KEGGSOAP

April 20, 2011

bconv

Client-side interface to obtain the KEGG ids for external gene IDs

Description

Given a gene identifier, the functions queries KEGG to retrieve the appropriate KEGG ID.

Usage

```
bconv(id.list)
```

Arguments

id.list

a character vector containing the IDs that you wish to convert to KEGG IDs. These IDs must have the appropriate prefix!

Details

Depending on the kind of ID you wish to convert, you must use the appropriate prefix followed by a colo and then the correct ID.

Prefixes supported by KEGG:

External database Database prefix — NCBI GI ncbi-gi: NCBI GeneID ncbi-geneid: GenBank genbank: UniGene unigene: UniProt uniprot:

Value

The functions return a named vector with your initial IDs as the names and the appropriate KEGG IDs as the value.

Author(s)

Marc Carlson

References

http://www.genome.jp/kegg/soap/doc/keggapi_manual.html

```
try(bconv("ncbi-geneid:10"))
try(bconv(c("ncbi-geneid:100008586", "ncbi-geneid:10")))
```

2 getBestNeighbors

bget Client-side interface to obtain KEGG database entries by a list of entry identifiers

Description

bget is used for retrieving KEGG database entries specified by a list of entry identifiers. It accepts all the KEGG bget commond line options as a character string. Number of entries retrieved at a time is restricted up to 100.

Usage

```
bget (bget.command)
```

Arguments

bget.command bget.command a character string of KEGG bget command

Value

a character string of KEGG bget search result.

Author(s)

Nianhua Li

References

```
http://www.genome.jp/kegg/docs/keggapi_manual.html#label:40
```

Examples

```
# retrieve two KEGG/GENES entries
bget("eco:b0002 hin:tRNA-Cys-1")
# retrieve nucleic acid sequences in a FASTA format
bget("-f -n n eco:b0002 hin:tRNA-Cys-1")
# retrieve amino acid sequence in a FASTA format
bget("-f -n a eco:b0002")
```

getBestNeighbors

Client-side interface to obtain the name of genes that are homologous to a given gene

Description

Given a KEGG gene id, the functions query the KEGG Sequence Similarity Database (SSDB) for genes that are homologous to the target gene in other organisms. Genes that share an arbitrary threshold level of similarity determined by alignment of matching bases are termed homologous.

getBestNeighbors 3

Usage

```
get.best.best.neighbors.by.gene(genes.id, start, max.results)
get.best.neighbors.by.gene(genes.id, start, max.results)
getBestNeighbors(genes.id, start, max.results, what = c("best", "best_best"))
```

Arguments

genes.id	genes.id a character string for the id used by KEGG to represent the gene of interest. The id normally consists of three letters followed by a colon and then several numbers. The three letters are from the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of concern (e. g. hsa:111 for Homo Sapiens)
start	start an integer to indicate the location of the entry in the query results from which the results will be extracted and returned
max.results	max.results an integer to indicate the maximum number of entries that will be extracted from the query results and returned
what	what a character string that can either be "best" or "best_best" to indicate whether reciprocal homologous genes are sought

Details

A given gene may have several homologous genes across organisms. A query to SSDB will have a list of genes that are homologous to the target gene. start and max.results indicate where on the list to start and stop to extract data and return the results.

getBestNeighbors is a general function that queries the SSDB database and gets the results based on whether the query is for best or best best homologous relationships.

Value

The functions return a list of lists. Each sub-list contains data for a gene that is homologous to the target gene with the following elements:

```
genes\_id1
                  a character string for the id of the target gene used to query for hologous genes
genes\_id2
                  a character string for the id of the homologous gene found in another organism
                  an integer for Smith-Waterman score between genes\_id1 and genes\_id2
sw\ score
bit\_score
                  a numeric value for the bit score between genes\_id1 and genes\_id2
identity
                  a numeric value between 0 and 1 for the degree of identity between genes\_id1
                  and genes\_id2
                  an integer for the overlapping length between genes\_id1 and genes\_id2
overlap
start\_position1
                  an integer for the start position of the alignment in genes\_id1
end\_position1
                  an integer for the end position of the alignment in genes\_id1
start\_position2
                  an integer for the start position of the alignment in genes\_id2
end\_position2
                  an integer for the end position of the alignment in genes\_id2
best\_flag\_1to2
                  a boolean that is TRUE if genes\_id2 is the best neighbor gene of genes\_id1
```

4 get.genes.by.motifs

```
a boolean that is TRUE if genes\_id1 is also the best neighbor gene of genes\_id2

definition1 a character string for the definition of genes\_id1

definition2 a character string for the definition of genes\_id2

length1 an integer for the amino acid length of the genes\_id1

length2 an integer for the amino acid length of the genes\_id2
```

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

See Also

```
get.genes.by.organism
```

Examples

```
bestGenes <- get.best.neighbors.by.gene("eco:b0002",1, 5)
bestBestGenes <- get.best.best.neighbors.by.gene("eco:b0002",1, 5)</pre>
```

```
get.genes.by.motifs
```

Client-side interface to obtain the name of genes that contain the motifs represented by a set of motif ids

Description

Given a set of motif ids, the function searches the databases implied by the motif ids for genes containing the motifs specified by the motif ids.

Usage

```
get.genes.by.motifs(motif.id.list, start, max.results)
```

Arguments

start

motif.id.list

motif.id.list a vector of character strings for the ids of the motifs that are conserved by genes across organisms

startan integer to indicate the location of the entry in the query results from

which the results will be extracted and returned

max.results max.results an integer to indicate the maximum number of entries that will

be extracted from the query results and returned

get.genes.by.organism 5

Details

KEGG seems to have two ways of defining the ids for motifs. One is the motif ids obtained through <code>get.motifs.by.gene</code>, where pfam, tfam, pspt, pspf are used for the Pfam, TIGR-FAM, PROSITE pattern, and PROSITE profile database, respectively and for the first part of a motif id (e. g. pfam:aakinase). Another is the motif ids used to query the databases for genes that contain the motif, where only the first two letters of the abbreviations for databases form the first part of a motif id (e. g. pf:aakinase)

Value

The function returns a named vector with the names of the vector being the textual definition of genes and values of the vector being the ids used by KEGG to represent genes

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

See Also

```
get.motifs.by.gene
```

Examples

```
genes <- get.genes.by.motifs(c("pf:DnaJ", "ps:DNAJ_2"), 1, 10)</pre>
```

```
get.genes.by.organism
```

Client-side interface to obtain the KEGG ids for all the genes of a given organism

Description

Given a KEGG organism id, the function searches the KEGG GENES database for all the genes of the organism

Usage

```
get.genes.by.organism(org, start, max.results)
```

Arguments

org	org a character string for the id used by KEGG for organisms. The organism
	ids are normally three-letter codes with the first letter being the first letter of the
	genus name and the rest being the first two letters of the species name of the scientic name of the organism of concern
start	start an integer to indicate the location of the entry in the query results from which the results will be extracted and returned
max.results	max.results an integer to indicate the maximum number of entries that will be extracted from the query results and returned

Details

The gene ids returned by the query normally consist of three letters followed by a colon and then numbers or a combination of letters and numbers. The three letters are from the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of concern (e. g. hsa:111 for Homo Sapiens)

Value

The function returns a vector of character strings of ids used by KEGG to represent genes

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

Examples

```
genes <- get.genes.by.organism("hsa", 1, 10)</pre>
```

```
get.genes.by.pathway
```

Client-side interface to obtain the KEGG ids for genes/enzymes/compounds/reactions that are involved in the interactions in a given pathway

Description

Given a KEGG pathway identifier, the functions query the KEGG PATHWAY database for all the genes/enzymes/compounds/reactions that that are involved in the interactions in the specified pathway.

Usage

```
get.genes.by.pathway(pathway.id)
get.enzymes.by.pathway(pathway.id)
get.compounds.by.pathway(pathway.id)
get.reactions.by.pathway(pathway.id)
```

Arguments

pathway.id

pathway.id a character string for a KEGG pathway id. KEGG pathway ids consist of the string path followed by a colon, a three-letter code for the organism of concern, and then a number (e. g. "path:eco00020"). The three-letter organism code consists of the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of concern

Details

KEGG pathway identifiers for a given organism can be obtained using function list.pathways

get.ko.by.gene 7

Value

The functions return a vector of KEGG gene/enzyme/compound/reation ids found in the pathway

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

See Also

```
list.pathways
```

Examples

```
genes <- get.genes.by.pathway("path:eco00020")
enzymes <- get.enzymes.by.pathway("path:eco00020")
compounds <- get.compounds.by.pathway("path:eco00020")
reactions <- get.reactions.by.pathway("path:eco00020")</pre>
```

get.ko.by.gene

Client-side interfaces to obtain the KEGG ko ids for a pathway and vice versa

Description

Given a KEGG pathway ko identifier, the functions query the KEGG PATHWAY database for all the pathway id or vice versa.

Usage

```
get.ko.by.gene(genes.id)
get.ko.by.ko.class(ko.class.id)
get.genes.by.ko.class(ko.class.id, org , offset, limit)
get.genes.by.ko(ko.id, org)
get.kos.by.pathway(pathway.id)
get.pathways.by.kos(ko.id.list, org)
```

Arguments

```
genes.id a vector of gene IDs
ko.id a vector of ko IDs
ko.class.id a vector of ko class IDs
pathway.id pathway.id a character string for a KEGG pathway id. KEGG pathway ids
consist of the string path followed by a colon, a three-letter code for the organism of concern, and then a number (e. g. "path:eco00020"). The three-letter
organism code consists of the first letter of the genus name and the first two
letters of the species name of the scientific name of the organism of concern
ko.id.list pathway.id a vector of KEGG ko IDs.
```

8 get.motifs.by.gene

org	pathway.id a string containing the three letter KEGG prefix to use in looking up the IDs
offset	an offset
limit	how many

Value

The functions return a vector or a named list of values depending on what the function is supposed to retrieve.

Author(s)

Marc Carlson

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

See Also

```
list.pathways
```

Examples

get.motifs.by.gene Client-side interface to obtain the name of genes that are homologous to a given gene

Description

This function queries the Pfam, TIGRFAM, PROSITE pattern, and/or PROSITE profile databases for the motifs of a given gene. A motif is a locally conserved region of a sequence or a short sequence pattern shared by a set of sequences

Usage

```
get.motifs.by.gene(genes.id, db)
```

get.motifs.by.gene 9

Arguments

genes.id genes.id a character string for the id used by KEGG to represent the gene of

interest. The id normally consists of three letters followed by a colon and then several numbers. The three letters are from the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of

concern (e. g. hsa:111 for Homo Sapiens)

db a character string for the name of the data to search for motifs. Valid database

names include pfam, tfam, pspt, pspf for the Pfam, TIGRFAM, PROSITE pat-

tern, and PROSITE profile, respectively, or all for all the four databases

Details

The motif ids obtained can be used to search for the genes that contain the motif across organism using get.genes.by.motifs

Value

The function returns a list of lists with each of the sub-list having the following elements:

motif_id a character string for the id of the motif found definition a character string for the definition of the motif

genes_id a character string for the KEGG genes_id of the gene that contains the motif

and used to search the database(s)

start_position

an integer for the start position of the motif match

end.position an integer for the end position of the motif match

score a numeric value for the score of the motif match for TIGRFAM and PROSITE

databases

evalue a numeric value for the E-value of the motif match for Pfam database

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

See Also

```
get.genes.by.motifs
```

```
motifs <- get.motifs.by.gene("eco:b0002", "pfam")
sapply(motifs, function(x) x$motif_id)</pre>
```

10 get.paralogs.by.gene

```
get.paralogs.by.gene
```

Client-side interface to obtain data for paralogous genes

Description

Given a KEGG gene id, the function queries the KEGG Sequence Similarity Database (SSDB) for genes that are paralogous to the target gene. Paralogous genes result from duplication of existing genes and then function divergence

Usage

```
get.paralogs.by.gene(genes.id, start, max.results)
```

Arguments

genes.id	genes.id a character string for the id used by KEGG to represent the gene of interest. The id normally consists of three letters followed by a colon and then several numbers. The three letters are from the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of concern (e. g. hsa:111 for Homo Sapiens)
start	start an integer to indicate the location of the entry in the query results from which the results will be extracted and returned
max.results	max.results an integer to indicate the maximum number of entries that will be extracted from the query results and returned

Details

A given gene may have several paralogous genes. A query to SSDB may have a list of genes that are paralogous to the target gene. start and max.results indicate where on the list to start and stop to extract data and return the results.

Value

The function returns a list of lists. Each sub-list contains data for a gene that is paralogous to the target gene with the following elements:

a character string for the id of the target gene used to query for hologous genes		
a character string for the id of the homologous gene found in another organism		
an integer for Smith-Waterman score between genes_id1 and genes_id2		
a numeric value for the bit score between genes_id1 and genes_id2		
a numeric value between 0 and 1 for the degree of identity between genes_id1 and genes_id2		
an integer for the overlapping length between genes_id1 and genes_id2		
start_position1		
an integer for the start position of the alignment in genes_id1		
end_position1		
an integer for the end position of the alignment in genes_id1		

get.pathways.by.genes 11

```
an integer for the start position of the alignment in genes\_id2

end\_position2

an integer for the end position of the alignment in genes\_id2

best\_flag\_lto2

a boolean that is TRUE if genes\_id2 is the best neighbor gene of genes\_id1

best\_flag\_2to1

a boolean that is TRUE if genes\_id1 is also the best neighbor gene of genes\_id2

definition1 a character string for the definition of genes\_id1

definition2 a character string for the definition of genes\_id2

length1 an integer for the amino acid length of the genes\_id2

length2 an integer for the amino acid length of the genes\_id2
```

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi manual.html
```

See Also

```
get.best.neighbors.by.gene
```

Examples

```
paraGenes <- get.paralogs.by.gene("eco:b0002", 1, 10)</pre>
```

```
get.pathways.by.genes
```

Client-side interface to obtain the KEGG pathway ids

Description

Given a set of KEGG gene/enzyme/compound/reation identifiers, the functions query the KEGG PATHWAY database for all the pathways in which items represented by the given set of identifiers are involved

Usage

```
get.pathways.by.genes(genes.id.list)
get.pathways.by.enzymes(enzyme.id.list)
get.pathways.by.compounds(compound.id.list)
get.pathways.by.reactions(reaction.id.list)
```

Arguments

```
genes.id.list
```

genes.id.list a vector of character strings for the ids used by KEGG to represent genes. An id normally consists of three letters followed by a colon and then several numbers. The three letters are from the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of concern (e. g. hsa:111 for Homo Sapiens)

enzyme.id.list

 $\verb|enzyme.id.list| a vector of character strings for enzyme commission numbers$

compound.id.list

compound.id.list a vector of character strings for the ids used by KEGG to represent compounds. A compound id begins with cpd: followed by a combination of letters and numbers (e. g. cpd:C00579)

reaction.id.list

reaction.id.list a vector of character strings for the ids used by KEGG to represent reactions. A reaction id begins with rn: followed by a combination of letters and numbers (e. g. rn:R00268)

Value

The functions return a vector of KEGG pathway ids

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

See Also

```
get.genes.by.pathway,get.enzymes.by.pathway,get.compounds.by.pathway,
get.reactions.by.pathway
```

KEGGserver 13

KEGGserver	Definitions of objects used by other functions to access KEGG SOAP service

Description

Definitions of KEGG SOAP server, KEGG SOAP action, and KEGG XML name space are made when the package is invoked so that they are available to other functions

Details

All the functions that envoke KEGG SOAP services have a KEGG server, KEGG action, and KEGG XML name space as argument. These objects are defined in .First.lib and made available to the functions when the package is invoked

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

list.organisms ${\it Client-side interface to obtain the names of organisms supported by KEGG databases}$

Description

These functions provides an R interface to allow users to get the names/ids of organisms, databases, pathways that are available through KEGG SOAP services.

Usage

```
list.organisms()
list.pathways(org)
list.databases()
```

Arguments

org

org a character string for the id used by KEGG for organisms. The organism ids are normally three-letter codes with the first letter being the first letter of the genus name and the rest being the first two letters of the species name of the scientic name of the organism of concern

Details

Some queries against the KEGG databases require abbreviations of organisms supported by KEGG. Although the abbreviations normally consist of three letters by truncating the first letter of the genus name and the first two letters of the species name (e. g. hsp for Homo sapiens), list.organisms obtains the abbreviations using the service provided by KEGG SOAP to make sure the abbreviations are correct and the organisms are indeed supported by KEGG databases.

Value

list.organisms returns a named vector with names of the vector being the scientific names and the values of the vector being the abbreviations used by KEGG for the organisms supported by the databases.

list.pathways returns a named vector with names of the vector being textual descriptions of KEGG pathways and the values of the vector being the ids used by KEGG to represent pathways.

```
list.databases returns
```

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

Examples

```
list.organisms()
```

```
mark.pathway.by.objects
```

Client-side interface to obtain an url for a KEGG pathway diagram with a given set of genes marked

Description

Given a KEGG pathway id and a set of KEGG gene ids, the functions return the URL of a KEGG pathway diagram with the elements corresponding to the genes marked by red or specified color

Usage

Arguments

pathway.id

pathway.id a character string for a KEGG pathway id. KEGG pathway ids consist of the string path followed by a colon, a three-letter code for the organism of concern, and then a number (e.g. "path:eco00020"). The three-letter organism code consists of the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of concern

```
object.id.list
```

object.id.list a vector of character strings for KEGG gene ids. KEGG gene ids normally consist of three letters followed by a column and then several numeric numbers. The three letters are from the first letter of the genus name and the first two letters of the species name of the scientific name of the organism of concern (e. g. hsa:111 for Homo Sapiens)

```
fg.color.list
```

fg.color.list a vector of two character strings to indicate the color for the text and border, respectively, of the objects in a pathway diagram. The strings can either be a color code linke \#ff0000 or letter link yellow

bg.color.list

bg.color.list a vector of character strings of the same length of object.id.list to indicate the background color of the objects in a pathway diagram. The strings can either be a color code like \#ff0000 or letter like yellow

Details

This function only returns the URL of the KEGG pathway diagram. Use the function <code>browseURL</code> to view the diagram

Value

This function returns a character string for the url

Author(s)

Jianhua Zhang

References

```
http://www.genome.jp/kegg/soap/doc/keggapi_manual.html
```

See Also

browseURL

Examples

```
{\tt search.compounds.by.name}
```

Client-side interface to obtain a list of chemical compounds

Description

The functions provide access to KEGG LIGAND database http://www.genome.jp/kegg/ligand.html. Given a compound name, a chemical formula, a molecular weight, or a common sub-structure, one of the functions below can return a list of compounds identifiers from KEGG LIGAND database.

Usage

```
search.compounds.by.name(name)
search.compounds.by.composition(composition)
search.compounds.by.mass(mass, range)
search.compounds.by.subcomp(mol, offset, limit)
```

Arguments

name a character string to indicate a compound name

composition composition a character string to indicate a compound composition, usually

expressed as chemical formula

mass massa float to indicate a molecular weight around mass

range a float to indicate the range of molecular weight when searching com-

pounds by mass

mol mola character string to indicate a MOL formatted structural data, more in de-

tails section

offset offset an integer limit limit an integer

Details

search.compounds.by.name returns a list of compounds having the specified name;

search.compounds.by.composition returns a list of compounds containing elements indicated by the composition. Order of the elements is insensitive;

search.compounds.by.mass returns a list of compounds having the molecular weight around "mass" with some ambiguity (range);

search.compounds.by.subcomp returns a list of compounds with the alignment having common sub-structure calculated by the subcomp program. You can obtain a MOL formatted structural data of matched compounds using bget with the "-f m" option to confirm the alignment.

Value

All the functions return a character vector of chemical compound identifiers provided by KEGG LIGAND database

Author(s)

Nianhua Li

References

```
http://www.genome.jp/kegg/docs/keggapi_manual.html#label:105
```

See Also

bget

search.glycans.by.name 17

Examples

```
compounds_1 <- search.compounds.by.name("shikimic acid")
    compounds_2 <- search.compounds.by.composition("C7H1005")
    compounds_3 <- search.compounds.by.mass(174.05, 0.1)
    mol <- bget("-f m cpd:C00111")
    compounds_4 <- search.compounds.by.subcomp(mol, 1, 5)</pre>
```

```
search.glycans.by.name
```

Client-side interface to obtain a list of chemical glycans

Description

The functions provide access to KEGG LIGAND database http://www.genome.jp/kegg/ligand.html. Given a glycan name, a composition, a molecular weight, or a common substructure, one of the functions below can return a list of glycans identifiers from KEGG LIGAND database.

Usage

```
search.glycans.by.name(name)
search.glycans.by.composition(composition)
search.glycans.by.mass(mass, range)
search.glycans.by.kcam(kcf, program, option, offset, limit)
```

Arguments

name	name a character string to indicate a glycan name	
composition	$\verb composition a character string to indicate the composition of monosaccharides \\$	
mass	${\tt mass}$ a float to indicate the mass computed from the composition, excluding those in parentheses	
range	range a float to indicate the range of molecular weight when searching glycans by mass	
kcf	${\tt kcf}$ a character string to indicate the molecular structure (carbohydrate sequence) of a glycan in KCF format	
program	program a character string, either "gapped" or "ungaped"	
option	option a character string, either "global" or "local"	
offset	offset an integer	
limit	limit an integer	

Details

```
search.glycans.by.name returns a list of glycans having the specified name;
search.glycans.by.composition returns a list of glycans containing sugars indicated by
the composition. Order of the sugars (in parenthesis with number) is insensitive;
search.glycans.by.mass returns a list of glycans having the molecular weight around "mass"
with some ambiguity (range);
```

search.glycans.by.subcomp returns a list of glycans with the alignment having common sub-structure calculated by the KCaM program. You can obtain a KCF formatted structural data of matched glycans using bget with the "-f m" option to confirm the alignment.

Value

All the functions return a character vector of glycan identifiers provided by KEGG LIGAND database

Author(s)

Nianhua Li

References

```
http://www.genome.jp/kegg/docs/keggapi_manual.html#label:105
```

See Also

bget

Index

*Topic datasets	get.ko.by.ko.class
bconv, 1	(get.ko.by.gene),7
bget, 2	get.kos.by.pathway
get.genes.by.motifs,4	(get.ko.by.gene),7
<pre>get.genes.by.organism,5</pre>	get.motifs.by.gene, $5, 8$
get.genes.by.pathway,6	get.paralogs.by.gene, 10
get.ko.by.gene,7	get.pathways.by.compounds
get.motifs.by.gene,8	(get.pathways.by.genes), 11
get.paralogs.by.gene, 10	get.pathways.by.enzymes
get.pathways.by.genes, 11	(get.pathways.by.genes), 11
getBestNeighbors, 2	get.pathways.by.genes, 11
list.organisms, 13	get.pathways.by.kos
mark.pathway.by.objects, 14	(get.ko.by.gene),7
search.compounds.by.name, 15	get.pathways.by.reactions
*Topic manip	(get.pathways.by.genes), 11
search.glycans.by.name, 17	get.reactions.by.pathway, 12
*Topic misc	get.reactions.by.pathway
KEGGserver, 13	(get.genes.by.pathway), 6
	getBestNeighbors, 2, 3
bconv, 1	
bget, 2, 16, 18	KEGGaction (KEGGserver), 13
browseURL, 15	KEGGserver, 13
	KEGGxmlns (KEGGserver), 13
color.pathway.by.objects	
(mark.pathway.by.objects),	list.databases, 14
14	list.databases, 17 list.databases (list.organisms),
	13
get.best.neighbors.by.gene	list.organisms, 13, 13, 14
(getBestNeighbors), 2	list.pathways, 6-8, 14
get.best.neighbors.by.gene, 11	list.pathways, 0-0, 14
get.best.neighbors.by.gene	iist.patiiways (iist.organiisms), 13
(getBestNeighbors), 2	
get.compounds.by.pathway, 12	mark.pathway.by.objects,14
get.compounds.by.pathway	
(get.genes.by.pathway), 6	search.compounds.by.composition
get.enzymes.by.pathway, 12	(search.compounds.by.name),
get.enzymes.by.pathway	15
(get.genes.by.pathway), 6	search.compounds.by.mass
get.genes.by.ko(<i>get.ko.by.gene</i>),	(search.compounds.by.name),
7	15
get.genes.by.motifs, 4, 9	search.compounds.by.name, 15
get.genes.by.organism, 4,5	search.compounds.by.subcomp
get.genes.by.pathway, 6, 12	(search.compounds.by.name),
get.ko.by.gene,7	15

20 INDEX