleClassifierInt.

Details

Simply calls setJavaConvertible in the Omegahat evaluator which passes the request on to
the ConverterClassifierInt object employed by that evaluator.

Value

NULL corresponding to a call to a Java method returning void.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava

http://www.omegahat.org/RSJava

36 setJavaConverter

See Also

setJavaConverter getJavaConverterDescriptions getNumJavaConverters

setJavaConverter Add a converter from Java to an R object

Description

Register a C routine which converts a Java object to an R object. This occurs when a value is
returned from a Java method (or constructor) call via .Java or .JavaConstructor.

Usage

setJavaConverter(handler, matcher=-1, autoArray=TRUE, description="",
userObject=NULL, register = TRUE)

Arguments

handler The name of a C routine that performs the conversion from the Java object to
the R object. This is given the Java object, the class of that object, the JNI
environment and the element in the converter object is to be called when the the
matcher determines that

matcher The name of a routine that is used to determine whether this converter can han-
dle a specific object. This can also be specified as an element of the vector
.javaMatchFunctions, either as (part of) a name of an element or the inte-
ger value. These are then used to identify one of the built-in converter matching
functions.

autoArray A logical value indicating whether this converter routine can be called element-
wise for an array of the class type it matches (TRUE) , or whether it wishes to
defer the handling of such an array to another converter or deal with it all in one
step.

description A string that describes the action of the converter (e.g. the type of source Java
class and target R object on which it operates). This is stored with the internal
converter and accessible to users via the getJavaConverterDescriptions.

userObject If the matcher argument identifies one of the built-in matching routines (i.e.
assignable from, instance of, equals) this is interpreted as a Java class identifier.
That is either a class name (which is resoloved, and expanded as necessary, by
Omegahat) and used to parameterize the particular use matching routine.

register a logical value indicating whether this call should also notify Java that the
specified class (i.e. that given in userObject) is convertible. This calls
setJavaConvertible with the class and matching mechanism specified
for this function.

Value

This returns the expanded named of the class used to parameterize the matching function and the
identifier for the matching function itself.

setJavaFunctionConverter 37

match the value passed to the C routine identifying the matching function. This is
either an element from .javaMatchFunctions (hence a named integer) or
a string identifying the C routine.

class The name of the class used to parameterize the matching function, if the latter
is one of the built-in routines named in .javaMatchFunctions. The class
name is resolved by Omegahat and converted to use ‘/’ instead of ‘.’ to separate
the Java packages. This is so that it can be easily used in the native C code.

index the position in the list into which this converter was added. This is useful if we
want to remove the converter at a later stage via removeJavaConverter.

description the description argument passed to this function call. As with the index field,
this is useful when we wish to remove the converter as it acts as an identifier for
the converter. See removeJavaConverter.

Note

In the near future, we will re-establish the mechanism for specifying R functions or closure instances
for the handler and matcher. This has become more complicated than intended and will probably
be restricted to work only for C routines. All of the cases have not been tested entirely.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org, http://www.javasoft.com

See Also

getJavaConverterDescriptions getNumJavaConverters setJavaConvertible

Examples

Not run:
setJavaConverter(.RSJava.symbol("RealVariableConverter"),

matcher="AssignableFrom",
autoArray=TRUE,
description="Omegahat RealVariable to numeric vector",
userObject="RealVariable")

End(Not run)

setJavaFunctionConverter
Registers a function to convert between R and Java objects

Description

This allows one to register two functions that are used to convert an object from Omegahat/Java to
an R object. One function (match) determines whether the other function (handler) that actually
performs the computation is suitable for converting the target object. The result of the handler
function is an R object that represents the Java object being converted.

http://www.omegahat.org
http://www.javasoft.com

38 setJavaFunctionConverter

Usage

setJavaFunctionConverter(handler, match, description=NULL, fromJava=TRUE,
autoArray = TRUE, position = -1)

Arguments

handler a function that takes two arguments: a reference to the Java object to be con-
verted and the name of its Java class. This function should return the converted
value or the reference to the Java object if it cannot convert it meaningfully.

match a function that deterines whether the associated handler function is appro-
priate for converting the target Java object. This function should expect two
arguments: a reference to the Java object and its class name. It must return a
logical value indicating whether the handler is capable of converting the Java
object.

description a descripion that is stored internally with the converter and accessible to users
via the function getJavaConverterDescriptions.

fromJava a logical value indicating whether the functions are intended for converting from
Java to R or vice-versa. Currently, the R to Java mechanism is not implemented.

autoArray a logical value indicating whether R is to deal with Java arrays in relation to this
converter by calling the match/predicate function with an element of the array
(TRUE) or the array itself (FALSE).

position the index (starting at 1) at which to insert the converter. If this is non-positive,
the converter entry is appended at the end of the list.

Value

An object of class "JavaFunctionConverter" with fields

index the position of this converter in the internal list of converters. This is a useful
identifier for removing the converter.

description the value of the description argument. This is also a useful and preferred
identifier for removing the converter.

handler the value of the handler argument.

match the value of the match argument.

Note

The R to Java converter mechanism will be added in the next release.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava/index.html

See Also

setJavaConverter setJavaConvertible .Java .JavaConstructor

http://www.omegahat.org/RSJava/index.html

setJavaHandler 39

Examples

this must be run wit the ROmegahatExamples.jar
file in the classpath (e.g.
.JavaInit(list(classPath=system.file("org/omegahat/Jars/ROmegahatExamples.jar")))
so as to be able to find RealVariable!

if(!is.null(.Java("__Evaluator", "expandClassName", "RealVariable"))) {
cvt <- setJavaFunctionConverter(function(jobj,className) {

.Java(jobj, "getValues")
}, function(jobj, className) {

return(className == "org.omegahat.DataStructures.Data.RealVariable")
}, "Omegahat RealVariable to numeric vector")

setJavaConvertible("RealVariable")
.JavaConstructor("RealVariable", rnorm(10))

now unregister the converter
setJavaConvertible("RealVariable", FALSE)
removeJavaConverter(cvt$index)

}

setJavaHandler Register a handler for exporting R objects to foreign systems.

Description

Registers a manager for R objects that are to be used by foreign systems such as Omegahat and
Java. The registration provides access to the object from C routines that bridge the two systems - R
and the foreign one.

Usage

setJavaHandler(handler)

Arguments

handler An object that manage the references and provide the different functions for ac-
cessing and manipulating those references. These functions are described below
and implemented in javaHandlerGenerator()

Details

This registers the handler object with the C code so that it is known to the Java methods. The
methods that must be provided are

handler() brokers a method request for a reference under the management of this handler, tak-
ing care of passing the arguments, identifying the appropriate method, and catching errors.

createReference() creates an actual foreignReference object by calling the foreignReference
function.

addReference adds an object to the list being managed by this reference handler. An explicit
name can be provided in the call to this method, or otherwise a unique one is generated by the
manager itself.

40 internal

remove discards the identified object from the list of objects being managed by this reference
handler.

getReference retrieves a particular object being managed by this reference manager using the
name of the reference.

references returns a (named) list of all the objects being managed by this reference manager.

total returns the number of references that have been managed by this object. This is used in
constructing new unique names when an object is registered without an explicit identifier.

The intent of the handler is to allow the management of the objects being exported to the foreign
system(s) (Java and Omegahat)

Value

The previous value of the registered handler that has been replaced with this value. This allows one
to temporarily replace a handler with a new version and then swap the original back at the end of
an operation/transaction.

Author(s)

Duncan Temple Lang

References

http://www.omegahat.org/RSJava/Conversion.html

See Also

getJavaHandler

Examples

Not run:
old <- setJavaHandler(javaHandlerGenerator())
setJavaHandler(old)

End(Not run)

internal Functions for internal or illustrative use by SJava

Description

These functions are for internal use by SJava, or are used in primarily outdated examples.

Usage

S3 method for class 'JavaException':
conditionMessage(c)
S3 method for class 'JavaException':
conditionCall(c)
getLastJavaException()
createListener(methods, jinterface, jname = "",

superClass = "org.omegahat.R.Java.RJavaInstance")

http://www.omegahat.org/RSJava/Conversion.html

internal 41

Arguments

c A condition object.

methods a named list of functions to be invoked, in particular actionPerformed to
implement callback methods of jinterface.

jinterface A Java class (e.g., java.awt.event.ActionListener) for which the
listener is to be created.

jname A name (as used by .JNew) used to refer to this dynamically compiled class.

superClass The super class for the defined and dynamically compiled class.

Author(s)

Duncan Temple Lang

See Also

conditions

Index

∗Topic classes
JavaConfiguration-class, 16

∗Topic interface
.JClass, 26
.Java, 22
.JavaArrayConstructor, 1
.JavaConstructor, 17
.JavaInit, 20
.JavaSigs, 6
.JavaTerminate, 25
.OmegahatExpression, 30
.RSJava.symbol, 33
.javaConfig, 5
.javaMatchFunctions, 22
convertFromToJava, 3
defaultJavaPath, 4
expandClassName, 6
foreignReference, 7
getForeignReferences, 8
getJavaConverterDescriptions,

9
getJavaHandler, 10
getJavaMethods, 11
getNumJavaConverters, 12
interfaceGenerator, 13
internal, 40
isJavaInitialized, 14
javaConfig, 15
javaHandlerGenerator, 19
javaIs, 21
javaSig, 24
jdynamicCompile, 27
mergePath, 28
mergeProperties, 29
OmegahatReference, 4
omegahatReference, 31
removeJavaConverter, 32
RtoJavaSig, 34
setJavaConverter, 36
setJavaConvertible, 35
setJavaFunctionConverter, 37
setJavaHandler, 39

∗Topic programming

.JClass, 26

.Java, 22

.JavaArrayConstructor, 1

.JavaConstructor, 17

.JavaInit, 20

.JavaSigs, 6

.JavaTerminate, 25

.OmegahatExpression, 30

.RSJava.symbol, 33

.javaConfig, 5

.javaMatchFunctions, 22
convertFromToJava, 3
defaultJavaPath, 4
expandClassName, 6
foreignReference, 7
getForeignReferences, 8
getJavaConverterDescriptions,

9
getJavaHandler, 10
getJavaMethods, 11
getNumJavaConverters, 12
interfaceGenerator, 13
internal, 40
isJavaInitialized, 14
javaConfig, 15
javaHandlerGenerator, 19
javaIs, 21
javaSig, 24
jdynamicCompile, 27
mergePath, 28
mergeProperties, 29
OmegahatReference, 4
omegahatReference, 31
removeJavaConverter, 32
RtoJavaSig, 34
setJavaConverter, 36
setJavaConvertible, 35
setJavaFunctionConverter, 37
setJavaHandler, 39

.C, 33

.Call, 33

.JClass, 7, 26

.JNew, 11, 22, 41

42

INDEX 43

.JNew (.JavaConstructor), 17

.Java, 1, 2, 5, 6, 8, 11, 18, 22, 22, 26, 30–32,
36, 38

.JavaArrayConstructor, 1

.JavaArrayLength
(.JavaArrayConstructor), 1

.JavaConstructor, 6, 8, 11, 17, 23, 24,
30–32, 36, 38

.JavaGetArrayElement, 1

.JavaGetArrayElement
(.JavaArrayConstructor), 1

.JavaInit, 1, 14, 16, 17, 20, 22, 25, 28, 29

.JavaSetArrayElement, 1

.JavaSetArrayElement
(.JavaArrayConstructor), 1

.JavaSigs, 6, 23

.JavaTerminate, 25

.OmegahatExpression, 8, 18, 24, 30, 30

.RSJava.symbol, 33

.javaConfig, 5

.javaMatchFunctions, 22
[.JavaArrayReference

(.JavaArrayConstructor), 1
[<-.JavaArrayReference

(.JavaArrayConstructor), 1
[[.OmegahatReference

(OmegahatReference), 4
[[<-.OmegahatReference

(OmegahatReference), 4
$.OmegahatReference

(OmegahatReference), 4

collapse
(JavaConfiguration-class),
16

collapse,JavaConfiguration-method
(JavaConfiguration-class),
16

conditionCall.JavaException
(internal), 40

conditionMessage.JavaException
(internal), 40

conditions, 41
convertArrayFromJava

(convertFromToJava), 3
convertFromToJava, 3
convertListToJava

(convertFromToJava), 3
convertNamedListToJava

(convertFromToJava), 3
convertOrderedTableFromJava

(convertFromToJava), 3

convertVectorFromJava
(convertFromToJava), 3

createListener (internal), 40

defaultJavaPath, 4

expandClassName, 6

foreignReference, 7, 13, 19, 24, 39

getForeignReferences, 8
getJavaConstructors

(getJavaMethods), 11
getJavaConverterDescriptions, 9,

12, 24, 36–38
getJavaHandler, 10, 40
getJavaMethods, 11
getLastJavaException (internal),

40
getNativeSymbolInfo, 18, 23
getNumJavaConverters, 9, 12, 36, 37

interfaceGenerator, 13
internal, 40
isJavaInitialized, 14

javaConfig, 15, 20, 21, 28, 29
JavaConfiguration, 20
JavaConfiguration

(JavaConfiguration-class),
16

JavaConfiguration-class, 16
javaHandlerGenerator, 10, 19, 20, 39
javaIs, 21
javaSig, 24, 34
jdynamicCompile, 27

length.JavaArrayReference
(.JavaArrayConstructor), 1

merge,JavaConfiguration,JavaConfiguration-method
(JavaConfiguration-class),
16

mergePath, 16, 28, 29
mergeProperties, 16, 29

OmegahatReference, 4
omegahatReference, 31

paste, 28
print.OmegahatReference

(OmegahatReference), 4

removeJavaConverter, 32, 37
RtoJavaSig, 24, 25, 34

44 INDEX

setDefaultConverters
(convertFromToJava), 3

setJavaConverter, 32, 36, 36, 38
setJavaConvertible, 9, 32, 35, 36–38
setJavaFunctionConverter, 18, 23, 37
setJavaHandler, 10, 39
simplifyListToVector

(convertFromToJava), 3
stop, 14
substitute, 30
Sys.getenv, 4

	.JavaArrayConstructor
	convertFromToJava
	defaultJavaPath
	OmegahatReference
	.javaConfig
	.JavaSigs
	expandClassName
	foreignReference
	getForeignReferences
	getJavaConverterDescriptions
	getJavaHandler
	getJavaMethods
	getNumJavaConverters
	interfaceGenerator
	isJavaInitialized
	javaConfig
	JavaConfiguration-class
	.JavaConstructor
	javaHandlerGenerator
	.JavaInit
	javaIs
	.javaMatchFunctions
	.Java
	javaSig
	.JavaTerminate
	.JClass
	jdynamicCompile
	mergePath
	mergeProperties
	.OmegahatExpression
	omegahatReference
	removeJavaConverter
	.RSJava.symbol
	RtoJavaSig
	setJavaConvertible
	setJavaConverter
	setJavaFunctionConverter
	setJavaHandler
	internal
	Index

