
rflowcyt
October 5, 2010

ContourScatterPlot Image and Contour Bivariate Plot

Description

To make a bivariate image with a rectangular grid and a superimposed contour plot of two variables
or to make a bivariate hexbin image plot from a hexagon grid with NO superimposed contour plot.

Usage

ContourScatterPlot(xvar, yvar,
status=NULL,
type.CSP=c("count.diff", "p.hat", "p.hat.norm", "z.stat"),
xlab = NULL, ylab = NULL, main = NULL,
x.grid = round(seq(range(xvar)[1],

ceiling(diff(range(xvar))/25)*25+range(xvar)[1],
by=25),0),

y.grid =round(seq(range(yvar)[1],
ceiling(diff(range(yvar))/25)*25+range(yvar)[1],
by=25),0),

lattice=FALSE,
hexbin.plotted=FALSE,
hexbin.style=c("colorscale", "lattice", "centroids",

"nested.lattice", "nested.centroids"),
n.hexbins=100, numlev = 5, xaxt="s", yaxt="s",image.col = heat.colors(10),
...)

Arguments

xvar numerical vector of the x-variable

yvar numerical vector of the y-variable

status numerical binary 0, 1 vector denoting the status of the observations; default is
NULL

type.CSP character string denoting the type of value to be estimated using the ’status’ for
each cell grid: the difference in counts ("count.diff"), the proportion ("p.hat"),
the normalized proportion at 0.5 ("p.hat.norm"), the z.statistic ("z.stat"), see
make.density for details.

1

2 ContourScatterPlot

xlab character string of the x-variable name

ylab character string of the y-variable name

main character string of title of the plot

x.grid numerical vector of the x-axis breaks for the image plot using the rectangular
grid; default is a vector of values within the range of ’xvar’ separated by 25
units increments.

y.grid numerical vector of the y-axis breaks for the image plot using the rectangular
grid; default is a vector of values within the range of ’yvar’ separated by 25
units increments.

hexbin.plotted
boolean; if TRUE then the grid cells/compartments are hexagons; otherwise the
grid cells are rectangular; default value is FALSE

lattice logical

n.hexbins number of xbins for hexagon binning; default is 100

hexbin.style the style of hexbin plot; default is "colorscale"

image.col vector of color or color type for the image plot with the rectangular grid; de-
fault=heat.colors(10)

numlev number of levels for the contour plot superimposed on the image plot using a
rectangular grid; default value=5

xaxt if "s", then the x-axis is plotted, if "n" then there is no x-axis plotted

yaxt if "s", then the y-axis is plotted, if "n" then there is no y-axis plotted

... if hexbin.plotted=TRUE, the other options/arguments under plot.hexbin
(library(hexbin)) can be used; if hexbin.plotted=FALSE, then other options un-
der contour (library(base)) can be used

Details

This function calls make.grid or make.density for the values in the rectangular grid which make
up the image plot. This procedure produces rectangular cells for the resulting grid, but if there is
a library(hexbin) and the user wants hexagon cells in the image grid, hexbin cells are produced in
the grid. A superimposed contour plot is available for the rectangular-celled image grid, but not
available for the hexbin image grid.

Other image colors (image.col) may be used. See documentation for heat.colors.

Value

Image plot with a superimposed contour plot along with a legend roughly describing the values
associated with the color scheme. The white-colored grid cells correspond to those with no obser-
vations.

Warning

The number of image colors used may vary from one plot to another, and users should be warned
that a different number of colors, ie, heat.colors(2) (as default) may be used if there are few varia-
tions/clusters in the data.

The user should use more colors, ie, heat.colors(10) or heat.colors(5), etc. to account for more
variation in the data, if there is a lot of variation that is apparent. An error message to use gray or
psuedo.cube colors will prompt the user in such cases that will need a change (usually a decrease)
in the number of image colors.

ContourScatterPlot 3

Gating (both interactive and non-interactive currently works only with the bivariate image plot using
a rectangular and not hexagonal grid (ie, with the option hexbin.plotted=FALSE).

Author(s)

A. J. Rossini, J. Y. Wan

See Also

make.grid, legend.CSP, image, contour, heat.colors, hexbin, ’plot.hexbin’,

Examples

##Example I: with a FSC object
if (require(rfcdmin)){
data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))) {
obtaining the FCS objects from FHCRC data
data(MC.053min)

}
obtain the two column variables
xvar<-MC.053@data[,1]
yvar<-MC.053@data[,2]

have an example plot
if (interactive()==TRUE) {

rectangular cells with the contour plot
ContourScatterPlot(xvar, yvar,

xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Individual 042402c1.053",
hexbin.plotted=FALSE,
numlev=25, image.col=heat.colors(15),
plot.legend.CSP=TRUE)

hexagon cells without contour lines; default n.hexbins=100
ContourScatterPlot(xvar, yvar,

xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Individual 042402c1.053",

hexbin.plotted=TRUE)
finer hexgonal binning
ContourScatterPlot(xvar, yvar,

xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Individual 042402c1.053",
hexbin.plotted=TRUE, n.hexbins=300)

and with some additional
plot.hexbin options
ContourScatterPlot(xvar, yvar,

xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Individual 042402c1.053", hexbin.plotted=TRUE,
minarea=1, maxarea=1)

4 ContourScatterPlot

different hexbin styles

ContourScatterPlot(xvar, yvar,
xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Hexbin.style=colorscale", hexbin.plotted=TRUE,
hexbin.style="colorscale")

ContourScatterPlot(xvar, yvar,
xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Hexbin.style=lattice", hexbin.plotted=TRUE,
hexbin.style="lattice")

ContourScatterPlot(xvar, yvar,
xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Hexbin.style=centroids", hexbin.plotted=TRUE,
hexbin.style="centroids")

ContourScatterPlot(xvar, yvar,
xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Hexbin.style=nested.lattice", hexbin.plotted=TRUE,
hexbin.style="nested.lattice")

ContourScatterPlot(xvar, yvar,
xlab=colnames(MC.053@data)[1],
ylab=colnames(MC.053@data)[2],
main="Hexbin.style=nested.centroids", hexbin.plotted=TRUE,
hexbin.style="nested.centroids")

}
See example(make.density) for examples of 'image' of
grid images with values estimated from 'status'; ie plots of
differences between stimulated and unstimulated
HIV-protein 'status' scenarios

if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)

}

var1<-st.DRT@data[,4]
var2<-st.DRT@data[,5]
var1.2<-unst.DRT@data[,4]
var2.2<-unst.DRT@data[,5]

col.nm<-colnames(st.DRT@data)

The status where 1=stimulated
0 = unstimulated
status<-c(rep(1, dim(st.DRT@data)[1]), rep(0, dim(unst.DRT@data)[1]))
x <- c(var1, var1.2)
y <-c(var2, var2.2)

if (interactive()){
par(mfrow=c(3,4))
ContourScatterPlot(var1, var2,

main="make.grid: Counts for stimulated",
xlab=col.nm[4],

ContourScatterPlot 5

ylab=col.nm[5], image.col=heat.colors(20),plot.legend.CSP=TRUE)

ContourScatterPlot(x, y,
main="make.grid: Counts for unstimulated",
xlab=col.nm[4],
ylab=col.nm[5], image.col=heat.colors(20),plot.legend.CSP=TRUE)

white cells are those with NO data
ContourScatterPlot(x, y, status=status,
type.CSP="count.diff",
main="Count difference between Stimulated and unstimulated",
xlab=col.nm[4],
ylab=col.nm[5], image.col=c("brown","lightyellow"))

ContourScatterPlot(x, y, status=status,
type.CSP="p.hat",
main="Proportion of Stimulated",
xlab=col.nm[4],
ylab=col.nm[5], image.col=c("brown","lightyellow"))

ContourScatterPlot(x, y, status=status,
main="Normalized proportion of Stimulated",
xlab=col.nm[4],
ylab=col.nm[5], image.col=c("brown","lightyellow"))

ContourScatterPlot(x, y, status=status,
main="z statistic",
xlab=col.nm[4],
ylab=col.nm[5], image.col=c("brown","lightyellow"))

}

}

##Example II: with a CytoFrame object
if (require(rfcdmin)) {

##obtaining the location of the fcs files in the data
pathFiles<-system.file("bccrc", package="rfcdmin")
drugFiles<-dir(pathFiles)

reading in the FCS files
drugData<-read.series.FCS(drugFiles,path=pathFiles,MY.DEBUG=FALSE)
xvar <- fluors(drugData[[1]])[,1]
yvar <- fluors(drugData[[1]])[,2]
if (interactive()==TRUE) {
ContourScatterPlot(xvar, yvar,

xlab=colnames(exprs(drugData[[1]]))[1],
ylab=colnames(exprs(drugData[[1]]))[2],
main="Contour plot",

hexbin.plotted=FALSE,
numlev=25, image.col= c("gray82", "blue"),
plot.legend.CSP=TRUE)

}
}

6 "FCS-class"

"FCS-class" Class "FCS" : Flow Cytometry Standard

Description

This class represents objects read from raw binary Flow Cytometry Standard (FCS) files. These
files contain a data portion, consisting of immunofluorescence and other column variables for each
cell or row observation, and a metadata portion, which contains information such as parameter
shortnames, longnames, ranges and data dimensions as well as file information.

Objects from the Class

Objects can be created by calls of the form new("FCS", ...).

Slots

data: Object of class "matrix" which holds integer data such that the columns are the variables
(usually immunofluorescence measurements) and the rows are the cell observations.

metadata: Object of class "FCSmetadata" which holds information about the file, data, and
column variables among other items in the header of the original raw FCS binary file.

Methods

"[" signature(x = "FCS"): Extracts the data

"[<-" signature(x = "FCS"): Replaces or sets the data

"[[" signature(x = "FCS"): Extracts the metadata

"[[<-" signature(x = "FCS"): Replaces or sets the metadata

addParameter signature(x = "FCS", colvar = "vector"): Adds a column param-
eter to the data

checkvars signature(x = "FCS"): Checks the compatibility of the metadata against the
data dimensions and column/parameter names and ranges

coerce signature(from = "FCS", to = "matrix"): Returns the data as a matrix

coerce signature(from = "FCS", to = "data.frame"): Returns the data as a data.frame

coerce signature(from = "matrix", to = "FCS"): Returns an FCS object with data
and default prototype metadata

coerce signature(from = "data.frame", to = "FCS"): Returns an FCS object with
data and default prototype metadata

dim.FCS signature(x = "FCS") : Returns the dimensions (ie, the number of rows and
columns respectively) of the data matrix; the output is a vector

equals signature(x = "FCS", y = "FCS"): Compares the equality of two objects in
terms of data and metadata correspondence

fixvars signature(x = "FCS"): Sets the discrepant metadata slots to values in from the data

fluors signature(x = "FCS"): Returns the complete data portion of the object

metaData signature(x = "FCS"): Returns the complete metadata portion of the object

"plot-methods" signature(x = "FCS", y = "missing"): Plots the object as a pairs
plot (with rectangular binned contour-image plots or hexagonal binned image plots) or as a
joint or marginal image parallel coordinates plot

"FCS-class" 7

"print-methods" signature(x = "FCS"): Prints a brief description about the original file-
name, dimensions of the data, and the original status of the current object’s data

"show-methods" signature(object = "FCS"): Prints a brief description about the origi-
nal filename, dimensions of the data, and the original status of the current object’s data

"summary-methods" signature(object = "FCS"): Summaries the data’s dimensions,
five-number summaries on the column parameters, the information contained in the metadata

Note

The function read.FCS is used to read in a raw binary FCS files and output a "FCS-class" object.

Author(s)

A.J. Rossini, J.Y. Wan, and Zoe Moodie

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics : New York, 2001. pp.279-283.

Jerome H. Friedman and Nicholas I. Fisher. Bump Hunting in High-Dimensional Data. Tech Re-
port. October 28, 1998.

J. Paul Robinson, et al. Current Protocols in Cytometry. John Wiley \& Sons, Inc : 2001.

Mario Roederer and Richard R. Hardy. Frequency Difference Gating: A Multivariate Method for
Identifying Subsets that Differe between Samples. Cytometry, 45:56-64, 2001.

Mario Roederer and Adam Treister and Wayne Moore and Leonore A. Herzenberg. Probability
Binning Comparison: A Metric for Quantitating Univariate Distribution Differences. Cytometry,
45:37-46, 2001.

Keith A. Baggerly. Probability Binning and Testing Agreement between Multivariate Immunofluo-
rescence Histograms: Extending the Chi-Squared Test. Cytometry, 45:141-150, 2001.

See Also

read.FCS, "FCSgate-class", "FCSsummary-class", "FCSmetadata-class", "plot-
methods", "print-methods", "show-methods", "summary-methods", "coerce-
methods", "[-methods", "[[-methods", "[<--methods", "[[<--methods", checkvars,
fixvars, equals, addParameter, fluors, metaData, dim.FCS

Examples

a default FCS object
default.FCSobj<-new("FCS")

making my own FCS object
first making up the data
dummy.data<-matrix(1:1000, ncol=10)
colnames(dummy.data)<-paste("foo", 1:10, sep="")

second making up the metadata
default FCSmetadata
dummy.metadata<-new("FCSmetadata")
user-defined metadata

8 "FCS-class"

foo.metadata<-new("FCSmetadata", mode="none", size=100, nparam=10,
shortnames=paste("V", 1:10, sep=""), longnames=colnames(dummy.data),
paramranges=unlist(apply(dummy.data, 2, max)), filename="",
objectname="foo.FCSobj", fcsinfo=list("extraInfo1"="dummy FCS",
"extraInfo2"=9:20))

foo.FCSobj<-new("FCS", data=dummy.data, metadata=foo.metadata)

dummy.FCSobj<-new("FCS", data=matrix(), metadata=dummy.metadata)

extraction of the metadata
foo.FCSobj[["size"]]
replacement of the metadata
introduce an error in the column length

foo.FCSobj[["nparam"]]<-0

extraction of the data

first.ten.obs<-foo.FCSobj[1:10,]
replacement of the data
foo.FCSobj[1:10,]<-matrix(1:100, ncol=10)
addParameter
foo.FCSobj<-addParameter(foo.FCSobj, 1:100, shortname="newvar",
longname="newlymadevariable", use.shortname=FALSE)

replacement of the metadata
introduce an error in the column length

foo.FCSobj[["nparam"]]<-0

checkvars
correct.status.is.FALSE<-checkvars(foo.FCSobj)
coerce FCS to matrix
coerced.mat<-as(foo.FCSobj, "matrix")
is(coerced.mat, "matrix")
coerce FCS to data.frame
coerced.df<-as(foo.FCSobj, "data.frame")
is(coerced.df, "data.frame")
coerce matrix to FCS
FCSobj1<-as(coerced.mat, "FCS")
is(FCSobj1, "FCS")
coerce data.frame to FCS
FCSobj2<-as(coerced.df, "FCS")
is(FCSobj2, "FCS")

##obtaining the dimensions of the data
dim.FCS(FCSobj2)

equals

should be TRUE
equals(FCSobj1, FCSobj2, check.filename=TRUE, check.objectname=TRUE)

default does not check filename or objectname equality
should be FALSE
equals(foo.FCSobj, dummy.FCSobj)

"FCSgate-class" 9

fixvars
foo.FCSobj<-fixvars(foo.FCSobj)
fluors
data.mat<-fluors(foo.FCSobj)
metaData
metadata.ls<-metaData(foo.FCSobj)
plot
not interesting to plot dummy data

default plot is pairs.CSP <pairs plot with Contour-images>
plot(foo.FCSobj)

can do joint image.parallel.coordinates pairs plots
plot(foo.FCSobj, image.parallel.plot=TRUE)

can do marginal image parallel coordinates pairs plots
plot(foo.FCSobj, image.parallel.plot=TRUE, joint=FALSE)

print
print(foo.FCSobj)
foo.FCSobj

show
show(foo.FCSobj)

summary
summary(foo.FCSobj)
summary(dummy.FCSobj)

"FCSgate-class" Class "FCSgate" Flow Cytometry Standard extension to gating

Description

This class of objects extends the class FCS-class to incorporate information from gating which
is a procedure by which rows or cells from the data are selected via one or two dimensional value
restrictions or gating ranges.

Objects from the Class

Objects can be created by calls of the form new("FCSgate", ...). Essentially this new object
includes the FCS-class object.

Slots

gate: Object of class "matrix" containing the gating indices such that each column corre-
sponds to a different gating procedure/index and the rows correspond to the positions of the
original row/cell observations.

history: Object of class "vector" containing the gating history strings such that each vector
element corresponds to a different gating procedure/index and each string contains information
about the particular gate, column variables that were used, and other additional comments.

10 "FCSgate-class"

extractGatedData.msg: Object of class "vector" containing strings describing any ex-
traction that took place corresponding to each gating procedure/index and history string; each
string contains information about the particular corresponding gate column position and gate
name and what value index was for inclusion/selection (ie, IndexValue.In)

current.data.obs: Object of class "vector" contains the current data positional values
from the original data

data: Object of class "matrix" which holds integer data such that the columns are the variables
(usually immunofluorescence measurements) and the rows are the cell observations.

metadata: Object of class "FCSmetadata" which holds information about the file, data, and
column variables among other items in the header of the original raw FCS binary file.

Extends

Class "FCS", directly.

Methods

No methods defined with class "FCSgate" in the signature.

Note

The methods createGate and icreateGate, functionally without plots or interactively with
plots, respectively, extends the FCS-class to the FCSgate-class. Some interactive gating schemes
are noted in FHCRC.HVTNFCS and VRC.HVTNFCS. Further testing after gating is implemented
by runflowcytests on the particular variable of interest which is usually the Interferon Gamma
Immunofluoroescence measurement.

Author(s)

A.J. Rossini, J.Y. Wan, and Zoe Moodie

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics : New York, 2001. pp.279-283.

Jerome H. Friedman and Nicholas I. Fisher. Bump Hunting in High-Dimensional Data. Tech Re-
port. October 28, 1998.

J. Paul Robinson, et al. Current Protocols in Cytometry. John Wiley \& Sons, Inc : 2001.

Mario Roederer and Richard R. Hardy. Frequency Difference Gating: A Multivariate Method for
Identifying Subsets that Differe between Samples. Cytometry, 45:56-64, 2001.

Mario Roederer and Adam Treister and Wayne Moore and Leonore A. Herzenberg. Probability
Binning Comparison: A Metric for Quantitating Univariate Distribution Differences. Cytometry,
45:37-46, 2001.

Keith A. Baggerly. Probability Binning and Testing Agreement between Multivariate Immunofluo-
rescence Histograms: Extending the Chi-Squared Test. Cytometry, 45:141-150, 2001.

See Also

createGate, icreateGate, extractGatedData, extractGateHistory, FHCRC.HVTNFCS,
VRC.HVTNFCS, "FCS-class", runflowcytests

"FCSggobi-class" 11

Examples

default.FCSgateobj<-new("FCSgate")

"FCSggobi-class" Class "FCSggobi" : Dynamic Plots

Description

This class supports the plotting of "FCS-class" objects.

Objects from the Class

Objects can be created by calls of the form new("FCSggobi", ...).

Slots

dataName: Object of class "character".

ggobiLink: Object of class "list".

Methods

No methods defined with class "FCSggobi" in the signature.

Note

Still in progress of coding

Author(s)

A.J. Rossini

References

See ’library(ggobi)’.

See Also

’ggobi’ in ’library(ggobi)’, xgobi.FCS

12 "FCSmetadata-class"

"FCSmetadata-class"
Class "FCSmetadata" Metadata portion of a Flow Cytometry Stan-
dard object

Description

Information from the HEADER and TEXT of a raw binary FCS file about the data and other pa-
rameters are stored in the metadata.

Objects from the Class

Objects can be created by calls of the form new("FCSmetadata", ...).

Slots

mode: Object of class "character" the "\$MODE" mode of the raw binary FCS file

size: Object of class "numeric" the "\$TOT" row dimension of the data; describing the number
of observations or cells

nparam: Object of class "numeric" the "\$PAR" column dimension of the data; describing the
number of parameters

shortnames: Object of class "vector" the "\$PnN" short names corresponding to the column
variables of the data; these names are generally non-descript and are not used as the names of
the columns of the data

longnames: Object of class "vector" the "\$PnS" long names used for the column variables
of the data

paramranges: Object of class "vector" the "\$PnR" maximum value corresponding to the
column variables

filename: Object of class "character" path and/or name of the original raw binary FCS
object

objectname: Object of class "character" the name of the original, FCS-class object

original: Object of class "logical" the original status of the current object

fcsinfo: Object of class "list" the other parameters and values in the HEADER and TEXT
of the raw binary FCS file

Methods

"[" signature(x = "FCSmetadata"): Extracts the metadata slots or metadata@fcsinfo
slots by using a single character name index; Extracts the metadata@fcsinfo slots by using a
single or vector of numerical indicies

"[<-" signature(x = "FCSmetadata"): Replaces the metadata slots or metadata@fcsinfo
slots by using a single character name index; Replaces the metadata@fcsinfo slots by using a
single or vector of numerical indicies;Adds a new slot to the metadata@fcsinfo

"[[" signature(x = "FCSmetadata"): Extracts the metadata slots or metadata@fcsinfo
slots by using a single character name index; Extracts the metadata@fcsinfo slots by using a
single or vector of numerical indicies

"FCSmetadata-class" 13

"[[<-" signature(x = "FCSmetadata"): Replaces the metadata slots or metadata@fcsinfo
slots by using a single character name index; Replaces the metadata@fcsinfo slots by using a
single or vector of numerical indicies;Adds a new slot to the metadata@fcsinfo

"print-methods" signature(x = "FCSmetadata"): prints the original status, the object-
name, filename, and dimensions of the data

"show-methods" signature(object = "FCSmetadata"): same as ’print’

"summary-methods" signature(object = "FCSmetadata"): summaries the metadata
in a string output

Note

For more information about the different parameters in the metadata@fcsinfo slot, please look at
the documentation for read.FCS.

Author(s)

A.J. Rossini, J.Y. Wan, and Zoe Moodie

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics : New York, 2001. pp.279-283.

Jerome H. Friedman and Nicholas I. Fisher. Bump Hunting in High-Dimensional Data. Tech Re-
port. October 28, 1998.

J. Paul Robinson, et al. Current Protocols in Cytometry. John Wiley \& Sons, Inc : 2001.

Mario Roederer and Richard R. Hardy. Frequency Difference Gating: A Multivariate Method for
Identifying Subsets that Differe between Samples. Cytometry, 45:56-64, 2001.

Mario Roederer and Adam Treister and Wayne Moore and Leonore A. Herzenberg. Probability
Binning Comparison: A Metric for Quantitating Univariate Distribution Differences. Cytometry,
45:37-46, 2001.

Keith A. Baggerly. Probability Binning and Testing Agreement between Multivariate Immunofluo-
rescence Histograms: Extending the Chi-Squared Test. Cytometry, 45:141-150, 2001.

See Also

read.FCS, "FCS-class", "print-methods", "show-methods", "summary-methods",
"[-methods", "[[-methods", "[<--methods", "[[<--methods"

Examples

default<-new("FCSmetadata")

some.meta<-new("FCSmetadata", fcsinfo=list("comment"=rep("none", 10)),
mode="none", nparam=0, size=0)

extract/subset the metadata
some.meta[["nparam"]]
some.meta["paramranges"]
replace the metadata/subsetassign the metadata
3 parameters with ranges
some.meta[["nparam"]]<-3
some.meta["paramranges"]<-rep(1,3)

14 "FCSsummary-class"

show
show(some.meta)
print
print(some.meta)
some.meta
summary
summary(some.meta)

"FCSsummary-class" Class "FCSsummary" Summary object for a "FCS-class"

Description

The data summary statistics along with metadata output help summarize a "FCS-class" object using
the "summary" method.

Objects from the Class

Objects can be created by calls of the form new("FCSsummary", ...).

Slots

num.cells: Object of class "numeric" the number of cells or rows from the data

num.param: Object of class "numeric" the number of parameters or columns from the data

univariate.stat: Object of class "matrix" five-number summary including the standard
deviation of all the column variables

metadata.info: Object of class "list" with the following slots: "Description", "ColumnPa-
rametersSummary", and "fcsinfoNames".

Methods

"print-methods" signature(x = "FCSsummary"): prints the output of the summary statis-
tics of the data and the metadata

"show-methods" signature(object = "FCSsummary"): same as "print"

Author(s)

A.J. Rossini, J.Y. Wan, and Zoe Moodie

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics : New York, 2001. pp.279-283.

Jerome H. Friedman and Nicholas I. Fisher. Bump Hunting in High-Dimensional Data. Tech Re-
port. October 28, 1998.

J. Paul Robinson, et al. Current Protocols in Cytometry. John Wiley \& Sons, Inc : 2001.

Mario Roederer and Richard R. Hardy. Frequency Difference Gating: A Multivariate Method for
Identifying Subsets that Differe between Samples. Cytometry, 45:56-64, 2001.

FHCRC.HVTNFCS 15

Mario Roederer and Adam Treister and Wayne Moore and Leonore A. Herzenberg. Probability
Binning Comparison: A Metric for Quantitating Univariate Distribution Differences. Cytometry,
45:37-46, 2001.

Keith A. Baggerly. Probability Binning and Testing Agreement between Multivariate Immunofluo-
rescence Histograms: Extending the Chi-Squared Test. Cytometry, 45:141-150, 2001.

See Also

"FCS-class", "show-methods", "print-methods"

Examples

default.sum<-new("FCSsummary")

show, print
default.sum

FHCRC.HVTNFCS Fred Hutchinson Cancer Research Center Sequential Gating Proce-
dure proposed by Julie McElrath’s Lab

Description

This function uses icreateGate and createGate to select the datapoints which are of par-
ticular interest. The selection process is realized in an index column which is added to the data of
the FCS object. In particular, after a series of gating/datapoint selection sequences, the interferon
gamma variable is of interest.

To row reduce the data of the FCS object, the function, extractGatedData should be used on
the last gate index to obtain the rows/cells and then should be used again to subset across columns
to obtain the gamma interferon column.

Usage

FHCRC.HVTNFCS(myFCSobj, gate1.vars = c(1, 2), gate2.vars = c(5, 7),
gate3.vars = c(3, 4),MY.DEBUG = FALSE)

Arguments

myFCSobj a FCS object

gate1.vars The vector of column variable positions corresponding to Forward Scatter and
Side Scatter variables for the first gate; default is column positions 1 and 2 re-
spectively

gate2.vars The vector of column variable positions corresponding to cd3 and cd8 variables
for the second gate; default is column positions 5 and 7 respectively

gate3.vars The vector of column variable positions corresponding to cd69 and Interferon
Gamma variables for gate 3; default is column positions 3 and 4 respectively

MY.DEBUG if TRUE, then will print the debugging statements; otherwise, if FALSE, then
will surpress the debugging statements; default is FALSE

16 FHCRC.HVTNFCS

Details

The Selection Sequence made by Julie McElrath’s Lab is the following:

gate1:bidcut: Forward Scatter VS Side Scatter

single gate (Select the lymphocytes–central cluster)

gate2:bidcut: cd3 VS cd8

gate 2.1: (Select cd3+/cd8-)

gate 2.2: (Select cd3+/cd8+)

gate3:biscut: cd69 vs Interferon Gamma

gate 3.1: (Select +/+ which are the cd4+ cells (from gate2.1))

gate 3.2: (Select +/+ which are the cd8+ cells (from gate2.2))

In General, the types of Gating/Cutting that are used in this gating scheme are the following:

uniscut = univariate single cut (Selection of the positive/right half)

biscut = bivariate single cut (Selection of the +/-, -/-. +/+, or -/+ quadrant)

bidcut = bivariate double cut (Selection of the center rectangle that results)

Value

FCS object with the following slots:

data A augmented dataframe with the added-on gating column variables/indices

metadata a FCSmetadata object with the information about the gating column variables:
\$PnR (gating range), \$PnN (gating variable’s shortname/unused name in the
data of the FCS object), \$PnS (gating variable’s longname/used name), and
other slot information

WARNING

This gating scheme is not standard, and there may have been changes to the gating scheme. This gat-
ing scheme only serves as an example, which demonstrates the use of createGate,icreateGate
and "[[-methods" which extracts the metadata information (eg. in order to obatin information
about a previous gating index/column variable

Note

The "FHCRC" data from the rfcdorig package can be used for this sequential gating scheme.

Author(s)

A.J. Rossini and J.Y. Wan

References

Julie McElrath, PhD

See Also

createGate, icreateGate, showgate.FCS, VRC.HVTNFCS, plotvar.FCS, "[-methods",
"[[-methods"

ImageParCoord 17

Examples

if (require(rfcdmin)){

data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(MC.053min)

}

if (interactive()==TRUE){
par(mfrow=c(4,2))

MC.053.FHCRC<-FHCRC.HVTNFCS(MC.053)
}

}

ImageParCoord Image Parallel Coordinates Plot: Joint and marginal

Description

This function constructs an image plot in which a rectangular grid structure displays the change
of observations from the value of one variable to the value of the next variable. The vertical
axis of the image plot denotes the value of the variables that are labeled on the horizontal axis.
Traditionally, the lines in a parallel coordinates plot represent the movement of each observation
from one variable to the next, but in this case a colored image transition column will represent the
movement of observations from cell to cell in the image grid produced by horizontal bins on the
vertical axis and vertical divisions between variables and transitions between variables labeled on
the horizontal axis. Lines with scaled widths overlaying the image plot indicate the movement of
observations from binned values of one variable to the binned values of another (either marginally
and only between pairs of variables using ImageParCoord OR jointly across all variables using
JointImageParCoord). Histograms for each variable and the transitions between the variables
can be plotted as well.

Usage

ImageParCoord(x,
num.bins=10,
range.var=range(x),
break10 = NULL,
joint=FALSE,
title="",
use.shortnames=FALSE,
color.image=gray((25:5/25)[-c(1,2,3, 4, 5, 6)]),
xwidth.scale=5,
ntrans=1,
legend.plotted=TRUE,
legend.shrink = 0.9,
hist.plotted=FALSE,
image.plotted=TRUE,

18 ImageParCoord

para.plotted=FALSE,
lines.plotted=TRUE,
lwd.vec=1:7,
lty.vec=rep(1,7),
col.vec=7:1,
range.image=c(0,dim(x)[1]),
horizontal.legend = TRUE,
offset.legend=0.03,
nlevel.legend=length(color.image),
xlab.image="",
ylab.image="Bins",
MY.DEBUG=TRUE,...)

JointImageParCoord(x,
num.bins=10,
range.var=range(x),
break10=NULL,
title="",
use.shortnames=FALSE,
color.image=gray((25:5/25)[-c(1,2,3, 4, 5,6)]),
xwidth.scale=5,
ntrans=1,
legend.plotted=TRUE,
legend.shrink = 0.9,
hist.plotted=FALSE,
image.plotted=TRUE,
para.plotted=FALSE,
lines.plotted=TRUE,
lwd.vec=1:7,
lty.vec=rep(1,7),
col.vec=7:1,
range.image=c(0, dim(x)[1]),
horizontal.legend = TRUE,
offset.legend=0.03,
nlevel.legend=length(color.image),
xlab.image="",
ylab.image="Bins",
MY.DEBUG=TRUE,...)

Arguments

x data matrix from a FCS object; data has columns as the variables and rows as
the cells and assume that all column variables are of the same unit and range

num.bins numeric value denoting the number of horizontal bins on the vertical axis to
determine how well-defined/sharp the columns of the image plot are; default
value is 10 bins

range.var a 2-dimensional vector denoting the minimum value and the maximum value of
the variables to be plotted; default is the range of the FCS object data

break10 vector denoting the breaks for the binning on the vertical axis; default is equal in-
terval binning denoted by num.bins unless otherwise specified; the breaks must

ImageParCoord 19

include the range of the variable; each bin is denoted by an open lower value
and a closed upper value, ie, (a,b] where a and b are breakpoints and a<b.

joint boolean; if TRUE then the plots will be joined; default value is TRUE

title character string denoting the title of the image plot; default value is an empty
string

use.shortnames
Boolean; if TRUE, then the shortnames of the variables will be used in labeling
in the plots; otherwise if FALSE, the longnames of the variables will be used;
default is FALSE

color.image the color scheme for the image plot; default is gray((25:5/25)[-c(1,2,3, 4, 5, 6)])

xwidth.scale numeric value denoting the horizontal width of the variable and the transitions
blocks; default value is 5 units of width

ntrans numeric value denoting the number of transition columns between each pair of
variables; default is 1 transition column between each pair of variables

legend.plotted
Boolean; if TRUE then the legend is produced in a separate graph/plot; other-
wise if FALSE, then no legend plot is made; default is TRUE

legend.shrink
numeric to reduce the size of the legend

hist.plotted Boolean; if TRUE then the histogram plots of the variables and the transitions
are made; otherwise if FALSE, there is no histogram plots; default value is
FALSE

image.plotted
Boolean; if TRUE, then the image parallel coordinates plot is displayed; other-
wise if FALSE, the plot is surpressed; default is TRUE

para.plotted Boolean; if TRUE, then the parallel coordinates plot is displayed; otherwise if
FALSE, the plot is surpressed; default is TRUE

lines.plotted
Boolean; if TRUE, then superimposed binned parallel coordinate lines displayed
on top of the existing plot; otherwise if FALSE, the plot is surpressed; default is
TRUE; Note that image.plotted has to be TRUE to see the superimposed image
and parallelCoordinates lines

lwd.vec vector denoting the line width sizes to be used in the lines overlaying the image
parallel coordinates plot; default value is an integer vector from 1 to 7

lty.vec vector denoting the line type (solid or dotted, etc) for the corresponding line
width in lwd.vec; the default is to have a solid line for each line width

col.vec vector denoting the color for each line with the corresponding line width in
lwd.vec and line type in lty.vec; the default is to have colors ranging from yellow
to black (in that order).

range.image 2-dimensional numerical vector denoting the range of the number of counts in
the image block to be plotted. The default value is to have a vector with a
mininum value of zero and to have a maximum dependent on the number of
cells/rows and bins

horizontal.legend
default value is TRUE

offset.legend
default value is 0.03

nlevel.legend
default value is the length of the color.image vector

20 ImageParCoord

xlab.image a character string denoting the label of the horizontal x-axis on the image plot;
default value is an empty string

ylab.image a character string denoting the label of the vertical y-axis on the image plot;
default value is "Bins"

MY.DEBUG a boolean; if TRUE then debugging statements for the binning are output, oth-
erwise if FALSE, the statements are surpressed; default is TRUE

... graphical parameters for plot may also be passed as arguments to this function

Details

The result is to have an image block or matrix. Each variable was binned according to the number
of bins specified by the option num.bins.

A point-slope line formula was used to determine the counts in the transition block (a matrix of the
same transition column across a certain number of rows defined by ntrans and x.width options)
between two variables. For each pair of column variables, the horizontal positions of the two
variables were regressed on the bin position of the particular observation in order to obtain a point-
slope line formula. Thus, for each row observation, one could predict the particular bin that it passed
through for the transition block between two known bin values of the two variables.

The following is the point-slope formula for each pair of column variables:

bin.predicted = slope ∗ (xpos.trans− xpos.V 1) + bin.V 1

$bin.predicted$ a row observation’s predicted bin value for the specific transition column

$slope$ the slope of the line determined by dividing the difference between the bin values of vari-
able 1 (V1) and variable 2 (V2) by the difference between the horizontal, x-axis positions of
V1 and V2: slope = (bin.V 2− bin.V 1)/(xpos.V 2− xpos.V 1)

$xpos.trans$ the x-axis, horizontal position of the transition column for the particular row obser-
vation

$xpos.V1$ the x-axis, horizontal position of V1 for the particular row observation

$bin.V1$ a row observation’s bin value for V1
Please note that the lines are only marginal. They denote the number of cells moving only
between adjacent pairs of variables. To view the cells jointly across all variables, the function
JointImageParCoord should be used.
The line widths in the image parallel coordinates plot were scaled by the following equation:

x = (m− 1) ∗ ((n− i)(a− i)) + 1

x is the scaled size for a particular line

m is the maximum line width size denoted by max.lwd from the function signature

n is the number of observations denoted by the line

i is the minimum number of observations denoted by a line

a is the maximum number of observations denoted by a line

Value

The image parallel coordinates plot with overlayed lines and a legend for the lines, the traditional
parallel coordinates plot without the image, and histograms of the variables and the transitions are
displayed upon user request as well as a list of the following:

ImageParCoord 21

image.block a matrix denoting the number of observations in each cell of the image plot

line.info list of matrices in which each matrix corresponds to the the line information be-
tween a pair of variables. Each matrix has three columns. The first two columns
are the values of unique bin patterns between the pair of column variables, and
the third column is the number of observations with that particular pattern.

breaks vector of breaks for binning on the vertical axis for the values of the variables

WARNING

On some workstations, some colors may not be able to be allocated using rainbow or heat.colors
as the image.color.

Note

Other color images can be used (see the example), but please be advised of the color scheme.

Probability binning can be incorporated by using the signature option break10 to denote the breaks
from probability binning.

Author(s)

A.J. Rossini and J.Y. Wan

See Also

parallelCoordinates, rainbow, heat.colors, ContourScatterPlot, ProbBin.FCS,
gate.IPC

Examples

if (require(rfcdmin)){

data.there<-is.element(c("st.1829", "unst.1829", "unst.DRT", "st.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)

}

if (interactive()==TRUE){
par(mfrow=c(3,3))

ImageParCoord(unst.1829@data[1:1000, 1:3], num.bins=16,
title="1000 obs 16 bins 5 trans", ntrans=5)

joint line plot
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)], num.bins=16,joint=TRUE,

title="1000 obs 16 bins 5 trans", ntrans=5,legend.plotted=FALSE)

color image is changed
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)], num.bins=20,

title="1000 obs 20 bins 5 trans", color.image=rainbow(16,
start=.4, end=.1), ntrans=5)

par(mfrow=c(3,3))
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)], num.bins=20,

title="1000 obs 20 bins 10 trans", ntrans=10)

22 KS.flowcytest

joint line plot

ImageParCoord(unst.1829@data[1:1000,c(1,2,3)], num.bins=20,joint=TRUE,
title="1000 obs 20 bins 10 trans", ntrans=10)

plot the parallel coordinates plot also
par(mfrow=c(2,2))
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)], 1:1000, num.bins=16,

color.image=gray((25:5/25)[-c(1, 2, 3, 4, 5, 6,7)]),
title="1000 obs 16 bins 5 trans", ntrans=5,
para.plotted=TRUE)

plot the parallel coordinates plot also
par(mfrow=c(2,2))
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)],joint=TRUE,

1:1000, num.bins=16,
color.image=gray((25:5/25)[-c(1, 2, 3, 4, 5, 6,7)]),
title="1000 obs 16 bins 5 trans", ntrans=5,
para.plotted=TRUE)

##histograms only
par(mfrow=c(3,3))
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)], num.bins=10,

title="1000 obs 10 bins 1 trans",
ntrans=1, hist.plotted=TRUE,
image.plotted=FALSE, legend.plotted=FALSE,
lines.plotted=FALSE)

histograms and images
par(mfrow=c(3,3))
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)],

num.bins=10,
title="1000 obs 10 bins 5 trans",
ntrans=5, hist.plotted=TRUE)

legend only
ImageParCoord(unst.1829@data[1:1000,c(1,2,3)], num.bins=10,

title="1000 obs 10 bins 5 trans", ntrans=5, legend.plotted=TRUE,
image.plotted=FALSE, lines.plotted=FALSE)

ImageParCoord(unst.1829@data[1:1000,c(1,2,3)],joint=TRUE,
num.bins=10,
title="1000 obs 10 bins 5 trans",
ntrans=5, legend.plotted=TRUE,
image.plotted=FALSE, lines.plotted=FALSE)

}
}

KS.flowcytest Kolmogorov Smirnoff Test 2-sample

Description

Provides a Kolmogorov Smirnoff 2-sample Test to determine if the distribution of the control data
is different from the distribution of the stimulated data (for which both datasets are of the same

KS.flowcytest 23

variable). See also the function ’ks.test’ in the stats. A density plot made by the function ’bkde’ in
KernSmooth package is also shown.

Usage

KS.flowcytest(controldata, stimuldata,
title="", varname = "", yupper = 0.01,
xlimit = c(0, 1025), alternative="two.sided",
KS.plotted=TRUE,
MY.DEBUG=TRUE,...)

Arguments

controldata a vector of numeric values of the control data

stimuldata a vector of numeric values of the stimulated/case data

title character string of the plot title

varname character string of the name of the variable

yupper the upper limit of the densities calculated

xlimit a vector indicating the range of the controldata and the stimuldata

alternative character string of the alternative hypothesis:
1. "two sided" : Two sided alternative hypothesis
2. "less": One sided alternative hypothesis: controldata distribution is less than
the stimuldata distribution
3. "greater" One sided alternative hypothesis: controldata distribution is greater
than the stimuldata distribution

KS.plotted boolean to display the corresponding plot; default is TRUE and the plot will be
displayed

MY.DEBUG boolean; if TRUE, the test is printed out with comments; if FALSE then these
comments are surpressed

... parameters for the stimuldata distribution specified in ks.test

Details

In general, the control and the stimulated data come from the Interferon Gamma Data Variable of a
FCS R object.

Value

pval.2sid.KS p value of the two sided Kolmogorov Smirnoff test
Alt.Hypoth.KS

The Alternative Hypthesis as a string

method.KS the method used

dataname.KS the name of the data

A superimposed plot of the densities of the control and the stimulated dataset is also displayed.

WARNING

Usually the FCS object is gated and subset prior to this testing and analysis.

24 KS.flowcytest

Note

Other flowcytests are available such as pkci2.flowcytest, ProbBin.flowcytest, KS.flowcytest,
which test the equivalence of two sample distributions. Generally, comparing the control and stim-
ulated samples of the interferon gamma variable is of interest.

Author(s)

A.J. Rossini and J.Y. Wan

References

See ks.test

See Also

pkci2.flowcytest, ProbBin.flowcytest, runflowcytests, ks.test, bkde

Examples

different distributions
control<-rnorm(1000, mean=3, sd=.7)
stimulated<-rnorm(1000, mean=2, sd=.5)

if (interactive()==TRUE) {
output.same <- KS.flowcytest(control, stimulated,

title="Different Distributions",
varname="Interferon Gamma",
yupper=1, xlimit=c(-5,8))

}
same distribution
stimulated2<-rnorm(1000, mean=3, sd=.7)
if (interactive()==TRUE) {
output.diff <- KS.flowcytest(control, stimulated2,

title="Same Distributions",
varname="Interferon Gamma",
yupper=1, xlimit=c(-5,8))

}

obtaining the FCS objects from VRC data
if (require(rfcdmin)) {
data.there<-is.element(c("st.1829", "unst.1829", "st.DRT", "unst.DRT"),objects())
if ((sum(data.there) != length(data.there))) {
obtaining the FCS objects from VRC data
data(VRCmin)

}

This only serves as an example. Usually the FCS object is
gated and then subset

HIV negative individual 1829
only the first 2000 cells are selected

IFN.control<-unst.1829@data[1:2000,4]
IFN.stimul<-st.1829@data[1:2000,4]

MODE 25

if (interactive()==TRUE){
KS.flowcytest(IFN.control, IFN.stimul,
title="HIV Negative Individual 1829", varname="Interferon Gamma",
yupper=.006)

}
HIV positive individual DRT
only the first 2000 cells are selected

IFN.control2<-unst.DRT@data[1:2000,4]
IFN.stimul2<-st.DRT@data[1:2000,4]

if (interactive()){

KS.flowcytest(IFN.control2, IFN.stimul2,
title="HIV Positive Individual DRT", varname="Interferon Gamma",
yupper=.006)

}
This is an artifical example, but one would expect the
distributions of the stimulated and control samples
to be the same in the HIV negative individual 1829
and to be different in the HIV positive individual DRT
The test in this example is a bit contrived but
the bigger picture is achieved.

}

MODE Estimate the highest mode of a multimodale distribution

Description

MODE returns the highest mode of a multimodale distribution estimate for a given data vector

Usage

MODE(x, na.rm=TRUE)

Arguments

x numeric vector

na.rm logical

Value

x highest mode

Author(s)

Nolwenn Le Meur

See Also

plotQA.FCS

26 PercentPos.FCS

Examples

set.seed(12345)
x<-rnorm(50)
h<-MODE(x)

PercentPos.FCS Calculate the Percent Positive given a percentile

Description

From a sample of observations, the percentile for a given percent is computed as the value in which
there is a given percent of observations that are lower than it. Using percentile.FCS will
obtain the percentile of interest in a given vector of values.

Given a sample of observed values, the percent positive over a certain percentile value will be
calculated and output by using PercentPos.FCS.

Usage

percentile.FCS(x.vector, percent = 0.999)

PercentPos.FCS(st.data, percentile)

Arguments

x.vector numerical vector of observations usually from the control data

percent numeric; the percent at which to obtain the percentile

st.data numerical vector of observations; usually of the cytokine response of the stimu-
lated sample

percentile numerical value of the threshold; usually the 99.9th percentile of the correspond-
ing unstimulated/control sample

Details

Specifically percentile.FCS is used to obtain the percentiles for PercentPos.FCS and
ROC.FCS in the analysis of the upper tail distributions of the stimulated and controls samples
of cytokine responses, especially of the Interferon Gamma variable, among HIV positive and HIV
negative individuals. This function and analysis can be applied to different scenerios as well.

Usually the Interferon Gamma variable from the FCS object (after gating and subsequent subsets
(See createGate and extractGatedData)), is of interest. The percentile is obtained from
the unstimulated or control sample and 100* Percent positives among the cells/observations of
the stimulated sample is obtained based on the 99.9th percentile of the control sample. There are
differences in the tails of these distributions (stimulated versus control) between HIV positive and
HIV negative samples that might better distinguish HIV positive and HIV negative samples. This
method was proposed by Zoe Moodie.

PercentPos.FCS 27

Value

For percentile.FCS:

the percentile is returned; the percentile is defined as the numeric value of the observation at the
which there is a given percent of observations below this value; the value’s label or name is the
position of the value in the input vector ’controldata’

For PercentPos.FCS:

percent.pos the fraction of the observations above or equal to the threshold/percentile

total.num total number of observations in the sample

Note

Please note that Percentage Positive = 100 * (percent positive).

Author(s)

A.J. Rossini and J.Y. Wan

References

Zoe Moodie and Mario Roederer

See Also

data ’PerPosROC’ in rfcdorig package, ROC.FCS

Examples

if (require(rfcdmin)){

data.there<-is.element(c("st.1829", "unst.1829", "unst.DRT", "st.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)
}
#hiv negative one individual, 1829
#stimulated sample
INFg.st.neg<-st.1829@data[,4]
#control sample
INFg.unst.neg<-unst.1829@data[,4]

#hiv positive one individual, DRT
#stimulated sample
INFg.st.pos<-st.DRT@data[,4]
#control sample
INFg.unst.pos<-unst.DRT@data[,4]

c.neg<-percentile.FCS(INFg.unst.neg)
c.pos<-percentile.FCS(INFg.unst.pos)

#percent positive for two individuals
p.neg<-PercentPos.FCS(INFg.st.neg, c.neg)
p.pos<-PercentPos.FCS(INFg.st.pos, c.pos)

28 ProbBin.FCS

percentage positive
ptg.neg<-100*p.neg$percent.pos
ptg.pos<-100*p.pos$percent.pos
}

ProbBin.FCS ProbBin.FCS R-object: Probability binning of 2 samples

Description

Constructs a list of histogram objects and other variables on the probability binning between 2
samples, usually the stimulated and unstimulated data (post gating).

Usage

ProbBin.FCS(controldata, stimuldata, N, varname = "",
PBspec = c("by.control", "combined"), MY.DEBUG = TRUE, ...)

Arguments

controldata a vector of the unstimulated sample data (of 1 variable)
stimuldata a vector of the stimulated sample data (of 1 variable)
N the number of observations per a bin
varname character string of the name of the variable (optional)
PBspec The type of probability binning either:

"by.control" in which the breaks for the bins are based on the unstimulated
having N observations in each bin

"combined" in which the breaks for the bins are based on the combined dataset
(stimulated and unstimulated) having N observations in each bin

MY.DEBUG If TRUE, then debugging statements will be printed; default is TRUE.
... other options besides ’plot’ and ’br’ in hist function

Details

Based on either the control data or the combined data, breaks for the bins are determined by having
a specific number of observations fall in each bin. These breaks are then applied to the stimulated
data or both the control and stimulated data, respectively. The resulting two histograms (one of the
stimulated data and the other of the control data) are the result of this probability binning method.

Value

unst.hist histogram object of the control/unstimulated data
st.hist histogram object of the stimulated data
PB type of Probability binning: either "by.control" or "combined"
N.in.bin number in each bin
varname character string of the variable name

ProbBin.FCS 29

WARNING

Gating and subsetting should precede the analysis and the use of this function. It is a good idea to
implement icreateGate or createGate and extractGatedData before this analysis on
univariate data.

Note

Further graphing & testing can be implemented via the following functions in rflowcyt pack-
age:plot.ProbBin.FCS, summary.ProbBin.FCS, ProbBin.flowcytest

Author(s)

Zoe Moodie, A.J. Rossini, J.Y. Wan

References

Mario Roederer, et al. "Probability Binning Comparison: A Metric for Quantitating Univariate
Distribution Differences" Cytometry 45:37-46 (2001).

See Also

hist, breakpoints.ProbBin, plot.ProbBin.FCS, summary.ProbBin.FCS, ProbBin.flowcytest,
is, as

Examples

if (require(rfcdmin)){

data.there<-is.element(c("st.1829", "unst.1829", "st.DRT", "unst.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)
}
This only serves as an example.
Gating/subsetting should precede this analysis
IFN.gamma.1<-unst.1829@data[1:2000,4]
IFN.gamma.2<-st.1829@data[1:2000,4]

#Probability binning using the control dataset to determine the breaks
PB1<-ProbBin.FCS(IFN.gamma.1, IFN.gamma.2, 200,
varname=colnames(unst.1829@data)[4], PBspec="by.control",MY.DEBUG=FALSE)

Probability Binning using the combined dataset (control & stimulated)
to determing the breaks
PB2<-ProbBin.FCS(IFN.gamma.1, IFN.gamma.2, 200,
varname=colnames(unst.1829@data)[4], PBspec="combined",MY.DEBUG=FALSE)
}

30 ProbBin.flowcytest

ProbBin.flowcytest Test the equivalence of two univariate sample distributions by using
Probability Binning and plots the probability-binned histograms of the
two samples

Description

This function will create a probability binning object called ProbBin.FCS and will perform sum-
mary statistics and a plot of the two resulting probability-binned histograms. There can be proba-
bility binning based on the combined data of the two samples or just based on one sample, which is
labled as the control.

Usage

ProbBin.flowcytest(controldata,
stimuldata, N = 100, varname = "",
AnalyType = c("combined", "by.control"),
title = "",
MY.DEBUG = FALSE,
PBobj.plotted=TRUE,
plots.made=c("both", "stimulated", "unstimulated"),
...)

Arguments

controldata numerical vector of the control sample univariate data

stimuldata numerical vector of the stimulated sample of the univariate data

N The nummber of observations in each bin on the data specified in the AnalyType
option

varname character string of the variable being investigated (usually, in this analysis, the
interferon gamma variable is used after gating and subsetting of the FCS object)

AnalyType Probability Binning either "by.control" or based on the "combined" (control and
stimulated) data

title character string denoting the title of the plots

MY.DEBUG boolean; if TRUE, debugging statements are printed; default is FALSE
PBobj.plotted

boolean; if TRUE then histograms of the ProbBin.FCS object will be plotted; if
FALSE, then these plots are surpressed; default is TRUE

plots.made character string denoting which histogram plot should be displayed; default is
"both"

... more plotting options; see plot.ProbBin.FCS and hist for details

Details

The testing performed are summarized in summary.ProbBin.FCS, and the plots are produced
by plot.ProbBin.FCS.

ProbBin.flowcytest 31

Value

A list consisting of:

PBinType Type of Probability Binning:

"by.control" uses the control dataset to obtain the breaks/cutoffs to bin the
stimulated dataset given a certain number of observations in each bin of the
control dataset

"combined" uses the combined dataset (both control and stimulated datasets)
to obtain the breaks/cutoffs for the bins given a certain number in each bin

control.bins single column matrix of the counts in each bin of the control dataset

stim.bins single column matrix of the counts in each bin of the stimulated dataset
total.control

numeric; total number in the control dataset

total.stim numeric; total number in the stimulated dataset

T.chi.unadj Roederer’s unadjusted normalized PB metric statistic which is normalized by
subtracting off the mean and then dividing by the standard deviation. This statis-
tic is approximately standard normal.

p.val.2tail.z.unadj
Two-tailed standard normal p-value corresponding to the Roederer’s unadjusted
normalized PB metric statistic which is approximated as a standard normal

p.val.1tail.z.unadj
Upper standard normal one-tailed p-value corresponding to the Roederer’s un-
adjusted PB metric statistic which is approximated as a standard normal

PBmetric.unadj
Roederer’s unadjusted PB metric which is ((n.c + n.s)/(2*nc.*n.s))*Chi-squared
or an unadjusted chi-squared statistic, where n.c is the number of control obser-
vations (unbinned) and n.s is the number of stimulated observations (unbinned)

PBmetric.adj Baggerly’s adjusted PB metric statistic which is a Chi-squared statistic

PB.df The degrees of freedom of the PB metric (adjusted and unadjusted) which is B-
1, where B is the number of bins in the eitherthe control or the stimulated binned
data

p.val.1tail.chi.adj
Upper one-tailed chi-squared p-value corresponding to Baggerly’s adjusted PB
metric

T.chi.adj Baggerly’s PB metric which is normalized by subtracting off the mean and di-
viding by the standard deviation; This normalized statistic is approximately stan-
dard normal.

p.val.1tail.z.adj
Upper one-tailed standard normal p-value corresponding to the Baggerly’s ad-
justed normalized PB metric statistic which is approximated as a standard nor-
mal

p.val.2tail.z.adj
Standard normal two-tailed p-value corresponding to the Baggerly’s adjusted
PB metric statistic which is approximated as a standard normal

pearson.stat Pearson’s Chi-Squared Statistic with degrees of freedom 2B-1, where B is the
number of bins in either the control or the stimulated binned data

pearson.df the degrees of freedom for the chi-squared statistic
pearson.p.value

The p-value corresponding to the chi-squared distribution

32 ProbBin.flowcytest

pearson.method
string of the indicating the type of test and options performed

pearson.dataname
string of the name(s) of the data

pearson.observed
a vector of the observed counts

pearson.expected
a vector of the expected counts under the null hypothesis

pearson.p.val.PB.df
Fisher’s Chi-squared statistic with degrees of freedom B-1, where B is the num-
ber of bins in either the control or the stimulated binned data

Two histograms, one of each sample, are also plotted.

WARNING

Usually the FCS object is gated and subset prior to this testing and analysis.

Note

Other flowcytests are available such as pkci2.flowcytest, ProbBin.flowcytest, KS.flowcytest,
which test the equivalence of two sample distributions. Generally, comparing the control and stim-
ulated samples of the interferon gamma variable is of interest.

Author(s)

A.J. Rossini and J.Y. Wan

References

Keith A. Baggerly "Probability Binning and Test Agreement between Multivariate Immunofluores-
cence Histograms: Extending the Chi-Squared test" Cytometry 45: 141:150 (2001).

Mario Roederer, et al. "Probability Binning Comparison: A Metric for Quantitating Univariate
Distribution Differences" Cytometry 45:37-46 (2001).

See Also

pkci2.flowcytest, WLR.flowcytest, KS.flowcytest, runflowcytests, summary.ProbBin.FCS,
ProbBin.FCS, plot.ProbBin.FCS, hist

Examples

if (require(rfcdmin)){

data.there<-is.element(c("st.1829", "unst.1829", "st.DRT", "unst.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)
}

This only serves as an example. Usually the FCS object is
gated and then subset

ROC.FCS 33

HIV negative individual 1829
IFN.control<-unst.1829@data[1:2000,4]
IFN.stimul<-st.1829@data[1:2000,4]

probability binning based on the combined data of both samples
if (interactive()==TRUE){
par(mfrow=c(2,2))
test1.out<-ProbBin.flowcytest(IFN.control, IFN.stimul, varname="Interferon Gamma",
AnalyType="combined", N=200, title="HIV negative individual 1829")
}
HIV positive individual DRT

IFN.control2<-unst.DRT@data[1:2000,4]
IFN.stimul2<-st.DRT@data[1:2000,4]

probability binning based on the control data only
if (interactive()==TRUE){
test2.out<-ProbBin.flowcytest(IFN.control2, IFN.stimul2,
varname="Interferon Gamma", AnalyType="by.control",
N=100, title="HIV negative individual 1829")
}
This is an artifical example, but one would expect the
distributions of the stimulated and control samples
to be the same in the HIV negative individual 1829
and to be different in the HIV positive individual DRT
The test in this example is a bit contrived but
the bigger picture is achieved.
}

ROC.FCS ROC (Receiver Operating Characteristic) Curve: Percentage Posi-
tives for Flow Cytometry data

Description

This function plots an ROC curve based on cutoff values from the observed combined dataset of hiv-
pos and hivneg, which both are vectors of patient-specific percentage positives based on the 99.9th
percentile of the corresponding control sample distribution. The output contains the sensitivities,
1-specificity,and the observed dataset, cutoff values.

Usage

ROC.FCS(hivpos, hivneg, lineopt = 1, colopt = 1, overlay = FALSE)

Arguments

hivpos numerical vector of percentage positives for the HIV positive individuals/samples
for a given condition

hivneg numerical vector of the percentage positives for the HIV negative individu-
als/samples for a given condition

lineopt numerical value for the lty option of the plot (line type)
colopt numerical value for the col option of the plot (color type)
overlay Boolean expression as to whether or not the plot is an overlay

34 ROC.FCS

Details

See ’PerPosROC’ in the ’rfcdorig’ package for a description of the input data and how percentage
positives are defined.

The ROC curve in the example demonstrates that there is higher predictive ability of using the GAG
stimulated samples rather than the PolA or PolB stimulated samples.

Value

Let T be the the percentage positives, c be a given value in c.obs, and HIV+ defined as among HIV
positive individuals, and HIV- defined as among HIV negative individuals.

sensitivity numerical vector of the sensitivity=P(T>c | HIV+) calculated corresponding to
a given cut-off in c.obs

spec.complement
numerical vector of 1-specificity= P(T>c | HIV -)corresponding to a given cut-
off in c.obs

c.obs a numerical vector of the cutoffs which were taken to be the values of the obser-
vations (the values of the percentage positives of both the HIV positive and HIV
negative data)

Author(s)

A.J. Rossini and J.Y. Wan

References

Zoe Moodie and Mario Roederer

See Also

PercentPos.FCS, data ’PerPosROC’ in ’rfcdorig’ package, percentile.FCS

Examples

if (require(rfcdmin)){

data(PerPosROCmin)

#plotting the gag stimulated 100* percent positives
if (interactive()==TRUE){
GAG<-ROC.FCS(hivpos.gag, hivneg.gag)
#plotting the pola stimulated 100* percent positives
POLA<-ROC.FCS(hivpos.pola, hivneg.pola, lineopt=2, colopt=2, overlay=TRUE)
#plotting the polb stimulated 100* percent positives
POLB<-ROC.FCS(hivpos.polb, hivneg.polb, lineopt=4, colopt=3, overlay=TRUE)
legend(0.7, 0.7, c("gag", "polA", "polB"), col = c(1,2,3), lty=c(1,2,4))
}

}

VRC.HVTNFCS 35

VRC.HVTNFCS Sequential Gating Scheme from Vaccine Research Center (VRC), NIH,
Bethesda, MD; Mario Roederer, PhD

Description

This function uses icreateGate and createGate to select the datapoints which are of par-
ticular interest. The selection process is realized in an index column which is added to the data of
the FCS object. In particular, after a series of gating/datapoint selection sequences, the interferon
gamma variable is of interest.

To row reduce the data of the FCS object, the function, extractGatedData should be used on
the last gate index to obtain the rows/cells and then should be used again to subset across columns
to obtain the gamma interferon column.

Usage

VRC.HVTNFCS(myFCSobj, gate1.vars = c(1, 2), gate2.vars = c(7, 5),
gate3.vars = c(5, 3),MY.DEBUG = FALSE)

Arguments

myFCSobj a FCS object

gate1.vars The vector of column variable positions corresponding to Forward Scatter and
Side Scatter variables for the first gate; default is column positions 1 and 2 re-
spectively

gate2.vars The vector of column variable positions corresponding to cd3 and cd4 variables
for the second gate; default is column positions 7 and 5 respectively

gate3.vars The vector of column variable positions corresponding to cd4 and cd8 variables
for gate 3; default is column positions 5 and 3 respectively

MY.DEBUG if TRUE, then will print the debugging statements; otherwise, if FALSE, then
will surpress the debugging statements; default is FALSE

Details

The Selection Sequence proposed by Mario Roederer is the following:

gate1:bipcut: Forward Scatter VS Side Scatter (Select the lymphocytes–central cluster)

gate2:bidcut: cd3 VS cd4 (want cd3+ cells) (Select the cd3 positive cells on the right of the cutoff)

gate3:biscut: cd4 vs cd8 gate 3.1: (Select cd4+/cd8- cells) (+/- quadrant) gate 3.2: (Select cd4-
/cd8+ cells) (-/+ quadrant)

In General, Types of Gating/Cutting:

uniscut = univariate single cut (Selection of the positive/right half)

biscut = bivariate single cut (Selection of the +/-, -/-. +/+, or -/+ quadrant)

bidcut = bivariate double cut (Selection of the center rectangle that results)

36 VRC.HVTNFCS

Value

FCS object with the following slots:

data A augmented dataframe with the added-on gating column variables/indices

metadata a FCSmetadata object with the information about the gating column variables:
\$PnR (gating range), \$PnN (gating variable’s shortname/unused name in the
data of the FCS object), \$PnS (gating variable’s longname/used name), and
other slot information

WARNING

This gating scheme is not standard, and there may have been changes to the gating scheme. This gat-
ing scheme only serves as an example, which demonstrates the use of createGate,icreateGate
and extractGateHistory which extracts the gating information (eg. in order to obtain infor-
mation about a previous gating index/column variable)

Note

The "VRC" data from the "rfcdorig" package can be used for this sequential gating scheme.

Author(s)

A.J. Rossini \& J.Y. Wan

References

Mario Roederer, PhD

See Also

createGate, icreateGate, FHCRC.HVTNFCS, plotvar.FCS, extractGatedData,
extractGateHistory

Examples

if (require(rfcdmin)){

data.there<-is.element(c("st.1829", "unst.1829", "st.DRT", "unst.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)
}

HIV positive individual
if (interactive()==TRUE){
par(mfrow=c(4,2))
st.DRT.VRC<-VRC.HVTNFCS(st.DRT)
}

}

WLR.flowcytest 37

WLR.flowcytest Weighted Logrank Test for testing the differences between time-to-
event, survival curves

Description

Using a survival method developed by Flemming and Harrington, this function examines the differ-
ence in the survival curves of two samples in order to determine a distribution difference between
the two samples. A plot of the two super-imposed survival curves is displayed.

Usage

WLR.flowcytest(controldata, stimuldata, title = "", varname = "",
na.action.WLR = options()$na.action, rho.test = 0,
WLR.plotted=TRUE, MY.DEBUG=TRUE)

Arguments

controldata numerical vector of observations of the control data for one variable

stimuldata numerical vector of observations of the stimulated data for the same variable as
the control

title character string describing the title

varname character string describing the name of the variable
na.action.WLR

a missing-data filter function. This is applied to the ’model.frame’ after any
subset argument has been used. Default is ’options()\$na.action’ (as quoted from
the ’survdiff’ documentation from the survival package.)

rho.test the exponent, ρ in S(t)ρ, where S is the Kaplan-Meier estimate of survival; A ρ
value of 0 specifies using the weighted log-rank test, and a value of 1 specifies
using the Peto & Peto modification of the Gehan-Wilcoxon test.

WLR.plotted boolean; if TRUE, then plot is made; otherwise if FALSE, plotting is surpressed;
default=TRUE

MY.DEBUG boolean; if TRUE, the test is printed out with comments; if FALSE then these
comments are surpressed

Details

The null hypothesis is that the two survival curves are the same in both samples. If there is a
significant difference then a large chi-squared one statistic corresponding to a small p-value (usually
< 0.05, where the Type I error rate=alpha=0.05) will suggest this significance.

This function uses ’survdiff’ in the survival package. The following is a direct quote from the
’survdiff’ documentation: "This function (survdiff) implements the G-rho family of Harrington and
Fleming (1982), with weights on each death of S(t)ρ, where S is the Kaplan-Meier estimate of
survival.With ‘ρ = 0’ this is the log-rank or Mantel-Haenszel test, and with ‘ρ = 1’ it is equivalent
to the Peto & Peto modification of the Gehan-Wilcoxon test."

In this flowcytometry analysis, we are not dealing with the proportion of survival, persay, but instead
in terms of the proportion of observations/cells beyond a certain value of the interferon gamma
variable.

38 WLR.flowcytest

Value
p.val.1sid.chisq.WLR

p-value associated with a chi-squared statistic with one degree of freedom

chisq.WLR the chi-squared statistic in the test of the difference in survival curves

n.WLR a numeric vector of the number of subjects in the control and the stimulated
samples, respectively

obs.WLR numeric vector of the weighted observed number of events in each sample, con-
trol and stimulated, respectively

exp.WLR numeric vector of the weighted expected number of events in each sample, con-
trol and stimulated, respectively

var.WLR the variance matrix of the test (control, stimulated)

A survival plot is also made with the two survival curves, labeled "Control" and "Stimulated" and
super-imposed on one plot.

WARNING

Usually the FCS object is gated and subset prior to this testing and analysis. Also this function
requires the library survival.

Note

Other flowcytests are available such as pkci2.flowcytest, ProbBin.flowcytest, KS.flowcytest,
which test the equivalence of two sample distributions. Generally, comparing the control and stim-
ulated samples of the interferon gamma variable is of interest.

Author(s)

A.J. Rossini and J.Y. Wan

References

Harrington, D. P. and Fleming, T. R. (1982). A class of rank test procedures for censored survival
data. Biometrika 69, 553-566.

See Also

pkci2.flowcytest, ProbBin.flowcytest, KS.flowcytest, runflowcytests, the
function ’survdiff’ in the survival package.

Examples

if (require(rfcdmin)){

data.there<-is.element(c("st.1829", "unst.1829", "st.DRT", "unst.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)
}

This only serves as an example. Usually the FCS object is
gated and then subset

add.parallel.coordinates 39

HIV negative individual 1829
IFN.control<-unst.1829@data[1:2000,4]
IFN.stimul<-st.1829@data[1:2000,4]

if (interactive()==TRUE){
par(mfrow=c(2,2))
WLR.flowcytest(IFN.control, IFN.stimul,
title="HIV negative individual 1829",
varname="Interferon Gamma")
}
HIV positive individual DRT

IFN.control2<-unst.DRT@data[1:2000,4]
IFN.stimul2<-st.DRT@data[1:2000,4]

if (interactive()==TRUE){
WLR.flowcytest(IFN.control2, IFN.stimul2,
title="HIV positive individual DRT",
varname="Interferon Gamma")
}
This is an artifical example, but one would expect the
distributions of the stimulated and control samples
to be the same in the HIV negative individual 1829
and to be different in the HIV positive individual DRT
The test in this example is a bit contrived but
the bigger picture is achieved.
}

add.parallel.coordinates
Add a parallel coordinates line to an existing plot

Description

This function will allow the user to add a parallel coordinates line to an existing plot. The single
line can be specified with a certain scale, color, line type, and line width as well as with other line
options.

Usage

add.parallel.coordinates(x, varlabpos = 1:length(x), scaled = FALSE, lty = 1, col = 1, lwd = 1, ...)

Arguments

x is a vector of variable values made for one cell/individual; the length corre-
sponds to the number of variables on the horizontal x-axis

varlabpos a vector denoting the positions on the x-axis to plot values

scaled Boolean; If TRUE, then the values of x will be on a (0,1) scale; if FALSE, then
the original values of x are to be plotted on the vertical axis.

lty numerical value denoting the line type; see par for descriptions

col color of the line

40 add.parallel.coordinates

lwd line width

... other options from the lines function

Value

A parallel coordinates line will be added to the exisiting plot.

Note

This function is deprecated, please use add.parallelCoordinates.

Author(s)

A.J. Rossini, J.Y. Wan

See Also

plot, par, lines, parallelCoordinates, ImageParCoord

Examples

if (require(rfcdmin)){

data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(MC.053min)
}

dataMC<-MC.053@data

if (interactive()){
par(mfrow=c(2,2))
subset the data to the first 5 observations because it is too huge
parallelCoordinates(dataMC[c(1:5),-6])

adding in the 6-th row observation
add.parallel.coordinates(dataMC[6,-6], col="red")

the same plot is scaled to 0,1 range
parallelCoordinates(dataMC[c(1:5),-6], scaled=TRUE)
adding in the 6-th row observation
add.parallel.coordinates(dataMC[6,-6], scaled=TRUE, col="red")

positions on the horizontal x-axis
parallelCoordinates(dataMC[c(1:5),1:4], varlabpos=c(1, 5, 8, 16))
adding in the 6-th row observation
add.parallel.coordinates(dataMC[6,1:4], varlabpos=c(1,5,8,16),
col="red")
}

}

add.parallelCoordinates 41

add.parallelCoordinates
Add a parallel coordinates line to an existing plot

Description

This function will allow the user to add a parallel coordinates line to an existing plot. The single
line can be specified with a certain scale, color, line type, and line width as well as with other line
options.

Usage

add.parallelCoordinates(x, varlabpos = 1:length(x), scaled = FALSE, lty = 1, col = 1, lwd = 1, ...)

Arguments

x is a vector of variable values made for one cell/individual; the length corre-
sponds to the number of variables on the horizontal x-axis

varlabpos a vector denoting the positions on the x-axis to plot values

scaled Boolean; If TRUE, then the values of x will be on a (0,1) scale; if FALSE, then
the original values of x are to be plotted on the vertical axis.

lty numerical value denoting the line type; see par for descriptions

col color of the line

lwd line width

... other options from the lines function

Value

A parallel coordinates line will be added to the exisiting plot.

Author(s)

A.J. Rossini, J.Y. Wan

See Also

plot, par, lines, parallelCoordinates, ImageParCoord

Examples

if (require(rfcdmin)){

data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(MC.053min)
}

dataMC<-MC.053@data

42 "addParameter-methods"

if (interactive()){
par(mfrow=c(2,2))
subset the data to the first 5 observations because it is too huge
parallelCoordinates(dataMC[c(1:5),-6])

adding in the 6-th row observation
add.parallelCoordinates(dataMC[6,-6], col="red")

the same plot is scaled to 0,1 range
parallelCoordinates(dataMC[c(1:5),-6], scaled=TRUE)
adding in the 6-th row observation
add.parallelCoordinates(dataMC[6,-6], scaled=TRUE, col="red")

positions on the horizontal x-axis
parallelCoordinates(dataMC[c(1:5),1:4], varlabpos=c(1, 5, 8, 16))
adding in the 6-th row observation
add.parallelCoordinates(dataMC[6,1:4], varlabpos=c(1,5,8,16),
col="red")
}

}

"addParameter-methods"
Add a column data variable to the data of a FCS object

Description

This function enables the user to add a column data variable, "colvar", (which specifies a value for
each row/cell) to the data of a "FCS" object and updates the data information in the metadata of a
FCS object.

Methods

x = "FCS", colvar = "vector" Adds colvar to the data portion of the "FCS" object; colvar must
agree in length with the row dimension of the data matrix

x = "FCS", colvar = "vector", shortname="", longname="", use.shortname=FALSE Other un-
listed options in the signature include:

(1) shortname : character string denoting the name of colvar; default value is "".

(2) longname : character string denothing the long name of colvar; default value is "".

(3) use.shortname : boolean; if TRUE then the shortname is assigned to the column variable
in the data, otherwise the longname is used; default value is FALSE

boxplot.FCS 43

boxplot.FCS Create boxplots one parameter of one (or more) FCS object(s)

Description

Produce box-and-whisker plot(s) of a single column variable specified from the data of one (or
more) FCS object(s).

Usage

boxplot.FCS(x, varpos=c(1),groups=NULL, xlab, ylab, col,
alternating=TRUE, do.out = FALSE, ...)

Arguments

x a list of one (or more) FCS object(s) or a cytoSet object
varpos the numerical column variable position of the data of the FCS object
groups a variable or expression to be evaluated in the data frame specified by ’data’,

expected to act as a grouping variable within each panel, typically used to dis-
tinguish different groups by varying graphical parameters like color and line
type

xlab a title for the x axis
ylab a title for the y axis
col The colors for lines and points. Multiple colors can be specified so that each

point can be given its own color. If there are fewer colors than points they are
recycled in the standard fashion. Lines will all be plotted in the first colour
specified.

alternating logical specifying whether axis labels should alternate from one side of the
group of panels to the other (for more details see xyplot)

do.out logical to specify if the outlier values should be displayed (default is FALSE)
... any other arguments are passed to the boxplot function

Details

If several FCS objects are supplied parallel boxplots will be plotted. Other options from the func-
tions plot, boxplot.

Value

The boxplot will output a list with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker for one
group/plot.

n a vector with the number of observations in each group
conf a matrix where each column contains the lower and upper extremes of the notch
out the values of any data points which lie beyond the extremes of the whiskers
group a vector of the same length as out whose elements indicate which group the

outlier belongs to
names a vector of names for the groups

44 breakpoints.ProbBin

Author(s)

N. Le Meur

See Also

boxplot, boxplot.stats

Examples

Example I:
require(rfcdmin)
data(flowcyt.data)

Draw a boxplot for the Foward Scatter parameter for the time points 1
and 6 (in this experiment, each time point corresponds to a column of
a 96 wells plates)
mat <- matrix(c(1:2),1,2,byrow=TRUE)
nf <- layout(mat,respect=TRUE)
boxplot.FCS(flowcyt.data[1:8],varpos=c(1),col=c(1:8),main="FSC across stains time point 1",names=paste("stain",c(1:8),sep=""))
boxplot.FCS(flowcyt.data[65:72],varpos=c(1),col=c(1:8),main="FSC across stains time point 9",names=paste("stain",c(1:8),sep=""))

##Example II:
Read a serie of FCS files
if (require(rfcdmin)) {

##obtaining the location of the fcs files in the data
pathFiles<-system.file("bccrc", package="rfcdmin")
drugFiles<-dir(pathFiles)

reading in the FCS files
drugData<-read.series.FCS(drugFiles,path=pathFiles,MY.DEBUG=FALSE)
}

##Draw a boxplot for the Foward Scatter parameter
##for the differents aliquots (of the same cell line)
##tested with different compounds.
boxplot.FCS(drugData,varpos=c(1),col=c(1:8),main="FSC of differents aliquots from the same cell line treated with different compounds.")

breakpoints.ProbBin
Obtain break points for Probability binning

Description

To define the break points in data.var in which there are N observations in each bin.

Usage

breakpoints.ProbBin(data.var, N)

breakpoints.ProbBin 45

Arguments

data.var a vector of numeric data values for the break points to be determined

N the number of data points between two breaks

Details

This function is used to determine the break points that can be used to specify a ProbBin.FCS
object as well as a hist object.

Please note that each bin in the histograms (in ProbBin.FCS) will be determined such that the
end point is included (ie, for a<b, (a,b] is the bin interval for break points a & b.

Thus, the output of this function will have min(data.var)-1 as the first break point and max(data.var)
as the last break point such that (min(data.var)-1, min(data.var)] is the first bin/interval of the break
points.

Value

a vector of the numerical breaks

Author(s)

Zoe Moodie, A.J. Rossini, J.Y. Wan

References

Mario Roederer, et al. "Probability Binning Comparison: A Metric for Quantitating Univariate
Distribution Differences" Cytometry 45:37-46 (2001).

See Also

ProbBin.FCS hist

Examples

x <- 1:23
N <- 3

making a series of cutpoints which have
an equal number of counts in each bin

breaks <- breakpoints.ProbBin(x, N)

hist(x, br=breaks, plot=FALSE)

46 "checkvars-methods"

"checkvars-methods"
Checks the ranges, dimensions, and names of the metadata based on
the current data of an FCS R-object.

Description

Any discrepancy between the metadata and the data of the FCS object is considered as a failure to
pass the check. The following is a description of the checks:

1. Dimension check We always check the dimensions (ie, if the data dimensions match with size
("\$TOT") and nparam ("\$PAR") that are specified in the metadata).

2. Parameter Name check We check the names of the metadata with the names of the data column
parameters. Either only the longnames ("\$PnS") or the shortnames ("\$PnN") of the metadata
are checked against the names of the data. Please take note that both ("\$PnS") and ("\$PnN")
ARE NOT BOTH checked.

3. Column Variable Range Check We check the paramranges ("\$PnR") specified in the metadata
with the column parameter ranges of the data; if the paramranges do not exist in the metadata,
then it is noted in the debugging statements.

Please note that if the metadata@original is FALSE, then the metadata slotNames have a "RFAC-
Sadd$»\$" suffix and are located in metadata@fcsinfo in order to store the current data descrip-
tives. The original data descriptives can be retrieved/checked when metadata@original is set to
TRUE; otherwise the current metadata information about the data is retrieved/checked even when
the "RFACSadd$»\$" suffix is not noted in the character index.

(ie) If metadata@original is FALSE, then metadata[["size"]] will return metadata[["RFACSadd\$»\$\$TOT"]],
the current row length of the data, while metadata@size will return the number of rows for the orig-
inal data.

Note that metadata@original is changed only when a parameter column is added to the data using
addParameter-methods, when rows of the data are extracted using extractGatedData
or if the user decides to change the value metadata@original. Using "["-methods and "[<-"-
methods on a "FCS" object will not change the value of metadata@original.

Methods

x = "FCS" boolean value is returned; TRUE if the check passes and FALSE if it does not pass the
check.

x = "FCS", MY.DEBUG=TRUE, range.max=NULL Other options in the signature include:

(1) MY.DEBUG : boolean value; if TRUE, then the output statements are printed, otherwise
if FALSE, then the statements are surpressed; default is TRUE.

(2) range.max : numeric value describing the true maximum of the data that the checks on the
ranges will be compared; default is NULL (ie, the maximum of each column variable in the
data is the truth)

"coerce-methods" 47

coerce-FCSformat Convert Data Objects

Description

Convert between rflowcyt and prada data objects.

Details

Objects can be converted (coerced) from one class to another using as(object, Class) where
object is an object to convert and Class is the name of the class to convert to. The following
conversions are provided:

From: To:
FCS cytoFrame
cytoFrame FCS

Note that cytoFrame objects are coerced to cytoFrame in such a way that the metadata are not
stored in the exact same order.

Author(s)

N. Le Meur

See Also

as in the methods package.

Examples

x <- new("FCS")
y <- as(x,"cytoFrame")

##z <- new("cytoFrame")
##z@exprs <- matrix(rnorm(5*2),5,2)
##y <- as(z,"FCS")

"coerce-methods" Coercing an object class to another class

Description

This method will coerce an object to a specific class using the following call:

as("class", object)

where "class" is a specific class detailed below, and ’object’ is the specific object to be coerced.

48 convertS3toS4

Methods

from = "ANY", to = "array" Coercion or force "ANY" object into "array" object
from = "ANY", to = "call" Coercion or force "ANY" object into "call" object
from = "ANY", to = "character" Coercion or force "ANY" object into "character" object
from = "ANY", to = "complex" Coercion or force "ANY" object into "complex" object
from = "ANY", to = "environment" Coercion or force "ANY" object into "environment" object
from = "ANY", to = "expression" Coercion or force "ANY" object into "expression" object
from = "ANY", to = "function" Coercion or force "ANY" object into "function" object
from = "ANY", to = "integer" Coercion or force "ANY" object into "integer" object
from = "ANY", to = "list" Coercion or force "ANY" object into "list" object
from = "ANY", to = "logical" Coercion or force "ANY" object into "logical" object
from = "ANY", to = "matrix" Coercion or force "ANY" object into "matrix" object
from = "ANY", to = "name" Coercion or force "ANY" object into "matrix" object
from = "ANY", to = "numeric" Coercion or force "ANY" object into "numeric" object
from = "ANY", to = "single" Coercion or force "ANY" object into "single" object
from = "ANY", to = "ts" Coercion or force "ANY" object into "ts" object
from = "ANY", to = "vector" Coercion or force "ANY" object into "vector" object
from = "ANY", to = "NULL" Coercion or force "ANY" object into "NULL" object
from = "FCS", to = "matrix" Coercion or force "FCS" object into "matrix" object by returning

only the data matrix of the "FCS" object
from = "FCS", to = "data.frame" Coercion or force "FCS" object into "data.frame" object by

returning only the data data.frame of the "FCS" object
from = "matrix", to = "FCS" Coercion or force "matrix" object into "FCS" object by setting the

"matrix" object as the ’data’ slot and having a default ’metadata’ slot of class "FCSmetadata".
from = "data.frame", to = "FCS" Coercion or force "data.frame" object into "FCS" object by

setting the "data.frame" object as the ’data’ slot and having a default ’metadata’ slot of class
"FCSmetadata".

convertS3toS4 Converts S3 class FCS object to S4 class FCS object

Description

This function will update any S3 class FCS object to S4 class.

Usage

convertS3toS4(S3file, myFCSobj.name = "", fileName = "")

Arguments

S3file S3 Class FCS object location and filename
myFCSobj.name

character string indicating the FCS object name
fileName character string indicating the file name of the binary raw FCS data, from which

the FCS object originates and which is read by read.FCS

convertS3toS4 49

Details

The FCS object is obtained as the result of read.FCS which has been currently updated to output
FCS objects as class S4 instead of S3.

Value

A Class S4 FCS object with the following slots:

data matrix of the data, where the rows are the cells/observations and the columns
are the different fluoroescence measurements

metadata of class FCSmetadata with the following slots:

mode the mode of the raw binary file
size numeric value describing the total number of rows or observations/cells
nparam numeric value describing the number of columns or parameters
shortnames a vector of the short names of the column variables of the data
longnames a vector of the long names of the column variables of the data
paramranges the vector of corresponding ranges or maximum values for each

column variable
filename character string of the name of the raw data file from which the object

originates
objectname character string of the name of the FCS S4 object
original Boolean value indicating whether the data is the original
fcsinfo list of other parameters

Author(s)

A.J. Rossini and J.Y. Wan

See Also

read.FCS, FCS

Examples

if (require(rfcdmin)){

if previously read-in as S3 FCS object
facscan256.fcs<- paste(system.file("fcs", package="rfcdmin"),

"facscan256.fcs",
sep="/")

reading in the FCS files
FCSobj.S3<-read.FCS(facscan256.fcs, UseS3=TRUE)

convert to S4 FCS

FCSobj.S4<- convertS3toS4(FCSobj.S3,
myFCSobj.name="FCSobj.S4",
fileName=facscan256.fcs)

}

50 createGate

createGate Gating of a FCS object: Making a Gating/Selection index column for
subsequent extraction

Description

After the gating procedure, which can be implemented either non-interactively by createGate
or interactively by icreateGate, a FCSgate class object is returned with a column variable
of indices in which 1 denotes inclusion and 0 denotes inclusion or exclusion, respectively, from
the gating ranges or thresholds added as a column to the "gate" matrix, and information: \$PnR
(gating range), \$PnS (longname of the gating index), \$PnN (shortname of the gating index) will
be added in the "history" string. The message "NONE" is added or updated in the corresponding
"extractGatedData.msg" slot. The "current.data.obs" vector is not changed. The interactive gating
here will provide contour-image plots and allow the user to input the gatingrange after viewing these
plots.

Usage

createGate(x, varpos = NULL, gatingrange = NULL, type = c("uniscut",
"bidcut", "biscut", "bipcut"),
biscut.quadrant = c("+/+", "-/-", "-/+", "+/-"),
prev.gateNum = NULL, prev.IndexValue.In = NULL,
comment = "", MY.DEBUG = FALSE)

icreateGate(x, varpos = NULL, gatingrange = NULL, type = NULL,
biscut.quadrant = NULL, prev.gateNum = NULL,
prev.IndexValue.In = NULL,
comment = NULL,
pchtype=".",
MY.DEBUG = TRUE,
prompt.all.options=TRUE)

Arguments

x a FCS object

varpos one numeric position or vector of two positions of the column variable(s) to gate
upon (note: x is the horizontal axis/variable and y is the vertical axis/variable)

gatingrange gating threshold range in one of the following formats for each type of gating:

"uniscut" univariate single cut; gatingrange$=$x1 (will select/include all points
$>=$ x1), x1 is numeric value

"bidcut" bivariate double cut: gatingrange$=$c(x1,x2, y1,y2), a numeric vec-
tor of lowerbound, upperbound cutoffs for x and y variables

"biscut" bivariate single cut:gatingrange$=$c(x1,y1), a numeric vector of the
cutoffs for x and y variables

"bipcut" bivariate polygonal cut: polygonal thresholds for an n$-$sided poly-
gon has: (gatingrange$=$c(c(x1, x2, ...,xn, x1), c(y1, y2, ...,yn, y1)), a
vector of vectors which denote the outer points of the polygonal vertices)

type character string of the type of cut/gating:

createGate 51

"uniscut" univariate single cut: selects datapoints that are greater than or equal
to the cutoff value denoted in gatingrange

"bidcut" bivariate double cut: selects datapoints in the central rectangle formed
by two vertical lines (x variable cutoffs) and two horizontal lines (y variable
cutoffs)

"biscut" bivariate single cut: cuts graph into quadrants (selects datapoints in
the quadrant denoted by biscut.quadrant)

"bipcut" bivariate polygonal cut: selects the datapoints in a polygon
biscut.quadrant

character string value denoting the (x,y) quadrant that is to be selected; Values
are one of the following:

"$+$/$+$" selects the upper right quadrant, where x is positive and y is positive
"$-$/$+$" selects the upper left quadrant, where x is negative and y is positive
"$+$/$-$" selects the lower right quadrant, where x is positive and y is negative
"$-$/$-$" selects the lower left quadrant, where x is negative and y is negative

prev.gateNum numeric column number of the previous subset/gate index in the "gate" matrix
of x that should be carried over to this gate. NOTE: The datapoints not selected
in the index specified by prev.colNum will not be selected in this gate either

prev.IndexValue.In
the value of inclusion for the gating index specified by "prev.gateNum"

comment character string denoting the importance of the gating; default is the empty string

pchtype The type of point to plot observations that have been selected using show-
gate.FCS; default is using "."

MY.DEBUG If TRUE, prints out debugging statements; otherwise if FALSE, the debugging
statements are surpressed; default is TRUE

prompt.all.options
boolean; if TRUE all other options about the display of plots are prompted for
user input in the interactive gating; otherwise, if FALSE, these prompts are sur-
pressed; default is TRUE

Details

If any options in the signature for icreateGate are not specified, then these options are prompted
for the user to input values.

Use extractGateHistory to obtain information about the particular gating/selection index
from the "history" string.

Usually the function extractGatedData is used to row reduce the data of the FCS object.

For an example of a sequential interactive gating scheme please use FHCRC.HVTNFCS for the FCS
objects in data(FHCRC) of the ’rfcdorig’ package and use VRC.HVTNFCS for the FCS objects in
data(VRC) of the ’rfcdorig’ library.

For basic, non-interactive gating, use createGate, and for basic, non-interactive subsetting or
data extraction after gating use extractGatedData. For basic, non-interactive plotting, use
plotvar.FCS to plot column variables in an FCS object and showgate.FCS to graph the gate
and color-in the selected datapoints.

When all gating parameters are input in icreateGate, and "prompt.all.options" is set to FALSE,
then a gating index is created and appended to the ’gate’ matrix and the corresponding plot is shown
with the gate without any user input prompts. See ’examples’ for details.

52 createGate

Value

A FCSgate S4 object is returned that extends the FCS object to contain additional slots:

gate a matrix whose columns are the gating indices for the original data

history vector which corresponds to each column gating index in "gate" and holds in-
formation about what variables and type of gate that was implemented and for
what ranges of values

extractGatedData.msg
vector of strings to specify what if any extraction has been implemented using
extractGatedData; "NONE" specifies no extraction has been implemented
on the data for that particular corresponding gating index

current.data.obs
vector of the original data row positions that are currently still in the data matrix

Author(s)

A.J. Rossini and J.Y. Wan

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics : New York, 2001. pp.279-283.

Jerome H. Friedman and Nicholas I. Fisher. Bump Hunting in High-Dimensional Data. Tech Re-
port. October 28, 1998.

J. Paul Robinson, et al. Current Protocols in Cytometry. John Wiley \& Sons, Inc : 2001.

Mario Roederer and Richard R. Hardy. Frequency Difference Gating: A Multivariate Method for
Identifying Subsets that Differe between Samples. Cytometry, 45:56-64, 2001.

Mario Roederer and Adam Treister and Wayne Moore and Leonore A. Herzenberg. Probability
Binning Comparison: A Metric for Quantitating Univariate Distribution Differences. Cytometry,
45:37-46, 2001.

Keith A. Baggerly. Probability Binning and Testing Agreement between Multivariate Immunofluo-
rescence Histograms: Extending the Chi-Squared Test. Cytometry, 45:141-150, 2001.

See Also

extractGatedData, ’FHCRC’ data in the ’rfcdorig’ package, FHCRC.HVTNFCS, ’VRC’ data
in the ’rfcdorig’ package, VRC.HVTNFCS,extractGateHistory

Examples

example of interactive gating

if (require(rfcdmin)) {
data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))) {
obtaining the FCS objects from VRC data
data(MC.053min)

}

if (interactive()==TRUE) {
icreateGate: The following will prompt the user for

createGate 53

plotting and gating information.

put two plots on one row
par(mfrow=c(2,2))

uniscut: univariate single cut
MC.053.iuniscut<-icreateGate(MC.053, varpos=2,

gatingrange=250, type="uniscut")
IndexValue.In = 1

bidcut: bivariate double cut
MC.053.ibidcut<-icreateGate(MC.053.iuniscut,

prev.gateNum=1,prev.IndexValue.In=1, type="bidcut")

biscut: bivariate single cut
MC.053.ibiscut<-icreateGate(MC.053.ibidcut, type="biscut")
prev.gateNum=2

bipcut: bivariate polygonal cut
MC.053.ibipcut<-icreateGate(MC.053.ibiscut, type="bipcut")
prev.gateNum=3

user-chosen gate
MC.053.iuser<-icreateGate(MC.053)

}

example of creating a gate when parameters are known

uniscut: univariate single cut

MC.053.gated<-createGate(MC.053, varpos=2, type="uniscut",
gatingrange=300, comment="Example")

if (interactive()){
corresponding icreateGate with a plot and no prompts
MC.053.igated<-icreateGate(MC.053, varpos=2, type="uniscut",

gatingrange=300, comment="plot and gate shown",
prompt.all.options=FALSE)

}
bidcut: bivariate double cut

MC.053.gated1<-createGate(MC.053, varpos=c(1,2), type="bidcut",
gatingrange=c(250, 500, 0,250),
comment="Example")

if (interactive()){
corresponding icreateGate with a plot and no prompts
MC.053.igated1<-icreateGate(MC.053, varpos=c(1,2), type="bidcut",

gatingrange=c(250, 500, 0,250),
comment="plot and gate shown",
prompt.all.options=FALSE)

}
biscut: bivariate single cut

MC.053.gated<-createGate(MC.053, varpos=c(3,4), type="biscut",
gatingrange=c(250, 500),

54 cytoSet-class

biscut.quadrant="+/-", comment="Example")

if (interactive()){
corresponding icreateGate with a plot and no prompts
MC.053.igated<-icreateGate(MC.053, varpos=c(1,2), type="biscut",

gatingrange=c(250, 500),
biscut.quadrant="+/-",
comment="plot and gate shown",
prompt.all.options=FALSE)

}
bipcut: bivariate polygonal cut

x.coord<-c(200, 200, 600, 600, 200)
y.coord<-c(200, 600, 600, 200, 200)
MC.053.gated2<-createGate(MC.053, varpos=1:2, type="bipcut",

gatingrange=cbind(x.coord, y.coord),
comment="Example")

if (interactive()){
corresponding icreateGate with a plot and no prompts
MC.053.igated2<-icreateGate(MC.053, varpos=c(1,2), type="bipcut",

gatingrange=c(x.coord, y.coord),
comment="plot and gate shown",
prompt.all.options=FALSE)

}
}

cytoSet-class ’cytoSet’: a class for storing raw data from a quantitative cell-based
assay

Description

This class is a container for a set of cytoFrame objects

Creating Objects

Objects can be created using the function readCytoSet or via
new(’cytoSet’,
frames =, # environment with cytoFrames
phenoData = # object of class phenoData
colnames = # object of class character
)

Slots

frames: An environment containing one or more cytoFrame objects.

phenoData: A phenoData. Each row corresponds to one of the cytoFrames in the frames
slot. It is mandatory that the pData has column named name

colnames: A character object with the (common) column names of all the data matrices in
the cytoFrames.

cytoSet-class 55

Methods

[, [[subsetting. If x is cytoSet, then x[i] returns a cytoSet object, and x[[i]] a cytoFrame
object. The semantics is similar to the behavior of the subsetting operators for lists.

colnames, colnames<- extract or replace the colnames slot.

phenoData, phenoData<- extract or replace the phenoData slot.

show display summary.

Important note on storage and performance

The bulk of the data in a cytoSet object is stored in an environment, and is therefore not
automatically copied when the cytoSet object is copied. If x is an object of class cytoSet,
then the code

y <- x

will create a an object y that contains copies of the phenoData and administrative data in x, but
refers to the same environment with the actual fluorescence data. See below for how to create proper
copies.

The reason for this is performance. The pass-by-value semantics of function calls in R can result
in numerous copies of the same data object being made in the course of a series of nested function
calls. If the data object is large, this can result in a considerable cost of memory and performance.
cytoSet objects are intended to contain experimental data in the order of hundreds of Megabytes,
which can effectively be treated as read-only: typical tasks are the extraction of subsets and the
calculation of summary statistics. This is afforded by the design of the cytoSet class: an object
of that class contains a phenoData slot, some administrative information, and a reference to an
environment with the fluorescence data; when it is copied, only the reference is copied, but not the
potentially large set of fluorescence data themselves.

However, note that subsetting operations, such as

y <- x[i]

do create proper copies, including a copy of the appropriate part of the fluorescence data, as it
should be expected. Thus, to make a proper copy of a cytoSet x, use

y <- x[seq(along=x)]

Author(s)

Wolfgang Huber http://www.ebi.ac.uk/huber

See Also

readCytoSet, cytoFrame-class

Examples

if (require(prada)) {
cset<-readCytoSet(path=system.file("extdata", package="prada"),
pattern="[A-Z][0-9][0-9]$")

cset
pData(cset)
cset[[1]]

http://www.ebi.ac.uk/huber

56 emp.f

cset[["fas-Bcl2-plate323-04-04.A02"]]
cset["fas-Bcl2-plate323-04-04.A02"]
cset[1:3]
cset[[1]] <- exprs(cset[[1]])[1:100,]

plot(cset[[2]])
}

if (require(rfcdmin) && require(prada)) {

##obtaining the location of the fcs files in the data
pathFiles<-system.file("bccrc", package="rfcdmin")
drugFiles<-dir(pathFiles)

reading in the FCS files
drugData<-readCytoSet(path=system.file("bccrc", package="rfcdmin"),

pattern="[A-Z][0-9][0-9]$")
}

"dim.FCS-methods" Obtaining the dimensions of the data of an "FCS-class" object

Description

This function returns the dimensions of the data such that the number of rows and the number of
columns, respectively, are output in a vector. The number of rows corresponds to the number of cell
observations, and the number of columns correspond to the number of parameters or fluorescence
measurements and other integer-measured variables.

Methods

x Extracts the dimensions of the data

emp.f Create a guassian kernel density

Description

emp.f creates a guassian kernel density estimate for x using a bandwidth h

Usage

emp.f(x, h)

Arguments

x the data vector

h the bandwidth, should be on scale of standardized x’s

"equals-methods" 57

Details

the definition of bandwidth is different than R’s density function, thus will not give you the same
reult. Also, emp.f finds the density estimate at every 0.02 values of x. Also, this rescales x by
median and the mad for a comparable unit

Value

f the density at specific x

x the values along the x axis every 0.02 values, going from midpoint between
minimum and 2nd smallest to the largest and 2nd largest values of x

...

Author(s)

Kevin Rader

References

B.W. Silverman (1981),Using Kernel Density Estimates to Investigate Multimodatlity. J.R. Statist.
Soc. B,43,1,97-99.

See Also

get.h, get.p, get.num.modes

Examples

set.seed(12345)
x<-runif(50)
f<-emp.f(x,0.5)

"equals-methods" Checks equality of two "FCS-class" objects

Description

All the contents in the metadata and data portions of two input FCS objects are compared for
equality. By default, the filename and objectname slots in the metadata are not compared. A
boolean value is output specifying the status of the check on equality.

Methods

x = "FCS", y = "FCS" boolean value is output; if TRUE then the two FCS objects are the same,
if FALSE then the two FCS objects are different.

check.filename boolean; if TRUE then the original filenames in the metadata are compared and
checked; default is FALSE

check.objectname boolean; if TRUE, then the current object names in the metadata are compared
and checked; default is FALSE

58 extractGateHistory

extractGateHistory Extracting the gating information from the history

Description

The history string corresponding to a specific gating Index specified by ’gateNum’ is retrieved and
output as a list of specific components.

Usage

extractGateHistory(x, gateNum)

Arguments

x a "FCSgate" object created after using createGate

gateNum the numeric column position of the gating index in the ’gate’ matrix

Value

gateNum the numeric column position of the gating index in the ’gate’ matrix

gateName character name of the gating index specified in the ’gate’ matrix

type type of gating (ie, "biscut", "uniscut", "bipcut", "bidcut")
biscut.quadrant

the quadrant specified (ie, ("+/+", "-/-", "+/-", "-/+"))

data.colpos the gated parameter column positions in the ’data’ matrix
data.colnames

the gated parameter column names in the ’data’ matrix
IndexValue.In

the value of the index that specifies inclusion or selection

gatingrange the vector of gating threshold(s)

prev.gateNum the previous or most prior gating index column position in the ’gate’ matrix
prev.gateName

the previous or most prior gating index column name in the ’gate’ matrix

comment character string of the user-defined comment

Author(s)

A.J. Rossini and J.Y. Wan

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics : New York, 2001. pp.279-283.

Jerome H. Friedman and Nicholas I. Fisher. Bump Hunting in High-Dimensional Data. Tech Re-
port. October 28, 1998.

J. Paul Robinson, et al. Current Protocols in Cytometry. John Wiley \& Sons, Inc : 2001.

Mario Roederer and Richard R. Hardy. Frequency Difference Gating: A Multivariate Method for
Identifying Subsets that Differe between Samples. Cytometry, 45:56-64, 2001.

extractGatedData 59

Mario Roederer and Adam Treister and Wayne Moore and Leonore A. Herzenberg. Probability
Binning Comparison: A Metric for Quantitating Univariate Distribution Differences. Cytometry,
45:37-46, 2001.

Keith A. Baggerly. Probability Binning and Testing Agreement between Multivariate Immunofluo-
rescence Histograms: Extending the Chi-Squared Test. Cytometry, 45:141-150, 2001.

See Also

FCS-class, FCSgate-class, createGate, extractGatedData

Examples

if (require(rfcdmin)) {
data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))) {
obtaining the FCS objects from VRC data
data(MC.053min)

}

foo1 : Gating type: uniscut, univariate single cut
foo1 <- createGate(MC.053, varpos=4, gatingrange=256,

type="uniscut", MY.DEBUG=TRUE)

foo2.3 : Gating type : biscut -/-
foo2.3 <- createGate(foo1, varpos=c(1,2),

gatingrange=c(256, 300),
type="biscut",
biscut.quadrant="-/-",
prev.gateNum=NULL,
MY.DEBUG=TRUE)

obtain gate information for first uniscut gate
gate.info1<-extractGateHistory(foo1, gateNum=1)

obtain gate information for the second biscut gate
gate.info2<-extractGateHistory(foo2.3, gateNum=2)

foo2.3.1 : extraction
foo2.3.1 <- extractGatedData(foo2.3, gateNum=2,

IndexValue.In=1,
MY.DEBUG=TRUE)

obtain the second biscut gate information after
subset/extraction of row observations
gate.info2.1<-extractGateHistory(foo2.3.1, gateNum=2)
}

extractGatedData Extract the data of a FCS object using a specified Gating Index

Description

This function will subset/reduce the rows of the data of an FCS object according to a column index
of the "gate" matrix, which is created by using the function createGate-methods.

60 extractGatedData

Usage

extractGatedData(x, gateNum = NULL, IndexValue.In = 1, MY.DEBUG = FALSE)

Arguments

x an "FCSgate" object obtained from createGate

gateNum the column position of the gating index that is specified in the "gate" matrix
IndexValue.In

either 0 or 1 depending on what value should be set for inclusion in the extrac-
tion. The default is the value 1.

MY.DEBUG a boolean value that prints out debugging comments The default is FALSE and
no debugging comments are printed.

Details

A "FCSgate" object with data having a reduced row length will be output along with an update to
the following slots: "extractGatedData.msg" (The gateNum along with the inclusion value will be
noted as a string), "current.data.obs" (the index of original data row positions that are currently in
the data will be noted), and "metadata" (data dimension information will be updated along with the
original status being changed to FALSE).

Value

A "FCSgate" S4 object is returned that extends the "FCS" object to contain additional slots:

gate a matrix whose columns are the gating indices for the original data

history vector which corresponds to each column gating index in "gate" and holds in-
formation about what variables and type of gate that was implemented and for
what ranges of values

extractGatedData.msg
vector of strings to specify what if any extraction has been implemented using
extractGatedData; "NONE" specifies no extraction has been implemented
on the data for that particular corresponding gating index

current.data.obs
vector of the original data row positions that are currently still in the data matrix

Author(s)

A.J. Rossini and J.Y. Wan

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics : New York, 2001. pp.279-283.

Jerome H. Friedman and Nicholas I. Fisher. Bump Hunting in High-Dimensional Data. Tech Re-
port. October 28, 1998.

J. Paul Robinson, et al. Current Protocols in Cytometry. John Wiley \& Sons, Inc : 2001.

Mario Roederer and Richard R. Hardy. Frequency Difference Gating: A Multivariate Method for
Identifying Subsets that Differe between Samples. Cytometry, 45:56-64, 2001.

fcs.type 61

Mario Roederer and Adam Treister and Wayne Moore and Leonore A. Herzenberg. Probability
Binning Comparison: A Metric for Quantitating Univariate Distribution Differences. Cytometry,
45:37-46, 2001.

Keith A. Baggerly. Probability Binning and Testing Agreement between Multivariate Immunofluo-
rescence Histograms: Extending the Chi-Squared Test. Cytometry, 45:141-150, 2001.

See Also

FCS-class, FCSgate-class, createGate

Examples

if (require(rfcdmin)) {
data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))) {
obtaining the FCS objects from VRC data
data(MC.053min)

}

test1 : Gating type: uniscut, univariate single cut
test1 <- createGate(MC.053, varpos=1, gatingrange=256,

type="uniscut", MY.DEBUG=TRUE)

test2.3 : Gating type : biscut -/-
test2.3 <- createGate(test1, varpos=c(1,2),

gatingrange=c(256, 300),
type="biscut",
biscut.quadrant="-/-",
prev.gateNum=NULL,
MY.DEBUG=TRUE)

test 2.3.1 : extraction
test2.3.1 <- extractGatedData(test2.3, gateNum=2,

IndexValue.In=1,
MY.DEBUG=TRUE)

}

fcs.type Objects providing parameters for the raw FCS file types

Description

The fcs.type objects define the parameters needed for reading in certain raw FCS files into R
via the use of read.FCS. Currently this is just a script file defining certain fcs.type objects,
but ultimately this will be an environment. There are certain read.FCS parameters that are known
to be compatible for certain types of cytometers. The fcs.type objects may be optionally used
during the reading in of raw FCS files into R and result in FCS R-objects (FCS objects).

Usage

fcs.type.default

62 fcs.type

Arguments

No arguments.

Details

A fcs.type is a list of the following:

version raw FCS version number; value$=$"1.0" or "2.0" or "3.0"

byte.size The byte size for the file (8 bits is one byte); value=1 or 2 or 4, etc.

signed boolean; If the data is signed; value$=$FALSE or TRUE

endian The endian of the file depending on the endian of the platform; Usually the value of endian
is "big" (if both the file and platform endian are "big") or "little" (if both the platform and
the file endian are "little") or "auto", then the read.FCS will automatically detect the endian
compatibility with the platform system (See readBin for more details.)

The fcs.types are the following:

1. fcs.type.default a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE
endian "auto"

2. fcs.type.cellquest.3.1.FACScan a list of the following options and values:

version "2.0"
byte.size 1
signed FALSE
endian "auto"

3. fcs.type.LSR256 a list of the following options and values:

version "2.0"
byte.size 1
signed FALSE
endian "auto"

4. fcs.type.FACStar256 a list of the following options and values:

version "2.0"
byte.size 1
signed FALSE
endian "auto"

5. fcs.type.facscan256 a list of the following options and values:

version "2.0"
byte.size 1
signed FALSE
endian "auto"

6. fcs.type.cellquest.3.1.FACS.Vantage a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE

fcs.type 63

endian "auto"

7. fcs.type.cellquest.3.3 a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE
endian "auto"

8. fcs.type.LYSYS a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE
endian "auto"

9. fcs.type.DiVa1024 a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE
endian "auto"

10. fcs.type.FACSCalibur1024 a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE
endian "auto"

11. fcs.type.LSR1024 a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE
endian "auto"

12. fcs.type.facscan1024 a list of the following options and values:

version "2.0"
byte.size 2
signed TRUE
endian "auto"

Value

With the help of fcs.type, the raw FCS file will be read into a FCS R object that can be implemented
for further analysis in R.

Author(s)

A.J. Rossini and J.Y. Wan

References

Peter Rabinovitch

See Also

read.FCS, readBin

64 "fixvars-methods"

Examples

if (require(rfcdmin)) {
obtaining the location of the fcs files in the data
get.path<-function(filename) {
datadir<-system.file("fcs", package="rfcdmin")
return(paste(datadir, filename, sep="/"))

}

FF256 <-read.FCS(get.path("facscan256.fcs"),
fcs.type=fcs.type.facscan256)

}

"fixvars-methods" Checks and fixes the ranges, dimensions, and names of the metadata
based on the current data of an FCS R-object.

Description

Any discrepancy between the metadata and the data of the FCS object is considered as a failure
to pass the check and will be updated with the descriptives from the data. The following is a
description of the checks and fixes:

1. Dimension check and fix We always check the dimensions (ie, if the data dimensions match
with size (\$TOT) and nparam (\$PAR) that are specified in the metadata. If they are not in
check, then the metadata parameters are changed to reflect the values of the data dimensions.

2. Parameter Name check and fix We check the names of the metadata with the names of the
data column parameters. Either only the longnames (\$PnS) or the shortnames (\$PnN) of the
metadata are checked against the names of the data. Please take note that both (\$PnS) and
(\$PnN) ARE NOT BOTH checked. Depending on the number of discrepancies (ie, the one
with the least number of discrepanices; by default the longnames if there is a tie), either the
longnames or the shortnames of the metadata are replaced with the column names of the data.

3. Column Variable Range Check We check the paramranges (\$PnR) specified in the metadata
with the column parameter ranges of the data; if there are any discrepancies, then the param-
ranges are replaced with the maximum values of the data columns.

Please note that if the metadata@original is FALSE, then the metadata slotNames have a "RFAC-
Sadd$»$" suffix and are located in metadata@fcsinfo in order to store the current data descrip-
tives. The original data descriptives can be retrieved/checked when metadata@original is set to
TRUE; otherwise the current metadata information about the data is retrieved/checked even when
the "RFACSadd$»$" suffix is not noted in the character index.

(ie) If metadata@original is FALSE, then metadata[["size"]] will return metadata[["RFACSadd$»$\$TOT"]],
the current row length of the data, while metadata@size will return the number of rows for the orig-
inal data.

Note that metadata@original is changed only when a parameter column is added to the data using
addParameter-methods, when rows of the data are extracted using extractGatedData
or if the user decides to change the value metadata@original. Using "["-methods and "[<-"-
methods on a FCS object will not change the value of metadata@original.

"fluors-methods" 65

Methods

x = "FCS" A FCSobject will be returned with any fixes to the metadata.

x = "FCS", x.name="", MY.DEBUG=TRUE, range.max=NULL Other options in the signature
include:
(1) x.name : character string of the true object name; default is "" (ie, the objectname in the
metadata will be regarded as the true object name)
(2) MY.DEBUG : boolean value; if TRUE, then the output statements are printed, otherwise
if FALSE, then the statements are surpressed; default is TRUE.
(3) range.max : numeric value describing the true maximum of the data that the checks on the
ranges will be compared; default is NULL (ie, the maximum of each column variable in the
data is the truth)

"fluors-methods" Obtaining the Data of Fluorescence Measurements from a FCS object

Description

This method is used to obtain the data matrix of the FCS object.

Methods

x = "FCS" The input FCS object has data and metadata constituents, and the output of the function
will be the extraction of the data portion of the input object.

gate.IPC Interactive gating of an Image Parallel Coordinates Plot

Description

This function will plot an image parallel coordinates plot and allows to user to click on the plot to
indicate the cutoff value of the variable that is to be gated. On this single variable, the plot will be
divided and two subsequent subplots (ie, two image parallel coordinates plots) will be shown.

Usage

gate.IPC(myFCSobj, var.gate,
var.pos=1:(dim(myFCSobj@data)[2]),
num.bins=10,
joint=FALSE,
range.var=range(myFCSobj@data[,var.pos]),
break10 =seq(range.var[1]-1, range.var[2],

by=range.var[2]/num.bins),
title="",
use.shortnames=FALSE,
color.image=gray((25:5/25)[-c(1,2,3, 4, 5, 6)]),
xwidth.scale=5,
ntrans=1,
hist.plotted=FALSE,

66 gate.IPC

image.plotted=TRUE,
para.plotted=FALSE,
lines.plotted=TRUE,
legend.plotted=TRUE,
lwd.vec=1:7,
lty.vec=rep(1,7),
col.vec=7:1,
range.image=c(0, dim(myFCSobj@data)[1]),
shrink.legend=TRUE,
horizontal.legend = TRUE,
offset.legend=0.03,
nlevel.legend=length(color.image),
xlab.image="",
ylab.image="Bins",
MY.DEBUG=FALSE,...)

Arguments

myFCSobj FCS object to be gated/subsetted on an image parallel coordinates plot

var.gate numerical column position of the variable to be gated in the data component of
myFSobj

var.pos a vector of the column positions of the variables of interest in the data of the
FCS object to be shown in the image parallel coordinates plot;default is all the
columns will be shown in the plots

num.bins a vector consisting of the row positions of the cells to be analyze; default is 10

joint Boolean; If TRUE, then the joint image parallel coordinate plots will be shown
for the pre-gated and post-gated data; if FALSE, then the mariginal lines for the
image parallel coordinate plots will be displayed; default is FALSE

range.var a 2-dimensional vector denoting the minimum value and the maximum value of
the variables to be plotted; default is c(0,1024), where 0 is the minimum value
and 1024 is the max value

break10 vector denoting the breaks for the binning on the vertical axis; default is equal in-
terval binning denoted by num.bins unless otherwise specified; the breaks must
include the range of the variable; each bin is denoted by an open lower value
and a closed upper value, ie, (a,b] where a and b are breakpoints and a<b.

title character string denoting the title of the image plot; default value is an empty
string

use.shortnames
Boolean; if TRUE, then the shortnames of the variables will be used in labeling
in the plots; otherwise if FALSE, the longnames of the variables will be used;
default is FALSE

color.image the color scheme for the image plot; default is gray((25:5/25)[-c(1,2,3, 4, 5, 6)])

xwidth.scale numeric value denoting the horizontal width of the variable and the transitions
blocks; default value is 5 units of width

ntrans numeric value denoting the number of transition columns between each pair of
variables; default is 1 transition column between each pair of variables

hist.plotted Boolean; if TRUE then the histogram plots of the variables and the transitions
are made; otherwise if FALSE, there is no histogram plots; default value is
FALSE

gate.IPC 67

image.plotted
Boolean; if TRUE, then the image parallel coordinates plot is displayed; other-
wise if FALSE, the plot is surpressed; default is TRUE

para.plotted Boolean; if TRUE, then the parallel coordinates plot is displayed; otherwise if
FALSE, the plot is surpressed; default is TRUE

lines.plotted
Boolean; if TRUE, then the image plot with the superimposed lines displayed;
otherwise if FALSE, the plot is surpressed

legend.plotted
Boolean; if TRUE, then the legend for the superimposed lines denoting particu-
lar counts will be diplayed; otherwise if FALSE, the legend display is surpressed

lwd.vec vector denoting the line width sizes to be used in the lines overlaying the image
parallel coordinates plot; default value is an integer vector from 1 to 7

lty.vec vector denoting the line type (solid or dotted, etc) for the corresponding line
width in lwd.vec; the default is to have a solid line for each line width

col.vec vector denoting the color for each line with the corresponding line width in
lwd.vec and line type in lty.vec; the default is to have colors ranging from yellow
to black (in that order).

range.image 2-dimensional numerical vector denoting the range of the number of counts in
the image block to be plotted. The default value is to have a vector with a
mininum value of zero and to have a maximum dependent on the number of
cells/rows and bins

shrink.legend
boolean; if TRUE then the legend will be ; default value is TRUE

horizontal.legend
default value is TRUE

offset.legend
default value is 0.03

nlevel.legend
default value is the length of the color.image vector

xlab.image a character string denoting the label of the horizontal x-axis on the image plot;
default value is an empty string

ylab.image a character string denoting the label of the vertical y-axis on the image plot;
default value is "Bins"

MY.DEBUG boolean value; if TRUE, debugging statements are printed, otherwise if FALSE,
the statements are surpressed; default is FALSE

... graphical parameters for plot may also be passed as arguments to this function

Details

The gating will be made on the image parallel coordinates plot without the lines drawn; this plot is
the last plot to be displayed. The user should make a right click on the variable value displayed on
the vertical axis. This variable value will denote the cutoff. The subsequent plots of the subsets will
be made on the data such that the first subset will include row observations whose gated variable
values are less than or equal to the cutoff of the gated variable across all other variables of interest
and that the second subset/subplot will include row observations of whose gated variable’s values
are strictly greater than the cutoff.

68 gate.IPC

Value

The first series of histograms, and parallel coordinates plots, and image parallel coordinates plots
with superimposed lines and legends are displayed optionally by the user.

The second single image parallel coordinates plot is the one, in which the gating or threshold in
which to subset is obtained by right clicking on the plot.

info.total image.block a matrix denoting the number of observations in each cell of the
total image plot

line.info total plot’s list of matrices in which each matrix corresponds to the
the line information between a pair of variables. Each matrix has three
columns. The first two columns are the values of unique bin patterns be-
tween the pair of column variables, and the third column is the number of
observations with that particular pattern.

breaks total plot’s vector of breaks for binning on the vertical axis for the values
of the variables Description of ‘comp1’

info.sub1 image.block a matrix denoting the number of observations in each cell of the
first subsetted image plot

line.info first subset’s list of matrices in which each matrix corresponds to the
the line information between a pair of variables. Each matrix has three
columns. The first two columns are the values of unique bin patterns be-
tween the pair of column variables, and the third column is the number of
observations with that particular pattern.

breaks first subset’s vector of breaks for binning on the vertical axis for the
values of the variables
Description of ‘comp2’

info.sub2 image.block a matrix denoting the number of observations in each cell of the
second subsetted image plot

line.info second subset’s list of matrices in which each matrix corresponds to
the the line information between a pair of variables. Each matrix has three
columns. The first two columns are the values of unique bin patterns be-
tween the pair of column variables, and the third column is the number of
observations with that particular pattern.

breaks second subset’s vector of breaks for binning on the vertical axis for the
values of the variables
Description of ‘comp1’

obspos.sub1 first subset’s vector of numerical row observation positions of the data compo-
nent of myFCSobj

obspos.sub2 second subset’s vector of numerical row observation positions of the data com-
ponent of myFCSobj

FCSgateobj An FCS gate object that resulted from the gating

Author(s)

A.J. Rossini & J.Y. Wan

See Also

ImageParCoord, JointImageParCoord, hist, plot

get.h 69

Examples

if (require(rfcdmin)){
data.there<-is.element(c("st.1829", "unst.1829", "st.DRT", "unst.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)
}

make a smaller data for example
first 1000 row observations
example.fcs<-unst.DRT[1:1000,]
if (!checkvars(example.fcs)){
example.fcs<-fixvars(example.fcs)
}

if (interactive()==TRUE){

Joint parallel coordinates image
par(mfrow=c(4,3))
gating the first column variable
showing the image parallel coordinates
for column variables 1 through 5
gate.IPC(example.fcs, 1, var.pos=1:5, num.bins=10,joint=TRUE,

title="Joint 10 bins 5 trans", ntrans=5)

marginal parallel coordinate image
gating the second column variable
par(mfrow=c(4,3))
gate.IPC(example.fcs, 2, var.pos=1:5, num.bins=10,joint=FALSE,

title="Marginal 10 bins 5 trans", ntrans=5)
}
}

get.h Estimate the critical bandwidth for specific number of modes

Description

get.h finds the critical bandwidth for specific number of modes. That is, it finds the smallest band-
width for which "m" modes are present for a kernel density estimator.

Usage

get.h(x, m = 1, prec = 0.001, hmin = 0, hmax = 1)

Arguments

x the data vector in which to find the critical bandwidth

m the number of modes for the critical bandwidth

prec the precision for the resulting bandwidth

70 get.num.modes

hmin the minimum value to start searching for the critical bandwidth, h

hmax the maximum value to start searching for the critical bandwidth, h

Details

get.h uses the Gaussian kernel to estimate the density of a data vector given by x. The bandwidth
determines the spread of each data point. Thus a larger bandwidth leads to a smoother density
estaimate. get.h finds the smallest bandwidth in which "m" modes are still present.

Value

h the critical bandwidth, rescaled for the standardized x-values for direct compar-
ison

Author(s)

Kevin Rader

References

B.W. Silverman (1981),Using Kernel Density Estimates to Investigate Multimodatlity. J.R. Statist.
Soc. B,43,1,97-99.

See Also

get.p, emp.f, get.num.modes

Examples

set.seed(12345)
x <- c(rnorm(20,0),rnorm(20,3))
get.h(x)

get.num.modes Number of modes of a gaussian kernel

Description

get.num.modes returns the number of modes of the gaussian kernel estimate for a given data vector
and bandwidth on the standardized scale

Usage

get.num.modes(x, h)

Arguments

x the data vector

h the bandwidth for the standardized data vector

Value

x number of modes

get.p 71

Author(s)

Kevin Rader

References

B.W. Silverman (1981),Using Kernel Density Estimates to Investigate Multimodatlity. J.R. Statist.
Soc. B,43,1,97-99.

See Also

get.h, get.p, emp.f

Examples

set.seed(12345)
x<-rnorm(50)
h<-get.h(x)
num<-c(get.num.modes(x,h),get.num.modes(x,h-0.005))
num

get.p Test if the kernel density estimate given by x and h0 has at most m
modes

Description

This function returns the p-value of rejecting the null hypothesis that the kernel density estimate
given by x and h0 has at most m modes.

Usage

get.p(x,h0,m=1,num.sim=200)

Arguments

x the data vector

h0 the bandwidth for the gaussian kernel density estimate for the standardized data

m the number iof modes we are trying to reject is the maximum

num.sim the number of bootstrap simulations to determine this p-value

Value

returns the p-value of the test

Author(s)

Kevin Rader

72 legend.CSP

References

B.W. Silverman (1981),Using Kernel Density Estimates to Investigate Multimodatlity. J.R. Statist.
Soc. B,43,1,97-99.

See Also

get.h, emp.f, get.num.modes

Examples

set.seed(12345)
x1<-matrix(rnorm(50),ncol=1)
x2<-matrix(c(rnorm(25,mean=-2),rnorm(25,mean=2)),ncol=1)
h1<-get.h(x1,m=1,prec=0.001)
h2<-get.h(x2,m=1,prec=0.001)
p1<-get.p(x1,h1,1,100)
p2<-get.p(x2,h2,1,100)
c(p1,p2)

"ggobi-methods" Dynamic Plotting and Viewing the "FCS" object data high-
dimensionally

Description

See ’ggobi’ in ’library(ggobi)’ for details.

Methods

fcsobject = "FCS" views the FCS object

legend.CSP Makes a rough legend for the ContourScatterPlot

Description

The color scheme used for the image plot within the ContourScatterPlot is scaled according the
rough estimates of the breaks. Any white-colored cells in an image or ContourScatterPlot is con-
sidered to be NA.

Usage

legend.CSP(z, n,
border = if (n < 32) "light gray" else NA,
main = paste("color palettes; n=", n),
ch.col = c("rainbow(n, start=.7, end=.1)",

"heat.colors(n)", "terrain.colors(n)",
"topo.colors(n)", "cm.colors(n)"),
breaks = seq(range(z, na.rm = TRUE)[1],

range(z, na.rm = TRUE)[2],
by = diff(range(z, na.rm = TRUE))/n))

legend.CSP 73

Arguments

z The matrix grid used for the image plot; this matrix is produced via make.grid
or make.density

n The number of color levels

border The border of the legend plot

main The main title of the legend plot

ch.col the color palette used

breaks the breaks used to scale the color scheme

Details

This legend is used as a rough approximation and is produced in a plot entirely separate.

Value

Plot of the color scheme scaled by ranges of the values of the grid cells in the image plot produced
by ’z’ input.

Author(s)

A.J. Rossini and J.Y. Wan

References

The code was obtained from the example of heat.colors

See Also

heat.colors, ContourScatterPlot, image

Examples

if (require(rfcdmin)){
data.there<-is.element(c("st.1829", "unst.1829", "st.DRT",

"unst.DRT"), objects())
if ((sum(data.there) != length(data.there))){

obtaining the FCS objects from VRC data
data(VRCmin)

}

var1<-st.DRT@data[,4]
var2<-st.DRT@data[,5]

col.nm<-colnames(st.DRT@data)

matrix of counts
count.output1<-make.grid(var1, var2)
mat.counts1<-count.output1$z
if (interactive()){
par(mfrow=c(2,2))

74 make.grid

image(mat.counts1,
main="make.grid: Counts for stimulated",
xlab=col.nm[4],yaxt="n", xaxt="n",
ylab=col.nm[5], col=heat.colors(20))

legend describes the counts in each cell
legend.CSP(mat.counts1, 20, ch.col="heat.colors(n)")

image(mat.counts1,yaxt="n", xaxt="n",
main="make.grid: Counts for stimulated",
xlab=col.nm[4],
ylab=col.nm[5], col=topo.colors(20))

legend.CSP(mat.counts1, 20, ch.col="topo.colors(n)")

}

}

make.grid Make a matrix of values allocated in a two dimensional grid

Description

A two-dimensional plot can be subdivided via grid marks and lines. Each component of the resulting
grid is called a cell. The function make.grid determines a matrix of values corresponding to
the number of observations that lie within each cell of the grid. The function make.density
estimates the values allocated to each grid cell by a ’status’ binary variable. The values are estimated
to be either a difference in counts between the two status categories, a proportion, a normalized
proportion, and a z statistic for each cell such that an image or ContourScatterPlot plot can be
implemented.

Usage

make.grid(x, y, x.grid = seq(0, 1025, by = 25),
y.grid = seq(0, 1025, by = 25))

make.density(x, y, status = NULL,
x.grid = seq(0, 1025, by = 25),
y.grid = seq(0, 1025, by = 25),
type.CSP = c("count.diff", "p.hat", "p.hat.norm", "z.stat"))

Arguments

x a vector of data values for the x-axis

y a vector of data values for the y-axis

status a vector of 0, 1 values denoting two categories

x.grid a vector of grid marks to allocate x

y.grid a vector of grid marks to allocate y

type.CSP character string denoting the type.CSP of value to be estimated using the ’status’
for each cell grid

make.grid 75

Details

The following details the options for ’type.CSP’:

"count.diff" The cell value is the count difference between the two ’status’ categories

"p.hat" The grid cell value is the proportion of observations with ’status’==1 for that grid cell.

"p.hat.norm" The grid cell value is the following:
(ie, (p.hat - 0.05)/sqrt((0.05 * (1-0.05)) /n))
p.hat is the proportion in ’status’==1
where n is the number of cells in the grid with information. The default is to set the z statistic
to zero for the cells with no information in either status. The value 0.5 is considered to be the
case of no difference when the counts of both categories of ’status’ are the same in the grid
cell.

"z.stat" The cell value is a z statistic computed as the following:
(ie, (p.hat - p.bar)/se(p.bar))
p.hat is the proportion in ’status’==1
p.bar is the average of p.hat over the whole grid
se(p.bar)=sqrt((1-p.bar)(p.bar)/n), where n is the number of cells in the grid with information.

Value

z matrix of values corresponding to the counts in an x-y grid

n.cells (only output for ’make.grid’); number of total observations in z

type.CSP (only output for ’make.density’); the type.CSP of value in each cell.

Note

In the base package, the function image could make a plot with the resulting matrix of values.

Author(s)

Zoe Moodie, A.J. Rossini, J.Y. Wan

See Also

image, ContourScatterPlot, pairs.CSP, legend.CSP, heat.colors

Examples

if (require(rfcdmin)){
data.there<-is.element(c("st.1829", "unst.1829", "st.DRT",

"unst.DRT"), objects())
if ((sum(data.there) != length(data.there))){

obtaining the FCS objects from VRC data
data(VRCmin)

}

var1<-st.DRT@data[,4]
var2<-st.DRT@data[,5]
var1.2<-unst.DRT@data[,4]
var2.2<-unst.DRT@data[,5]

76 make.grid

col.nm<-colnames(st.DRT@data)

The status where 1=stimulated
0 = unstimulated
status<-c(rep(1, dim(st.DRT@data)[1]), rep(0, dim(unst.DRT@data)[1]))
x <- c(var1, var1.2)
y <-c(var2, var2.2)

count.output1<-make.grid(var1, var2)
count.output0<-make.grid(var1.2, var2.2)

matrix of counts
mat.counts1<-count.output1$z
mat.counts0<-count.output0$z
##total observations
total.stimulated<-count.output1$n.cells
total.unstimulated<-count.output0$n.cells

count.diff.output <-make.density(x, y, status=status, type.CSP="count.diff")
matrix of cont differences between the status categories
mat.count.diff <-count.diff.output$z

p.hat.output <-make.density(x, y, status=status, type.CSP="p.hat")
matrix of cont differences between the status categories
mat.p.hat <-p.hat.output$z

p.hat.norm.output <-make.density(x, y, status=status, type.CSP="p.hat.norm")
matrix of cont differences between the status categories
mat.p.hat.norm <-p.hat.norm.output$z

z.stat.output <-make.density(x, y, status=status, type.CSP="z.stat")
matrix of cont differences between the status categories
mat.z.stat <-z.stat.output$z

if (interactive()){
par(mfrow=c(3,2))

image(mat.counts1,yaxt="n", xaxt="n",
main="make.grid: Counts for stimulated",
xlab=col.nm[4],
ylab=col.nm[5], col=heat.colors(20))

image(mat.counts0,yaxt="n", xaxt="n",
main="make.grid: Counts for unstimulated",
xlab=col.nm[4],
ylab=col.nm[5], col=heat.colors(20))

image(mat.count.diff,yaxt="n", xaxt="n",
main="make.density: Count Difference (Stimulated-Unstimulated)",
xlab=col.nm[4],
ylab=col.nm[5], col=heat.colors(20))

image(mat.p.hat,yaxt="n", xaxt="n",
main="make.density: Proportion of Stimulated",

"metaData-methods" 77

xlab=col.nm[4],
ylab=col.nm[5], col=heat.colors(20))

image(mat.p.hat.norm,main="make.density: Normalized proportion of Stimulated",
xlab=col.nm[4],yaxt="n", xaxt="n",
ylab=col.nm[5], col=heat.colors(20))

image(mat.z.stat, main="make.density: z statistic",
xlab=col.nm[4],yaxt="n", xaxt="n",
ylab=col.nm[5], col=heat.colors(20))

}
}

"metaData-methods" Extraction of the FCSmetadata-class object from a FCS-class object

Description

The metadata constituent is extracted from an FCS-class object.

Methods

x = "FCS" Extraction of a FCSmetadata-class object from a FCS-class object

pairs.CSP Contour/Hexbin Scatterplot Matrices

Description

A pairs plotting of histograms and rectangular-binned or hexagonal-binned image plots are pro-
duced using hist and ContourScatterPlot, respectively.

Usage

pairs.CSP(x,
status=NULL,
box.idx.list=NULL,
type.CSP=c("count.diff",

"p.hat",
"p.hat.norm",
"z.stat"),

alternate.hexbinplot=FALSE,
n.hexbins=100,
range.x=range(x),
varlabpos=round(seq(range.x[1],

ceiling(diff(range.x)/150)*150+range.x[1],
by=150),0),

cutoffs = seq(range.x[1],

78 pairs.CSP

ceiling(diff(range.x)/25)*25+range.x[1],
by=25),

labels = colnames(x),

panel = ContourScatterPlot,
main="",

image.col=heat.colors(10),
numlev=5,...,
lower.panel = legend.CSP,
upper.panel = panel,
overlay.panel=rect.box.idx,
border.boxes=1:length(box.idx.list),
lwd.boxes=rep(3,length(box.idx.list)),
lty.boxes=rep(1,length(box.idx.list)),

label.pos = 0.5,
cex.labels = NULL,
font.labels = 1,
row1attop = TRUE,
gap=1,
ch.col=c("heat.colors(n)",

"rainbow(n, start=.7, end=.1)",
"terrain.colors(n)",
"topo.colors(n)",
"cm.colors(n)"))

Arguments

x matrix of data in which the columns are the variables and the rows are the indi-
vidual observations

status numerical binary 0, 1 vector denoting the status of the observations; default is
NULL

box.idx.list a list of vectors indicating the positions of ’x’ which form a box to be overlayed
on the binned plot in the upper and lower panels of the hexbin plot and the only
the upper panel of the rectangular-binned plot by default

type.CSP character string denoting the type of value to be estimated using the ’status’ for
each cell grid: the difference in counts ("count.diff"), the proportion ("p.hat"),
the normalized proportion at 0.5 ("p.hat.norm"), the z.statistic ("z.stat"), see
make.density for details.

alternate.hexbinplot
Boolean; if TRUE then alternate hexbin pairs plot is used; otherwise the Con-
tourScatterPlot with rectangular bins is implemented

n.hexbins number of bins for hexbin call; default is 100

range.x vector denoting the min and the max of the observation values across all variable
columns

varlabpos vector of position of the variable values in which to label the x and y axes

cutoffs the cutoffs for the x and y axes of the rectangular bins when alternate.hexbinplot
is FALSE

pairs.CSP 79

labels the labels for the diagonals when alternative.hexbinplot is TRUE

panel default panel function; currently this is the contour scatter plot with rectangular
bins; this option is ignored when ’alternate.hexbinplot’ is TRUE

main the main title for the rectanglar Contour scatter plot when alternative.hexbinplot
is FALSE

image.col image colors for the rectangular bins when alternative.hexbinplot is FALSE

numlev number of levels for the contours for the rectangular bins when alternative.hexbinplot
is FALSE

... other options in hexagons or ContourScatterPlot

lower.panel function for the lower panels of the pairs plot; currently this is fixed as a hexbin
(when ’alternate.hexbinplot’ is TRUE) or the legend.CSP (when ’alternative.hexbinplot’
is FALSE)

upper.panel function for the upper panels of the pairs plot; currently this is fixed as a hexbin
or contour scatter plot

overlay.panel
Function which describes the overlay image on the panels; currently this option
only works with the ’rect.box.idx’ function and other functions that have the
same signature

border.boxes vector of corresponding border colors for each of the boxes in ’box.idx.list’

lwd.boxes vector of corresponding widths for each of the outlined boxes in ’box.idx.list’;
default is for all the boxes to have lwd = 3

lty.boxes vector of corresponding line types for each of the outlined boxes in ’box.idx.list’;
default is for all the boxes to have lty = 1

label.pos position of the labels on the diagonal panels which are currently fixed as his-
tograms; this option is not in use currently.

cex.labels cex for the labels, used only when ’alternative.hexbinplot’ is TRUE

font.labels font for the labels, used only when ’alternative.hexbinplot’ is TRUE

row1attop boolean if row 1 is at the top, used only when ’alternative.hexbinplot’ is TRUE

gap used only when ’alternative.hexbinplot’ is TRUE

ch.col character string denoting the type of color palette used for the rectangular-binned
image to be displayed in the legend when ’aternate.hexbinplot’ is FALSE; de-
fault is "heat.colors(n)"

Details

There are no legends for the hexagonal (when ’alternate.hexbinplot’ is TRUE) but there is a roughly
estimate legend available for the rectangular binning (when ’alternate.hexbinplot’ is FALSE) in the
pairs plot.

Value

A pairs plot is displayed. NOTE: The histograms on the diagonals are of the whole dataset regard-
less of the value of the cells in each ContourScatterPlot.

Author(s)

J.Y. Wan and A.J. Rossini

80 pairs.CSP

References

Hexbin, other papers.

See Also

objects to See Also as ’hexbin’ in the hexbin package

Examples

if (interactive()){
if (require(rfcdmin)){
data.there<-is.element(c("st.1829", "unst.1829", "st.DRT",

"unst.DRT"),objects())

if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data

data(VRCmin)
}

subsetting the data for quicker plot display of less data
data.mat1<-st.DRT@data[1:10000, 1:5]

hexagonal binning

pairs.CSP(data.mat1, alternate.hexbinplot=TRUE)

rectangular binning with legends

pairs.CSP(data.mat1, numlev=3,
image.col=heat.colors(20))

rectangular binning without legends

pairs.CSP(data.mat1, numlev=3,
image.col=heat.colors(20),
lower.panel=ContourScatterPlot)

putting a box around the observations
greater than 500 for the second variable
less than 200 for the first variable
idx1<-which(data.mat1[,2] > 500) ## green box
idx2<-which(data.mat1[,1] < 200) ## blue box

box.idx.list<-list(idx1, idx2)
hexbin plots
pairs.CSP(data.mat1, box.idx.list=box.idx.list,

alternate.hexbinplot=TRUE, border.vec=c("green", "blue"))
rectangular binned plots
pairs.CSP(data.mat1, box.idx.list=box.idx.list,

alternate.hexbinplot=FALSE,border.vec=c("green", "blue"),
lower.panel=ContourScatterPlot)

}
}

parallelCoordinates 81

parallelCoordinates
Parallel coordinates: Plotting each observation across all variables

Description

To view multi-dimensional data, a parallel coordinates plot is made such that each row is treated
as an observation which is plotted across all column variables. The two dimensional plot which
results has the column variables on the horizontal axis and the values of the column variables on the
vertical axis. Care should be taken to note that each line drawn corresponds to a row observation.
Also the units of measurements should be the same among all column variables. Note that the row
observations can be grouped visually by specifying group line options such as line type, color, or
width. The data can also be scaled to have a range of (0,1).

Usage

parallelCoordinates(x, varlabpos=1:dim(x)[2],
variable.names=colnames(x),my.ylab ="",
my.ylim =c(min(x),max(x)),
at.y=seq(min(x), max(x),

by=(max(x)-min(x))/20),
each.ylab=at.y, scaled = FALSE,
group = rep(1, dim(x)[1]),
group.lty=group, group.col=group,
group.lwd=group, superimpose=FALSE,...)

Arguments

x matrix of the data (rows are the observations & columns are the variables)

varlabpos numerical vector denoting the position of the variables/variable labels on the
horizontal axis; default is a vector of 1 to the number of variables

variable.names
a vector of strings denoting the names of each variable; default value is the
column names of the input matrix, x

my.ylab character string denoting the name/label of the vertical y-axis; default value is
"Values"

my.ylim two-dimensional vector denoting the range of the vertical y-axis, ie, the range of
the variables; default is the vector of the min and the max of the input matrix, x

at.y vector of the vertical y-axis values at which labels will be shown on the plot; de-
fault is a vector of the minimum to the maximum by increments of one-twentieth
of the difference between the mininum and the maximum

each.ylab vector of the vertical y-axis labels; default is the numerical values of at.y

scaled boolean; if TRUE, then the data is scaled to a range of [0,1]

group a vector of indicating which group the row observations are in; default is all the
row observations are in one group

group.lty vector corresponding to each data row’s line type corresponding to the group
that each row observation is in; default is the vector value of group

82 parallelCoordinates

group.col vector corresponding to each data row’s line type corresponding to the group
that each row observation is in; default is the vector value of group

group.lwd vector corresponding to each data row’s line type corresponding to the group
that each row observation is in; default is the vector value of group

superimpose Boolean, if TRUE then parallel coordinate lines will be added to the existing
plot; otherwise a new parallel coordinate plot will be made; default is FALSE

... plot options

Value

A parallel coordinates plot in which row observations are plotted across all column variables in a
plot with x-axis= names of the column variables and y-axis=values of the column variables.

WARNING

The dataset may have to be subsetted before implementing this function because the plot may take
a long time to finish and may not be readable.

If the at.y option is not within the range of the column variables, then the range will be changed
appropriately, but the interval or the difference between two elements of at.y will remain the same
in order to keep the specified spacings of the y labels/tick marks.

If the each.ylab vector is different in length with the number of tick marks specified by at.y for the
vertical axis, then by default the each.ylab will be the values of at.y. In other words, the labels will
be the number values specified by at.y.

Author(s)

A.J. Rossini, J.Y. Wan

See Also

pairs, plot, ImageParCoord

Examples

if (require(rfcdmin)){
data.there<-is.element("MC.053",objects())
if ((sum(data.there) != length(data.there))) {
obtaining the FCS objects from FHCRC data
data(MC.053min)

}

dataMC<-MC.053@data

if (interactive()) {
par(mfrow=c(2,2))

subset the data to the first 5 observations because it is too huge
parallelCoordinates(dataMC[c(1:5),-6])
the first 2 rows are a group and the last 3 rows are a different group
parallelCoordinates(dataMC[c(1:5),-6], group=c(1,1,2,2,2))

the same plot is scaled to 0,1 range
parallelCoordinates(dataMC[c(1:5),-6], scaled=TRUE)

pkci2.flowcytest 83

parallelCoordinates(dataMC[c(1:5),-6], scaled=TRUE, group=c(1,1,2,2,2))

parallelCoordinates(dataMC[c(1:5),1:4])
changing the positions of the variables to the 1st, 5th, 8th, 16th
positions on the horizontal x-axis
parallelCoordinates(dataMC[c(1:5),1:4], varlabpos=c(1, 5, 8, 16))

parallelCoordinates(dataMC[c(1:5),1:3])
having the variable positions out of order of how they are plotted
parallelCoordinates(dataMC[c(1:5),1:3], varlabpos=c(1, 15, 8))

changing the labels of the vertical y-axis
parallelCoordinates(dataMC[c(1:5),1:3], at.y=c(0, 500,
1000),my.ylim=c(0, 1000),
each.ylab=c("zero", "five hundred", "one thou"))

}
}

pkci2.flowcytest Testing the difference of upper-tail distributions of two samples

Description

This function calculates a cut-off value designating the lower bound of the upper tail as k.hat.pkci2,
the given percentile of the control sample, and a 95% confidence interval to test for a significant
difference in proportion of stimulated cells and control cells above the threshold, k.hat.pkci2.

Usage

pkci2.flowcytest(controldata, stimuldata, crit = 0.999, alpha = 0.05)

Arguments

controldata vector of data for control cells

stimuldata vector of data for stimulated cells

crit the percent of control sample below the threshold, k.hat.pkci2

alpha The Type I error rate for construction of (1-alpha)% confidence interval

Details

Sometimes the difference in two sample distributions (control and stimulated) lies in the upper tail
(usually at k.hat.pkci2 threshold which is the 99.9th percentile of the control sample). This function
applies a standard normal test of the difference of two proportions (One proportion is obtained from
the control sample, and one proportion is obtained from the stimulated sample. Both proportions
are defined as the proportion of cells within that particular sample that are above the k.hat.pkci2
threhold value.) Please note that the standard normal approximation is used because it is assumed
that the control and the stimulated samples are large in size (over 100 observations).

The null hypothesis of the test is that the proportion of the control sample above the k.hat.pkci2
threshold is the same as the proportion of the stimulated sample above the k.hat.pkci2 (ie, the
distribution of cells in the tails of both the control and the stimulated samples are the same.)

84 pkci2.flowcytest

Two alternative hypotheses are investigated. The one-sided alternative hypothesis states that the
stimulated proportion is greater than the control proportion. The two-sided alternative hypothesis is
that the stimulated proportion is not equal to the control proportion.

The respective p-values and a 95% confidence interval is obtained from the Z statistic (standard
normal statistic).

Value

k.hat.pkci2 the threshold which is the 100*crit-th percentile of the control sample, where
crit is the user input value

pc.hat.pkci2 the proportion of control cells/data above the k.hat.pkci2 threshold

ps.hat.pkci2 the proportion of stimulated cells/data above the k.hat.pkci2 threshold

lb.pkci2 The numeric lower bound of the 95% confidence interval from the Z statistic of
the test

up.pkci2 The numeric upper bound of the 95% confidence interval from the Z statistic of
the test

test.1pkci2 0,1 indicator for the one-sided test: 1= reject the null hypothesis, 0=cannot reject
the null hypothesis

pval1.pkci2 p-value of the one-sided test; Pr(Z > z.statistic)

test.2pkci2 0,1 indicator for the two-sided test: 1= reject the null hypothesis, 0=cannot reject
the null hypothesis

pval2.pkci2 p-value of the two-sided test; Pr(|Z| > z.statistic)= Pr(Z > z.statistic) + Pr(Z
<-z.statistic)

WARNING

Usually the FCS object is gated and subset prior to this testing and analysis.

Note

Other flowcytests are available such as WLR.flowcytest, ProbBin.flowcytest, KS.flowcytest,
which test the equivalence of two sample distributions. Generally, comparing the control and stim-
ulated samples of the interferon gamma variable is of interest.

Author(s)

Zoe Moodie and A.J. Rossini and J.Y. Wan

References

Zoe Moodie, PhD Statistical Center for HIV/AIDS Research and Prevention (SCHARP) Fred
Hutchison Cancer Research Center Seattle, WA 98109-1024

See Also

WLR.flowcytest, ProbBin.flowcytest, KS.flowcytest, runflowcytests, qnorm,
pnorm

"plot-methods" 85

Examples

if (require(rfcdmin)){
data.there<-is.element(c("st.1829", "unst.1829", "st.DRT", "unst.DRT"),objects())
if ((sum(data.there) != length(data.there))){
obtaining the FCS objects from VRC data
data(VRCmin)
}

This only serves as an example. Usually the FCS object is
gated and then subset

HIV negative individual 1829
IFN.control<-unst.1829@data[1:2000,4]
IFN.stimul<-st.1829@data[1:2000,4]

output1.pkci2<-pkci2.flowcytest(IFN.control, IFN.stimul, crit=.9999)

HIV positive individual DRT
IFN.control2<-unst.DRT@data[1:2000,4]
IFN.stimul2<-st.DRT@data[1:2000,4]
output2.pkci2<-pkci2.flowcytest(IFN.control2, IFN.stimul2, crit=.9999)

This is an artifical example, but one would expect the
distributions of the stimulated and control samples
to be the same in the HIV negative individual 1829
and to be different in the HIV positive individual DRT
The test in this example is a bit contrived but
the bigger picture is achieved.
}

"plot-methods" Graphical representation of an object

Description

The default action is a graphical plot of the object.

Methods

x = "ANY", y = "ANY" A scatterplot or other graphical representation is produced.

x = "FCS", y = "missing" The default action is contour-image pairs plotting for all the column
variables.

x = "FCS", y = "missing", image.parallel.plot=FALSE, joint=TRUE, ... An optional image par-
allel coordinates plotting (either marginal or joint) for each row/cell across all column vari-
ables can also be displayed.
The optional signature details are listed below:

image.parallel.plot boolean; if true the image parallel coordinates plot will be implemented
instead of default pairs plot; default value of FALSE.

86 plot.ProbBin.FCS

joint boolean; if image.parallel.plot is TRUE, then this boolean establishes if the image par-
allel coordinates plot is joint or not.

... optional additional plot variables; See ImageParCoord or pairs.CSP for additional
information on image parallel coordinates plotting and pairs contour-image plotting, re-
spectively.

x="PRIM.step", y="missing" Trajectory plot using the ’trajectory.pl’ function in the rfcprim
package is displayed for the step.

x="PRIM.step.set", y="missing" Trajectory plot using the ’trajectory.pl’ function in the rfcprim
is displayed for the peeling and the expansion steps.

x="PRIM.crossval.step", y="missing" Trajectory plot using the ’trajectory.pl’ function in the
rfcprim is displayed for the peeling and the expansion steps for each testdata set.

x="PRIM.rule", y="missing" Trajectory plots for all 3 steps is displayed.

plot.ProbBin.FCS Plots a ProbBin.FCS object

Description

A ProbBin.FCS object plot results in two histograms–one for the stimulated sample and one for the
unstimulated sample.

Usage

plot.ProbBin.FCS(x, xlab=x$varname,
xlim=c(min(c(round(range(x$st.hist$breaks),1) + 1,

round(range(x$unst.hist$breaks),1) + 1)),
max(c(round(range(x$st.hist$breaks),1) + 1,
round(range(x$unst.hist$breaks),1) + 1))),

main="",
labels=FALSE,
freq=FALSE, plots.made=c("both", "stimulated", "unstimulated"), ...)

Arguments

x ProbBin.FCS object
xlab Character string of the x-axis; default is the variable name
xlim vector of length 2 denoting the minimum and the maximum value of the break-

point values, x-axis; default is the minimum and the maximum of the break-
points for both stimulated and unstimulated samples

main character string of the title of the file (ie, individual id number)
labels Boolean; if TRUE, then the number/precentage in each bin is printed on the

histogram, otherwise it is not; default is FALS
freq Boolean; if TRUE, then the histogram is in terms of counts; if FALSE, then the

histogram is in terms of relative frequencies/precentages; if TRUE and the areas
in plot are wrong is output as a warning.

plots.made character string denoting which histogram plot should be displayed; default is
"both"

... plotting options such as ’ylab’ and ’ylim’ to pass to hist

plot.ProbBin.FCS 87

Value

Two histograms (one of the stimulated sample, and the other of the unstimulated sample) are dis-
played or only one histogram plot specified by the user will be displayed.

Author(s)

A.J. Rossini \& J.Y. Wan

References

Mario Roederer, et al. "Probability Binning Comparison: A Metric for Quantitating Univariate
Distribution Differences" Cytometry 45:37-46 (2001).

See Also

hist, ProbBin.FCS

Examples

if (require(rfcdmin)){

if (!(is.element("st.1829", objects()) & is.element("unst.1829",
objects()))){
obtaining the FCS objects from VRC data
data(VRCmin)
}

This only serves as an example.
Gating/subsetting should precede this analysis
IFN.gamma.1<-unst.1829@data[1:2000,4]
IFN.gamma.2<-st.1829@data[1:2000,4]

#Probability binning using the control dataset to determine the breaks
PB1<-ProbBin.FCS(IFN.gamma.1, IFN.gamma.2, 200,
varname=colnames(unst.1829@data)[4], PBspec="by.control",MY.DEBUG=FALSE)

Probability Binning using the combined dataset (control and stimulated)
to determing the breaks
PB2<-ProbBin.FCS(IFN.gamma.1, IFN.gamma.2, 200,
varname=colnames(unst.1829@data)[4], PBspec="combined",MY.DEBUG=FALSE)

if (interactive()){
par(mfrow=c(2,2))
plots both plots
plot(PB1, ylim=c(0,500),main="Prob Binning using the Control dataset")

plots only the unstimulated
plot(PB2, main="Prob Binning using the Combined Dataset", plots.made="unstimulated")

plots only the stimulated
plot(PB2, main="Prob Binning using the Combined Dataset", plots.made="stimulated")
}

88 plot2sets.FCS

}

plot2sets.FCS Create a scatterplot to summaryze and compare two series of FCS
objects

Description

Create a scatterplot to summaryze and compare 1 paraneter from two series of FCS objects stored
in 2 different plates. The points are colored according to their position in the plate (row or column
number.)

Usage

plot2sets.FCS(data1,data2,varpos=c(1),FUN,nrow=8,ncol=12,ind=c(1:96),col="row",labeling=TRUE,...)

Arguments

data1 a list of fluorescent data from one (or more) FCS object(s) or a cytoset

data2 a list of fluorescent data from one (or more) FCS object(s) or a cytoset

varpos the numerical column variable position of the FCS objects

FUN function to summaryze the distribution of the data, e.g. mean, median, IQR,
MODE

col character vector either "row" or "col"

nrow numeric, number of rows per plate

ncol numeric, number of columns per plate

ind numeric vector, index of the wells to be plotted

labeling logical, draw plate position (default= TRUE)

... any other arguments are passed to the plot function

Value

None.

Author(s)

Nolwenn Le Meur

See Also

plot

plotECDF.FCS 89

Examples

##Example I:
##data(flowcyt.data)

##Draw a scatterplot of the median values
##of the Foward scatter and the Side scatter parameters
##of each FCS file. The files correspond to samples store in a 96 well plate.
##plot2sets.FCS(flowcyt.data,varpos=c(1,2),FUN1=median,nrow=8,ncol=10,ind=c(1:80),col="row",pch="*",labeling=FALSE,xlim=c(0,300),ylim=c(0,300),main="FSCmedian vs.SSCmedian by row",xlab="SSC median",ylab="FSC median")

plotECDF.FCS Create a empirical cumulative distribution plot for one (or more) pa-
rameter(s) of one (or more) FCS object(s)

Description

Create a empirical cumulative distribution plot for one parameter of one (or more) FCS object(s).

Usage

plotECDF.FCS(data, varpos, var.list, group.list, xlab,
ylab,alternating=TRUE, legend.title=NULL,...)

Arguments

data a list of fluorescent data from one (or more) FCS object(s)

varpos the numerical column variable position of the data of the FCS object

var.list conditioning variables

group.list a variable or expression to be evaluated in the data frame specified by ’data’,
expected to act as a grouping variable within each panel, typically used to dis-
tinguish different groups by varying graphical parameters like color and line
type

xlab a title for the x axis

ylab a title for the y axis

alternating logical specifying whether axis labels should alternate from one side of the
group of panels to the other (for more details see xyplot)

legend.title a title for the legend

... any other arguments are passed to the xyplot function

Details

Other options from the functions xyplot from the lattice library.

Value

None.

90 plotQA.FCS

Author(s)

N. Le Meur

See Also

ecdf,lattice, xyplot

Examples

require(rfcdmin)
require(lattice)

##Example I:
data(flowcyt.data)

##Draw an empirical cumulative density plot for the Foward scatter
##parameter of the different stains at a particular different time point
##(one panel per time point).
plotECDF.FCS(flowcyt.data,varpos=c(1),var.list=c(paste("time",1:12,sep="")),group.list=paste("Stain",c(1:8),sep=""),main="ECDF plot of the FSC parameter for different stains across time points",lwd=2,cex=1.5,type="l")

##Example II:
if (require(rfcdmin)) {
##Obtain the location of the fcs files
pathFiles<-system.file("bccrc", package="rfcdmin")
drugFiles<-dir(pathFiles)

##Read a serie of FCS files
drugData<-read.series.FCS(drugFiles,path=pathFiles,MY.DEBUG=FALSE)
}

##Draw a empirical cumulative density plot for the Foward scatter
##parameter for the differents aliquots (of the same cell line)
##treated with different compounds.
plotECDF.FCS(drugData,varpos=c(1),var.list=c("Serie"),group.list=paste("compound",c(1:8),sep=""),main="ECDF plot for the aliquots treated with different compounds.",lwd=2,cex=1.5,type="l")

plotQA.FCS Create a scatterplot summaryzing one (or two) parameter(s) for sev-
eral FCS objects stored in a plate

Description

Create a scatterplot summaryzing one (or two) parameter(s) for several FCS objects stored in a
plate. The points are colored according to their position in the plate (row or column number.)

Usage

plotQA.FCS(data,varpos=c(1,2),FUN1=IQR,FUN2=NULL,col="row",nrow=8,ncol=12,ind=c(1:96),labeling=TRUE,...)

plotQA.FCS 91

Arguments

data a list of fluorescent data from one (or more) FCS object(s) or a cytoset

varpos the numerical column variable position of the data of the FCS object

FUN1 function to summaryze the distribution of the data, e.g. mean, median, IQR,
MODE

FUN2 function to summaryze the distribution of the data e.g. mean, median, IQR,
MODE

col character vector either "row" or "col"

nrow numeric, number of rows per plate

ncol numeric, number of columns per plate

ind numeric vector, index of the wells to be plotted

labeling logical, draw plate position (default=TRUE)

... any other arguments are passed to the plot function

Value

None.

Author(s)

Nolwenn Le Meur

See Also

plot

Examples

##Example I:
data(flowcyt.data)

##Draw a scatterplot of the median values
##of the Foward scatter and the Side scatter parameters
##of each FCS file. The files correspond to samples store in a 96 well plate.
plotQA.FCS(flowcyt.data,varpos=c(1,2),FUN1=median,nrow=8,ncol=10,ind=c(1:80),col="row",pch="*",labeling=FALSE,xlim=c(0,300),ylim=c(0,300),main="FSCmedian vs.SSCmedian by row",xlab="SSC median",ylab="FSC median")

##Example II:
##Draw a a scatterplot of the mode and IQR values for the Foward scatter
##of each FCS file.
plotQA.FCS(flowcyt.data,varpos=c(1),FUN1=IQR,FUN2=MODE,nrow=8,ncol=10,ind=c(1:80),col="col",pch="*",labeling=TRUE,xlim=c(0,300),ylim=c(0,300),xlab="FSC mode",ylab="FSC IQR",main="FSC IQR vs.FSC mode by column")

92 plotdensity.FCS

plotdensity.FCS Create density plots one parameter of one (or more) FCS object(s)

Description

Produce density plot(s) using the density.lf function of the locfit library. a single column
variable specified from the data of one (or more) FCS object(s).

Usage

plotdensity.FCS(data,varpos, groups, xlab, ylab, col, xlim = NULL, ylim =
NULL, main=NULL,...)

Arguments

data a list of one (or more) FCS object(s) or a cytoSet object

varpos the numerical column variable position of the data of the FCS object

groups a variable or expression to be evaluated in the data frame specified by ’data’,
expected to act as a grouping variable within each panel, typically used to dis-
tinguish different groups by varying graphical parameters like color and line
type

xlab a title for the x axis

ylab a title for the y axis

col The colors for lines and points. Multiple colors can be specified so that each
point can be given its own color. If there are fewer colors than points they are
recycled in the standard fashion. Lines will all be plotted in the first colour
specified.

xlim limits for the x axis

ylim limits for the y axis

main title of the plot

... any other arguments are passed to the plot function

Details

Produce density plot(s) using the density.lf function of the locfit library. Other options
from the functions plot.

Value

None.

Author(s)

N. Le Meur

See Also

density.lf

plotvar.FCS 93

Examples

if (require(rfcdmin)) {
##Obtain the location of the fcs files
pathFiles<-system.file("bccrc", package="rfcdmin")
drugFiles<-dir(pathFiles)

Read a serie of FCS files
drugData<-read.series.FCS(drugFiles,path=pathFiles,MY.DEBUG=FALSE)

}

##Draw a density plot for the Foward SCatter parameter for the
##differents aliquots (of the same cell line) tested with different
##compounds.
plotdensity.FCS(drugData,varpos=c(1),main="FSC for the aliquots treated

with different compounds", ylim=c(0,0.005), ylab="Density of cells")

plotvar.FCS Making Univariate/Bivariate plots of the column variables of a FCS
object

Description

A univariate histogram or scatterplot will be made for a single column variable specified from the
data of the FCS object, or a bivariate scatterplot or contour-image scatter plot will be shown for any
two variables specified in the FCS object.

Usage

plotvar.FCS(x, varpos, type = c("uni", "bi"),
plotType = c("hist", "ContourScatterPlot", "plot"),
names.var = NULL, title.pl = "",
xlimit = NULL, ylimit = NULL, plot.freq = TRUE,
color.hist.plot = "white", CSPlot = TRUE,
hexbin.CSPlot=TRUE,
hexbin.style.CSPlot=c("colorscale", "lattice", "centroids",

"nested.lattice", "nested.centroids"),
n.hexbins.CSPlot=100,
x.grid.CSPlot = seq(0, 1025, by = 25),
y.grid.CSPlot = seq(0, 1025, by = 25),
image.col.CSPlot = heat.colors(2),
numlev.CSPlot = 25,
xaxt="s", yaxt="s",
MY.DEBUG = FALSE,...)

Arguments

x FCS object

varpos the numerical column variable position of the data of the FCS object

94 plotvar.FCS

type character string specifying the type of plot; either "uni" for univariate or "bi"
for bivariate; currently this option need not be specified because of automatic
detection within the function

plotType the type of plot to be used; either plot, hist, ContourScatterPlot; cur-
rently this option need not be specified because of automatic detection within the
function; a univariate histogram plot is default when varpos is a single numeric
value, and a default contour-image scatter plot with hexagonal binning or rect-
angular binning is displayed for a bivariate plot.

names.var (optional) character string or vector of characte strings of the variable or vari-
ables to be plotted; default is NULL and will be changed to the names specified
in the data of the FCS object

title.pl character string of the plot title (main)

xlimit numerical vector of the range of the x variable (horizontal axis)

ylimit numerical vector of the range of the y variable (vertical axis)

plot.freq boolean; if TRUE, then the frequencies instead of the relative frequencies are
plotted (only if plotType=hist)

color.hist.plot
character string or numerical value indicating the color of the histogram plot

CSPlot a boolean of whether or not this is a ContourScatterPlot; if FALSE then an
ordinary scatterplot is produced

hexbin.CSPlot
boolean; if TRUE then the grid cells/compartments are hexagons; otherwise the
grid cells are rectangular; default value is TRUE

hexbin.style.CSPlot
the style of hexbin plot; default is "colorscale" (for ContourScatterPlot hexago-
nal binning ONLY!)

n.hexbins.CSPlot
number of xbins for hexagon binning; default is 100 (for ContourScatterPlot
hexagonal binning ONLY!)

x.grid.CSPlot
a numeical sequence denoting the grid marks for the x coordinate (for Con-
tourScatterPlot rectanglar binning ONLY!)

y.grid.CSPlot
a numerical sequence denoting the grid marks for the y coordinate (for Con-
tourScatterPlot rectanglar binning ONLY!)

image.col.CSPlot
a color map for the image (for ContourScatterPlot rectanglar binning ONLY!)

numlev.CSPlot
number of levels for the contours in a ContourScatterPlot (for ContourScatter-
Plot rectanglar binning ONLY!)

xaxt if "s", then the x-axis is plotted, if "n" then there is no x-axis plotted (for Con-
tourScatterPlot rectanglar binning ONLY!)

yaxt if "s", then the y-axis is plotted, if "n" then there is no y-axis plotted (for Con-
tourScatterPlot rectanglar binning ONLY!)

MY.DEBUG boolean; if TRUE then the variable check statements are printed; default is
FALSE

... plot options (for histograms and ContourScatterPlot hexagonal binning) or
contour options for ContourScatterPlot rectangular binning

plotvar.FCS 95

Details

Other options from the functions plot, hist, ContourScatterPlot may be used in the
signature of this function to define the plot further.

Value

Either a univariate or a bivariate plot of the specified variable(s) of the FCS object. A hist plot
will output the breaks and bins of the histogram.

WARNING

Please read the warning for ContourScatterPlot.

Note

For a description of colors please look up colors, palette, and heat.colors

Author(s)

A.J. Rossini and J.Y. Wan

See Also

ContourScatterPlot, plot, hist

Examples

to identify all the colors available on your system
colors()
if (interactive()) {
if (require(rfcdmin)) {

if (!is.element("unst.1829", objects())) {
obtaining the FCS objects from VRC data
data(VRCmin)

}

univariate plot
plotvar.FCS(unst.1829, varpos=1)

bivariate plot :hexagonal binning
plotvar.FCS(unst.1829, varpos=c(1,2))

bivariate plot :rectangonal binning
plotvar.FCS(unst.1829, varpos=c(1,2), hexbin.CSPlot=FALSE)

}
}

96 read.FCS

"print-methods" Printing an object

Description

An object is displayed in a concise manner.

Methods

x = "ANY" Displays all the contents of the object

x = "FCSmetadata" displays the original status, the objectname and the filename with the current
size and nparam slot information; details can be viewed by ’x@slotName’ where slotName is
one of the following: "mode", "size", "nparam", "longnames", "shortnames", "paramranges",
"filename", "objectname", "fcsinfo", "original"

x = "FCS" displays the original status, the objectname and the filename with the current size and
nparam slot information; Note that the long and gory details can be viewed by ’x@data’ or
’x@metadata’

x = "FCSsummary" Displays the statistics of the data and information about the metadata

x="PRIM.step" Displays the ’step.name’, size of the starting data, the decision for the box, the
percent change for each iteration, the number of iterations, and the chosen box’s ranges within
the data X.

x="PRIM.step.set", y="missing" Displays the "PRIM.step" information for the peeling and ex-
pansion steps.

x="PRIM.crossval.step", y="missing" Displays the "PRIM.step" information for the peeling and
expansion steps for each testdata set.

x="PRIM.rule", y="missing" displays the "PRIM.step" information for all 3 steps is displayed.

read.FCS Reading in a raw binary Flow Cytometry Standard (FCS) file

Description

Reads in a Flow Cytometry Standard (FCS) file and outputs an "FCS" R object.

Usage

read.FCS(fileName, FCSobj.name="", fcs.type=NULL,
fcs.byte.size =2, fcs.signed=TRUE,
use.FCS.shortnames = FALSE, no.names = FALSE,
UseS3 = FALSE,
MY.DEBUG = TRUE)

read.FCS 97

Arguments

fileName string of the FCS file location

FCSobj.name character string of the FCS object name given; default is ""

fcs.type a list of information (version, byte.size, signed, endian) about the FCS file; see
fcs.type

fcs.byte.size
numeric indicating the fcs file byte size, default is 2

fcs.signed TRUE if signed binary data, FALSE if unsigned
use.FCS.shortnames

boolean indicating whether or not to use the short or longnames for the dataframe
in the FCS object output, default is TRUE/to use the short names

no.names boolean indicating whether or not to use the names in the fcs file for the FCS
object output, default is FALSE/to use the names in the FCS file

UseS3 If true, save in old S3 class structure, else save in new S4 class strucuture

MY.DEBUG boolean indicating whether or not to print the debugging statements, default is
TRUE/to print

Details

This function also checks if there are discrepancies between the data and the metadata in terms of
range and size. If there is, then the data is re-read with different fcs.byte.size (1,2,4,8) and fcs.signed
(TRUE, FALSE) combinations until there is no discrepancy between the data and the metadata. If
there is still a discrepancy, then the routine is halted. Note: For FCS version 3.0 files, only the range
of the data is checked against what is stated in the metadata because FCS version 3.0 files have extra
elements that are read into the data.

Value
a "FCS" object

has the following slots:

data a dataframe of the cells as rows and the variables for each cell as the columns

metadata a list of the variable names and comments as in the FCS file which may include
the following (for FCS file version 3.2.19):

\$PAR the number of columns/parameters
\$TOT the total number of cells/rows
\$MODE the mode of the FCS file
\$BEGINANALYSIS part of FCS file heading indicating the position of the

beginning of the analysis portion
\$BEGINDATA part of FCS file heading indicating the beginning of the data

portion
\$BYTEORD part of FCS file heading indicating byte order/endian
\$BEGINSTEXT part of FCS file heading indicating beginning of text
\$DATATYPE part of FCS file heading indicating the type of data
\$ENDANALYSIS part of FCS file heading indicating the end of the analysis

portion
\$ENDDATA part of FCS file heading indicating the end of the data portion
\$ENDSTEXT part of FCS file heading indicating the end of the text portion
\$NEXTDATA part of FCS file heading indicating the next data

98 read.FCS

\$PnB Number of bits reserved for parameter number n
\$PnE Amplification type for parameter n
\$PnR Range for parameter number n
\$ABRT Events lost due to data acquisition electronic coincidence
\$BTIM Clock time at beginning of data acquisition
\$CELLS Description of objects measured.
\$COM Comment
\$COMP Fluorescence compensation matrix.
\$CSMODE Cell subset mode, number of subsets to which an object may be-

long
\$CSVBITS Number of bits used to encode a cell subset identifier
\$CSVnFLAG The bit set as a flag for subset n.
\$CYT Type of flow cytometer
\$CYTSN Flow cytometer serial number
\$DATE Date of data set acquisition
\$ETIM Clock time at end of data acquisition
\$EXP Name of investigator initiating the experiment
\$FIL Name of the data file containing the data set
\$GATE Number of gating parameters
\$GATING Specifies region combinations used for gating
\$GnE Amplification type for gating parameter number n
\$GnF Optical filter used for gating parameter number n
\$GnN Name of gating parameter number n
\$GnP Percent of emitted light collected by gating parameter n
\$GnR Range of gating parameter n
\$GnS Name used for gating parameter n
\$GnT Detector type for gating parameter n
\$GnV Detector voltage for gating parameter n
\$INST Institution at which data acquired
\$LOST Number of events lost due to computer busy
\$OP Name of flow cytometry operator
\$Pkn Peak channel number of univariate histogram for parameter n
\$PKNn Count in peak channel of univariate histogram for parameter n
\$PnF Name of optical filter for parameter n
\$PnG Amplifier gain used for acquisition of parameter n
\$PnL Excitation wavelength for parameter n
\$PnN Short name for parameter n
\$PnO Excitation power for parameter n
\$PnP Percent of emitted light collected by parameter n
\$PnS Long name/Name used for parameter n in the dataset
\$PnT Detector type for parameter n
\$PnV Detector voltage for parameter n
\$PROJ Name of the experiment project
\$RnI Gating region for parameter number n
\$RnW Window settings for gating region n
\$SMNO Specimen (tube or well) label

read.FCS 99

\$SRC Source of the specimen (patient name,cell types)
\$SYS Type of computer and its operating system
\$TIMESTEP Time step for time parameter
\$TR Trigger parameter and its threshold
\$UNICODE UNICODE code page for string type keyword values
RFACSadd$»$... metadata information added using rflowcyt package via addParameter,

extractGatedData

WARNING

The following scenerios may happen in which read.FCS has failed:

Problem 1 A number of names assigned to the columns of the data is different from the number of
columns.

Possible Solution Use read.FCS again and choose a different fcs.byte.size value (such as 1, 2, 4,
8, 12, 16, etc.)

Problem 2 The file has been read properly by read.FCS, but the range of the resulting FCS R-object
is wrong (ie, there are negative values when all values should be positive).

Possible Solutions Use read.FCS again, and choose a different fcs.signed value (either TRUE or
FALSE).

Note

Thanks to Peter Rabinovitch for informaton and Julie McElrath lab for the example data.

Author(s)

A.J. Rossini, J.Y. Wan and N. Le Meur

See Also

summary, print, extractGatedData, addParameter, "[-methods", "[[-methods",
fcs.type

Examples

if (require(rfcdmin)) {
obtaining the location of the fcs files in the data

FACSCAN256<- paste(system.file("fcs", package="rfcdmin"),
"facscan256.fcs",
sep="/")

reading in the FCS files
FCSobj1<-read.FCS(FACSCAN256)

}

100 read.series.FCS

read.series.FCS Reading a serie of raw binary Flow Cytometry Standard (FCS) files

Description

Reads a serie of raw Flow Cytometry Standard (FCS) files and outputs several "FCS" R object.

Usage

read.series.FCS(fcsfiles,path=NULL,ext=NULL,...)

Arguments

fcsfiles names of the FCS files without any extension

path a character vector of full path names; the default corresponds to the working
directory getwd

ext character string giving optional extension to be added to each file name

... any other arguments are passed to read.FCS

Details

This function read several FCS files by the means of the read.FCS function. Thus,this function
can also checks if there are discrepancies between the data and the metadata in terms of range and
size (MY.DEBUG=TRUE). If there is, then the data is re-read with different fcs.byte.size (1,2,4,8)
and fcs.signed (TRUE, FALSE) combinations until there is no discrepancy between the data and the
metadata. If there is still a discrepancy, then the routine is halted. Note: For FCS version 3.0 files,
only the range of the data is checked against what is stated in the metadata because FCS version 3.0
files have extra elements that are read into the data.

Value

No value is returned. However a series of "FCS" object are created on the current environment with
names of the form filename. The files names are given by the elements of slides. Each object is
composed of the same data and metadata return by the read.FCS function.

Author(s)

N. Le Meur

See Also

read.FCS, summary, print, extractGatedData, addParameter, "[-methods", "[[-
methods", fcs.type readCytoSet

Examples

if (require(rfcdmin)) {

##obtaining the location of the fcs files in the data
pathFiles<-system.file("bccrc", package="rfcdmin")
drugFiles<-dir(pathFiles)

rect.box.idx 101

reading in the FCS files
drugData<-read.series.FCS(drugFiles,path=pathFiles,MY.DEBUG=FALSE)
}

rect.box.idx Superimposes a rectangle on an existing plot given positional indicies

Description

The boundaries of a rectangle are determined from a vector of positional indicies ’box.idx’ and the
given variables, ’x1’ and ’x2’. This box is then displayed on the existing plot.

Usage

rect.box.idx(x1, x2, box.idx = NULL,
original.data.idx = 1:length(x1),
border = "black", lwd = 3, ...)

Arguments

x1 vector of values for variable 1

x2 vector of values for variable 2

box.idx vector of positional indicies that indicate the box to be shown
original.data.idx

positional values of the current ’x1’ and ’x2’ observations

border the color of the outline of the box or rectangle

lwd the width of the lines of the box

... other options in rect

Details

This function would be coupled with the use of ContourScatterPlot to show the boxes obtained by
’do.PRIM’ (Patient Rule Induction Method) from the rfcprim package. PRIM is a semi-automated
bump-hunting program.

Author(s)

A.J. Rossini and J.Y. Wan

References

See details in rfcprim

See Also

ContourScatterPlot, rfcprim library

102 rflowcyt-defunct

Examples

if (require(rfcdmin)){

data(PRIM.example.data)

if (require(rfcprim)){

only the peeling step is implemented
out.peel <- peel.step(X.PRIM, Y.PRIM)

if (interactive()){
ContourScatterPlot(X.PRIM[,1], X.PRIM[,2], status=Y.PRIM,

main="z statistic",
xlab=col.nm[4],
ylab=col.nm[5], image.col=heat.colors(20),plot.legend.CSP=TRUE)

the Green box is the initial estimate of the first rule
after the peeling step
rect.box.idx(out.peel@best.box.idx, X.PRIM[,1], X.PRIM[,2], border="green")
}
}
}

rflowcyt-defunct Defunct Functions in rflowcyt package

Description

The functions or variables listed here are no longer part of R as they are not needed (any more).

Usage

parallel.coordinates()
add.parallel.coordinates()

Details

’parallel.coordinates’ and ’add.parallel.coordinates’ have been replaced by ’parallelCoordinates’and
’add.parallelCoordinates’ respectively because a conflict with S3 method names.

See Also

.Defunct

runflowcytests 103

runflowcytests Tests the equivalence of two univariate sample distributions by using
four different methods

Description

Runs the following flowcytests:

1. WLR.flowcytest weighted log rank test (by default when rho=0) and a the plot of survival
curves for both samples is also output

2. KS.flowcytest Kolmogorov-Smirnoff test for the difference in distributions for the control
and the stimulated

3. ProbBin.flowcytest Statistics proposed by Keith A. Baggerly and Mario Roederer which
include Chi-squared and Normal tests for the PB metric via probability binning (both based on
the control data only ("by.control") and based on the combined dataset of both the stimulated
and the control samples ("combined")

4. pkci2.flowcytest Tests the difference of the upper tails of the two distributions

Usage

runflowcytests(controldata, stimuldata, flowcytests = c("WLR", "KS",
"ProbBin.by.control", "ProbBin.combined", "pkci2"),
N.in.bin = 100, varname = "", title = " ", output.all
= FALSE, graph.outlay = c(3, 2), crit.pkci2 = 0.999,
alpha.pkci2 = 0.05, na.action.WLR =
options()$na.action, rho.WLR = 0, WLR.plotted=TRUE, alternative.KS =
"two.sided", ..., KS.plotted=TRUE,

PBobj.plotted=TRUE,
PBobj.plots.made=c("both", "stimulated", "unstimulated"))

Arguments

controldata a vector of values/fluoroescent measurements; a univariate control sample

stimuldata a vector of values/fluoroescent measurements; a univariate stimulated sample

flowcytests vector denoting the names of the tests that are implemented; default is a vector
of all the test names

N.in.bin a number which denotes the number per bin in used in probability binning

varname character strong of the name of the variable under investigation (this is usually
the gamma interferon variable)

title character string of the title of the plots

output.all boolean; if TRUE then all the statistics and p-values obtained are output in list
form by test; if FALSE then only the names of the statistics, the statistics, the
names of the p-values and the p-values are output in a data.frame; default is
FALSE.

graph.outlay a vector of length 2, describing the number of graphs on each row and the num-
ber of graphs on each column, respectively

crit.pkci2 the percent of control sample to above the meaningful percentile (usually 99.9th
percentile) (for pkci2.flowcytest)

104 runflowcytests

alpha.pkci2 Type I error rate for construction of the (1-alpha)% Confidence Interval (for
pkci2.flowcytest)

na.action.WLR
a missing-data filter function. This is applied to the model.frame after any
subset argument has been used. Default is options()$na.action (as quoted
from the survdiff documentation)

rho.WLR the exponent in S(t)ρ, where S is the Kaplan-Meier estimate of survival; A value
of 0 specifies using the weighted log-rank test, and a value of 1 specifies using
the Peto and Peto modification of the Gehan-Wilcoxon test.

WLR.plotted boolean; if TRUE, then plot is made; otherwise if FALSE, plotting is surpressed;
default=TRUE

alternative.KS
character string of the alternative hypothesis:

"two-sided" Two sided alternative hypoothesis

"less" One-sided alternative hypothesis: controldata distribution is less than
the stimuldata distribution

"greater" One-sided alternative hypothesis: controldata distribution is greater
than the stimuldata distribution

... other options in KS.flowcytest

KS.plotted boolean to display the corresponding plot; default is TRUE and the plot will be
displayed

PBobj.plotted
boolean; if TRUE then histograms of the ProbBin.FCS object will be plotted; if
FALSE, then these plots are surpressed; default is TRUE

PBobj.plots.made
character string denoting which histogram plot should be displayed; default is
"both"

Value

A dataframe consisting of 4 columns and 20 rows. The labels on the columns are "statistics.names",
"statistics", "pvalues.names", and "pvalues" or if ’output.all’ is TRUE, a list of statistics and tesing
output by test name will be produced. Also 6 to 0 plots are produced.

WARNING

Usually the FCS object is gated and subset prior to this testing and analysis. Also this function
requires the library survival.

Note

For more information about the output, please see the other flowcytests in the "See Also" Section.

Author(s)

Zoe Moodie, A.J. Rossini, J.Y. Wan

runflowcytests 105

References

Keith A. Baggerly "Probability Binning and Test Agreement between Multivariate Immunofluores-
cence Histograms: Extending the Chi-Squared test" Cytometry 45: 141:150 (2001).

Harrington, D. P. and Fleming, T. R. (1982). "A class of rank test procedures for censored survival
data". Biometrika 69, 553-566.

Zoe Moodie, PhD Statistical Center for HIV/AIDS Research and Prevention (SCHARP) Fred
Hutchison Cancer Research Center Seattle, WA 98109-1024

Mario Roederer, et al. "Probability Binning Comparison: A Metric for Quantitating Univariate
Distribution Differences" Cytometry 45:37-46 (2001).

See Also

pkci2.flowcytest, ProbBin.flowcytest, KS.flowcytest, WLR.flowcytest

Examples

if (require(rfcdmin)){
obtaining the FCS objects from VRC data
if (!(is.element("unst.1829", objects()) & is.element("st.1829",
objects()) & is.element("unst.DRT", objects()) & is.element("st.DRT",
objects()))){
data(VRCmin)
}

This only serves as an example. Usually the FCS object is
gated and then subset

HIV negative individual 1829
IFN.control<-unst.1829@data[1:2000,4]
IFN.stimul<-st.1829@data[1:2000,4]

if (interactive()){

running all the tests
output1.runall<-runflowcytests(IFN.control, IFN.stimul,
varname="Interferon Gamma",
title="HIV negative individual 1829", crit.pkci2=0.9999)
}

HIV positive individual DRT
IFN.control2<-unst.DRT@data[1:2000,4]
IFN.stimul2<-st.DRT@data[1:2000,4]

if (interactive()){
running only WLR.flowcytest and pkci2.flowcytest
output2.runall<-runflowcytests(IFN.control2, IFN.stimul2,
flowcytests=c("WLR","pkci2"), varname="Interferon Gamma",
title="HIV negative individual 1829", crit.pkci2=0.9999)
}
This is an artifical example, but one would expect the
distributions of the stimulated and control samples
to be the same in the HIV negative individual 1829
and to be different in the HIV positive individual DRT
The test in this example is a bit contrived but

106 "show-methods"

the bigger picture is achieved.
}

"show-methods" Showing an object

Description

An object is displayed in a concise manner.

Methods

object = "ANY" Displays all the contents of the object

object = "traceable" Displays the contents of the object

object = "ObjectsWithPackage" Displays the contents of the object

object = "MethodDefinition" Displays the contents of the object

object = "MethodWithNext" Displays the contents of the object

object = "genericFunction" Displays the contents of the object

object = "classRepresentation" Displays the contents of the object

object = "FCSmetadata" displays the original status, the objectname and the filename with the
current size and nparam slot information; details can be viewed by ’x@slotName’ where
slotName is one of the following: "mode", "size", "nparam", "longnames", "shortnames"

object = "FCS" displays the original status, the objectname and the filename with the current size
and nparam slot information; Note that the long and gory details can be viewed by ’x@data’
or ’x@metadata’

object = "FCSsummary" Displays the statistics of the data and information about the metadata

x="PRIM.step" Displays the ’step.name’, size of the starting data, the decision for the box, the
percent change for each iteration, the number of iterations, and the chosen box’s ranges within
the data X.

x="PRIM.step.set", y="missing" Displays the "PRIM.step" information for the peeling and ex-
pansion steps.

x="PRIM.crossval.step", y="missing" Displays the "PRIM.step" information for the peeling and
expansion steps for each testdata set.

x="PRIM.rule", y="missing" displays the "PRIM.step" information for all 3 steps is displayed.

showgate.FCS 107

showgate.FCS Showing the gate and the datapoints within the gate on a prevous plot

Description

On an exisiting plot, the gate specified will be plotted and the datapoints lying within the gating
range will be colored (default is the color purple).

Usage

showgate.FCS(data.mat, gatingrange, Index,
type = c("uniscut", "biscut", "bidcut", "bipcut"),
IndexValue.In = 1,
coltype = 12, pchtype = 8,
biscut.quadrant = c("+/-","-/-", "+/+", "-/+"))

Arguments

data.mat the data to be gated:

univariate case single column of values: a (m X 1) data vector where m is the
number of cells/rows

bivariate case matrix of two column variables: a (m X 2) data matrix where m
is the number or cells/rows

gatingrange gating threshold range in one of the following formats for each type of gating:

"uniscut" univariate single cut; gatingrange = x1 will select/include all points
>= x1 , x1 is numeric value

"bidcut" bivariate double cut: gatingrange = c(x1, x2, y1,y2), a numeric vector
of lowerbound, upperbound cutoffs for x and y variables

"biscut" bivariate single cut:gatingrange = c(x1,y1), a numeric vector of the
cutoffs for x and y variables

"bipcut" bivariate polygonal cut: polygonal thresholds for an n-sided polygon
with gatingrange = cbind(c(x1, x2, ..., xn, x1), c(y1, y2, ..., yn, y1)), a
vector of vectors which denote the outer points of the polygonal vertices

Index a vector of 0’s and 1’s denoting the selection of row observations of ’data.mat’

type character string of the type of cut/gating:

"uniscut" univariate single cut: selects datapoints that are greater than or equal
to the cutoff value denoted in gatingrange

"bidcut" bivariate double cut: selects datapoints in the central rectangle formed
by two vertical lines (x variable cutoffs) and two horizontal lines (y variable
cutoffs)

"biscut" bivariate single cut: cuts graph into quadrants (selects datapoints in
the quadrant denoted by biscut.quadrant)

"bipcut" bivariate polygonal cut: selects the datapoints in a polygon
IndexValue.In

The value of ’Index’ to be selected; default is 1

coltype a character string or a numerical value describing the option for the color of the
data point inside the gating range

108 showgate.FCS

pchtype a character string or a numerical value describing the option for the point size
and type of data point inside the gating range

biscut.quadrant
character string value denoting the (x,y) quadrant that is to be selected; Values
are one of the following:

"$+$/$+$" selects the upper right quadrant, where x is positive and y is positive
"$-$/$+$" selects the upper left quadrant, where x is negative and y is positive
"$+$/$-$" selects the lower right quadrant, where x is positive and y is negative
"$-$/$-$" selects the lower left quadrant, where x is negative and y is negative

Value

The gating range or gate will be displayed and the data points within the gating range will be
colored.

Note

The coloring in of data points may take a while to process. The gate selection can only be shown us-
ing rectangular binning of the image plots using ContourScatterPlot. The showgate.FCS
does not work with hexagonal binning.

Author(s)

A.J. Rossini and J.Y. Wan

See Also

FHCRC.HVTNFCS,VRC.HVTNFCS, plotvar.FCS,createGate, icreateGate

Examples

if (interactive()){
if (require(rfcdmin)){
obtaining the FCS objects from VRC data
if (!(is.element("unst.1829", objects())

& is.element("st.1829", objects()))){
data(VRCmin)

}

univariate plot
plotvar.FCS(unst.1829, type="uni", varpos=1, plotType=hist)
show cut off at 350
showgate.FCS(unst.1829@data[,1], type="uniscut", gatingrange=350)
show different cutoff at 500
showgate.FCS(unst.1829@data[,1], type="uniscut", gatingrange=500,

coltype="green")

bivariate plot : rectanglar bins in which the gate can be shown
plotvar.FCS(unst.1829, type="bi", varpos=c(1,2), hexbin.CSPlot=FALSE)
show cutoff at 275 to 600 for both variables
may take a while
create the gate index as the first column entry of the "gate" matrix
unst.1829.gt<-createGate(unst.1829, varpos=1:2, type="bidcut",

gatingrange=c(275, 600, 275, 600))

standard 109

show the gate
showgate.FCS(unst.1829.gt@data[,c(1,2)], unst.1829.gt@gate[,1],

type="bidcut", gatingrange=c(275, 600, 275, 600))

}
}

standard Estimate the critical bandwidth for specific number of modes

Description

Standardize a numeric vector by its median and median absolute deviation (MAD).

Usage

standard(x)

Arguments

x the data vector to be standardized

Value

returns the standardized version of x

Author(s)

Kevin Rader

References

Silverman, B.W. (1981). Using Kernel Density Estimates to Investigate Multimodality. J. Royal
Statistical Society B, 43, 97-99.

See Also

get.h, get.p, emp.f, get.num.modes

Examples

set.seed(12345)
x<-rnorm(50,2,3)
x1<-standard(x)
c(median(x1),mad(x1))

110 "[[-methods"

"[-methods" Extraction of slot information using "["

Description

Specifically this method is able to extract components or slots.

ANY.object[1] retrieves the first element or slot

FCSmetadata.object["fcsinfo"] obtains the "fcsinfo" slot which is a list

FCSmetadata.object["\$P1R"] obtains the first parameter range/max

FCSmetadata.object[1:10] obtains first 10 elements of the "fcsinfo" slot of the metadata

FCS.object[1,2:3] extracts/reduces the data of the "FCS-class" object

Methods

x = "ANY" extracts elements

x = "FCSmetadata" Extracts slot information.
If using a single character string index such as the slotNames ("mode" or "\$MODE"; "size"
or "\$TOT"; "nparam" or "\$PAR"; "longnames" or "\$PnS" or "\$P1S" or "\$P2S" etc...;
"shortnames"or "\$PnN" or "\$P1N" or "\$P2N" etc...; "paramranges" or "\$PnR" or "\$P1R"
or "\$P2R" etc...;"fcsinfo";"objectname", "original", "filename") as well as the "fcsinfo" slot-
Names can be retrieved.
If using a numeric single-valued or numeric vector index, only the "fcsinfo" slots are numeri-
cally indexed and can be retreived.

x = "FCS" extracts or reduces the data portion of the object and returns a "FCS-class" object

x="PRIM.step" extracts the object via a character slot name and/or a numeric iteration ID

x="PRIM.step.set", y="missing" extracts the object via a character slot name for the step (ie,
"peel.step" or "expand.step") and with an optional slot name for the "PRIM.step" object.

x="PRIM.crossval.step", y="missing" extracts the object via a character slot name and/or a nu-
meric testdata ID

"[[-methods" Extraction of slot information using "[["

Description

Specifically this method is able to extract components or slots.

ANY.object[1] retrieves the first element or slot

FCSmetadata.object["fcsinfo"] obtains the "fcsinfo" slot which is a list

FCSmetadata.object["\$P1R"] obtains the first parameter range/max

FCSmetadata.object[1:10] obtains first 10 elements of the "fcsinfo" slot of the metadata

FCS.object[1,2:3] extracts/reduces the data of the "FCS-class" object

"[[<–methods" 111

Methods

x = "ANY" extracts elements

x = "FCSmetadata" Extracts slot information.
If using a single character string index such as the slotNames ("mode" or "\$MODE"; "size"
or "\$TOT"; "nparam" or "\$PAR"; "longnames" or "\$PnS" or "\$P1S" or "\$P2S" etc...;
"shortnames"or "\$PnN" or "\$P1N" or "\$P2N" etc...; "paramranges" or "\$PnR" or "\$P1R"
or "\$P2R" etc...;"fcsinfo";"objectname", "original", "filename") as well as the "fcsinfo" slot-
Names can be retrieved.
If using a numeric single-valued or numeric vector index, only the "fcsinfo" slots are numeri-
cally indexed and can be retreived.

x = "FCS" extracts the slot information from the metadata portion of the object; see x="FCSmetadata"
description (above) for specific indexing using "[["

x="PRIM.step" extracts the object via a character slot name and/or a numeric iteration ID

x="PRIM.step.set", y="missing" extracts the object via a character slot name for the step (ie,
"peel.step" or "expand.step") and with an optional slot name for the "PRIM.step" object.

x="PRIM.crossval.step", y="missing" extracts the object via a character slot name and/or a nu-
meric testdata ID

"[[<-methods" Replacement and/or Addition of new slot or indexed elements using
"[[<-"

Description

This method replaces the slot with a value that is assigned. In circumstances mentioned below, a
new slot can also be added.

Methods

x = "ANY" Replaces a slot with the assigned value.

x = "FCSmetadata" Replaces the slot with the assigned value.
If using a single character string index such as the slotNames ("mode" or "\$MODE"; "size"
or "\$TOT"; "nparam" or "\$PAR"; "longnames" or "\$PnS" or "\$P1S" or "\$P2S" etc...;
"shortnames"or "\$PnN" or "\$P1N" or "\$P2N" etc...; "paramranges" or "\$PnR" or "\$P1R"
or "\$P2R" etc...;"fcsinfo";"objectname", "original", "filename") as well as the "fcsinfo" slot-
Names can be assigned a value. If no slot is found by the character index referring to the
slotName, then a new slot will be made in the "fcsinfo" list with the particular character index
as the slotName will be added along with the value that is assigned.
If using a numeric single-valued or numeric vector index, only the "fcsinfo" slots are numeri-
cally indexed and assigned a new value.

x = "FCS" Replaces the indexed slots of the metadata portion of the object; See x="FCSmetadata"
(above) for details.

x="PRIM.step" replaces the object via a character slot name and/or a numeric iteration ID

x="PRIM.step.set", y="missing" replaces the object via a character slot name for the step (ie,
"peel.step" or "expand.step") and with an optional slot name for the "PRIM.step" object.

x="PRIM.crossval.step", y="missing" replaces the object via a character slot name and/or a nu-
meric testdata ID

112 "summary-methods"

"[<-methods" Replacement and/or Addition of new slot or indexed elements using
"[<-"

Description

This method replaces the slot with a value that is assigned. In circumstances mentioned below, a
new slot can also be added.

Methods

x = "ANY" Replaces a slot with the assigned value.

x = "FCSmetadata" Replaces the slot with the assigned value. If using a single character string
index such as the slotNames ("mode" or "\$MODE"; "size" or "\$TOT"; "nparam" or "\$PAR";
"longnames" or "\$PnS" or "\$P1S" or "\$P2S" etc...; "shortnames"or "\$PnN" or "\$P1N" or
"\$P2N" etc...; "paramranges" or "\$PnR" or "\$P1R" or "\$P2R" etc...;"fcsinfo";"objectname",
"original", "filename") as well as the "fcsinfo" slotNames can be assigned a value. If no slot
is found by the character index referring to the slotName, then a new slot will be made in the
"fcsinfo" list with the particular character index as the slotName will be added along with the
value that is assigned.
If using a numeric single-valued or numeric vector index, only the "fcsinfo" slots are numeri-
cally indexed and assigned a new value.

x = "FCS" Replaces the indexed data portion of the object

x="PRIM.step" replaces the object via a character slot name and/or a numeric iteration ID

x="PRIM.step.set", y="missing" replaces the object via a character slot name for the step (ie,
"peel.step" or "expand.step") and with an optional slot name for the "PRIM.step" object.

x="PRIM.crossval.step", y="missing" replaces the object via a character slot name and/or a nu-
meric testdata ID

"summary-methods" Summary of object

Description

A summary such as statistics or the names of the list items will be output depending on the class of
object.

Methods

object = "ANY" usually a print-out of statistics and names

object = "FCSmetadata" Displays the structure of this object

object = "FCS" A "FCSsummary" object is returned; Displays five-number summary using Tukey’s
method and the standard deviation for each column variable in the data of the FCS object and
a print-out of information about the metadata, showing the description of the slots, the column
parameter descriptives, and the slotNames in metdata@fcsinfo.

object = "PRIM.step" A matrix summarizing the iterations for the step is output

summary.ProbBin.FCS 113

object = "PRIM.step.set" A list of matrices summarizing the iterations for each step is output ;
the names of the list components is ’peel.step’ and ’expand.step’

object = "PRIM.crossval.step" A list of ’PRIM.step.set’ summary outputs is output; the list is
indexed by testdata set "TD*" where "*" is the numeric ID

summary.ProbBin.FCS
Chi-Squared/Standard Normal Approximation Summary Statistics for
a ProbBin.FCS object

Description

This function provides summary statistics for the test of distribution difference of two samples that
have been probability-binned or in histogram form.

Given two probability-binned samples, of which one will be called the stimulated sample and the
other the unstimulated/control sample, the null hypothesis is that both the unstimulated/Control
Data Histogram/Bins are the statistically the same as the Stimulated Data Histogram/Bins. Thus,
the two samples have the same distribution in the null hypothesis.

The alternative hypothesis is that the Unstimulated/Control Data Histogram/Bins are significantly
different from the Stimulated Data Histogram/Bins. Thus, the two distributions have a different
distribution.

Usage

summary.ProbBin.FCS(object, verbose=FALSE,...)

Arguments

object ProbBin.FCS object

verbose Boolean whether to output all the counts in each bin

... not used

Details

There are four main test statistics involved which are the following:

1. Test1: T.chi.unadj=max(0,(PBmetric-mean(PBmetric)) / SD(PBmetric)) is approximately stan-
dard normal (by the Central Limit Theorem (CLT)). Thus, the test of significance used the standard
normal test as proposed by Mario Roederer.

2. Test2: Adjusted PB metric statistic is distributed as a chi-squared statistics. Thus, the test of
significance uses the chi-squared test as proposed by Keith A. Baggerly.

3. Test3: Adjusted T.chi.unadj statistic is approximately the standard normal (by CLT). Thus the
test of significance uses the standard normal test as proposed by Keith A. Baggerly.

4. Test4: Pearson’s statistic using the Chi-Squared Test. There has been a suggestion of using a
different number of degrees of freedom

Please note that all four tests use different statistics to test the same null hypothesis against the same
alternative hypothesis.

Test 2 and 3 are ajusted forms of the statistics mentioned in Test 1.

Different p-values both one and two-sided are given for those applicable statistics.

114 summary.ProbBin.FCS

Value

A list consisting of:

PBinType Type of Probability Binning:

"by.control" uses the control dataset to obtain the breaks/cutoffs to bin the
stimulated dataset given a certain number of observations in each bin of the
control dataset

"combined" uses the combined dataset (both control and stimulated datasets)
to obtain the breaks/cutoffs for the bins given a certain number in each bin

control.bins single column matrix of the counts in each bin of the control dataset

stim.bins single column matrix of the counts in each bin of the stimulated dataset
total.control

numeric; total number in the control dataset

total.stim numeric; total number in the stimulated dataset

T.chi.unadj Roederer’s unadjusted normalized PB metric statistic which is normalized by
subtracting off the mean and then dividing by the standard deviation. This statis-
tic is approximately standard normal.

p.val.2tail.z.unadj
Two-tailed standard normal p-value corresponding to the Roederer’s unadjusted
normalized PB metric statistic which is approximated as a standard normal

p.val.1tail.z.unadj
Upper standard normal one-tailed p-value corresponding to the Roederer’s un-
adjusted PB metric statistic which is approximated as a standard normal

PBmetric.unadj
Roederer’s unadjusted PB metric which is ((n.c + n.s)/(2*nc.*n.s))*Chi-squared
or an unadjusted chi-squared statistic, where n.c is the number of control obser-
vations (unbinned) and n.s is the number of stimulated observations (unbinned)

PBmetric.adj Baggerly’s adjusted PB metric statistic which is a Chi-squared statistic

PB.df The degrees of freedom of the PB metric (adjusted and unadjusted) which is B-
1, where B is the number of bins in the eitherthe control or the stimulated binned
data

p.val.1tail.chi.adj
Upper one-tailed chi-squared p-value corresponding to Baggerly’s adjusted PB
metric

T.chi.adj Baggerly’s PB metric which is normalized by subtracting off the mean and di-
viding by the standard deviation; This normalized statistic is approximately stan-
dard normal.

p.val.1tail.z.adj
Upper one-tailed standard normal p-value corresponding to the Baggerly’s ad-
justed normalized PB metric statistic which is approximated as a standard nor-
mal

p.val.2tail.z.adj
Standard normal two-tailed p-value corresponding to the Baggerly’s adjusted
PB metric statistic which is approximated as a standard normal

pearson.stat Pearson’s Chi-Squared Statistic with degrees of freedom 2B-1, where B is the
number of bins in either the control or the stimulated binned data

pearson.df the degrees of freedom for the chi-squared statistic
pearson.p.value

The p-value corresponding to the chi-squared distribution

summary.ProbBin.FCS 115

pearson.method
string of the indicating the type of test and options performed

pearson.dataname
string of the name(s) of the data

pearson.observed
a vector of the observed counts

pearson.expected
a vector of the expected counts under the null hypothesis

pearson.p.val.PB.df
Fisher’s Chi-squared statistic with degrees of freedom B-1, where B is the num-
ber of bins in either the control or the stimulated binned data

Author(s)

A.J. Rossini and J.Y. Wan

References

Keith A. Baggerly "Probability Binning and Test Agreement between Multivariate Immunofluores-
cence Histograms: Extending the Chi-Squared test" Cytometry 45: 141:150 (2001).

Mario Roederer, et al. "Probability Binning Comparison: A Metric for Quantitating Univariate
Distribution Differences" Cytometry 45:37-46 (2001).

Documentation for chisq.test.

See Also

ProbBin.FCS, ProbBin.flowcytest, chisq.test

Examples

if (require(rfcdmin)){
obtaining the FCS objects from VRC data

if (!(is.element("unst.1829", objects()) & is.element("st.1829", objects()))){
data(VRCmin)
}
IFN.gamma.1<-unst.1829@data[1:2000,4]
IFN.gamma.2<-st.1829@data[1:2000,4]

#Probability binning using the control dataset to determine the breaks
PB1<-ProbBin.FCS(IFN.gamma.1, IFN.gamma.2, 200,
varname=colnames(unst.1829@data)[4], PBspec="by.control",MY.DEBUG=FALSE)

sum.PB1.1<-summary(PB1)
sum.PB1.2<-summary.ProbBin.FCS(PB1)

}

116 xgobi.FCS

xgobi.FCS XGobi: Dynamic Graphics for Data Analysis on FCS R objects

Description

This function allows for a multidimensional view/manipulation of the data of the FCS object. Each
row is an observation/cell, and the columns are regarded as the different variable conditions.

Usage

xgobi.FCS(myFCSobj, subset.row = NULL, subset.col = NULL, ...)

Arguments

myFCSobj FCS object

subset.row a vector of the row positions to be displayed; by default the first 1/15th rows are
chosen to be displayed

subset.col a vector of the column positions to be displayed; by default the first 1/2 of the
columns are displayed

... additional ’xgobi’ function parameters/options in ’xgobi’ package

Value

A graphics window with user-enabled manipulations The UNIX ‘status’ upon completion, i.e. ‘0’
if ok.

WARNING

Abuses/uses xgobi: XGobi cannot handle datasets that are too large. Therefore, use subset.col and
subset.row options to reduce the data matrix of the FCS R-object. Please see ‘xgobi’ for other
commands in the signature.

Note

By default only a subset of the data is shown in xgobi because of size limitations. The user may be
able to view the whole FCS dataset by using xgobi, but only if the dataset is not too huge for xgobi
capabilities. It may be advisable to createGate and extractGatedData before viewing with
xgobi.

Author(s)

A.J. Rossini and J.Y. Wan

References

Please see ’xgobi’ in ’xgobi’ package.

websites <URL: http://www.research.att.com/areas/stat/xgobi/>, <URL: http://www.public.iastate.edu/~dicook/>

of R port Kurt Hornik and Martin Maechler <maechler@stat.math.ethz.ch>

xgobi.FCS 117

See Also

’xgobi’ in xgobi package, plot-methods,plotvar.FCS, createGate, extractGatedData,
icreateGate

Examples

if (require(xgobi)) {
if (require(rfcdmin)){
obtaining the FCS objects from VRC data
if (!(is.element("unst.1829", objects()))) {
data(VRCmin)

}
if (interactive()==TRUE) {
plots first 1/15 rows
plots first 1/2 columns
xgobi.FCS(unst.1829, title="unst.1829 default subset")

plots all the rows
plots only the first 3 columns
xgobi.FCS(unst.1829, subset.row=1:6000, subset.col=1:2,

title="unst.1829 first 6000 rows/cells with 2 column params")
}

}
}

Index

∗Topic aplot
boxplot.FCS, 43
ROC.FCS, 33
showgate.FCS, 107

∗Topic character
convertS3toS4, 48
read.FCS, 96
read.series.FCS, 100

∗Topic classes
coerce-FCSformat, 47
convertS3toS4, 48
cytoSet-class, 54
ProbBin.FCS, 28
read.FCS, 96
read.series.FCS, 100

∗Topic data
coerce-FCSformat, 47
createGate, 50
extractGatedData, 59
extractGateHistory, 58

∗Topic distribution
emp.f, 56
get.h, 69
get.num.modes, 70
get.p, 71
KS.flowcytest, 22
MODE, 25

∗Topic dplot
breakpoints.ProbBin, 44
KS.flowcytest, 22
PercentPos.FCS, 26
ROC.FCS, 33
runflowcytests, 103
summary.ProbBin.FCS, 113

∗Topic environment
fcs.type, 61

∗Topic error
rflowcyt-defunct, 102

∗Topic hplot
add.parallel.coordinates, 39
add.parallelCoordinates, 41
ContourScatterPlot, 1
gate.IPC, 65

ImageParCoord, 17
legend.CSP, 72
make.grid, 74
pairs.CSP, 77
parallelCoordinates, 81
plot.ProbBin.FCS, 86
plot2sets.FCS, 88
plotdensity.FCS, 92
plotECDF.FCS, 89
plotQA.FCS, 90
plotvar.FCS, 93
ProbBin.flowcytest, 30
rect.box.idx, 101
runflowcytests, 103
WLR.flowcytest, 37
xgobi.FCS, 116

∗Topic htest
pkci2.flowcytest, 83

∗Topic iplot
createGate, 50
FHCRC.HVTNFCS, 15
VRC.HVTNFCS, 35

∗Topic manip
createGate, 50
extractGatedData, 59
extractGateHistory, 58
make.grid, 74
xgobi.FCS, 116

∗Topic math
PercentPos.FCS, 26
standard, 109

∗Topic survival
WLR.flowcytest, 37

∗Topic univar
pkci2.flowcytest, 83
ProbBin.FCS, 28
ProbBin.flowcytest, 30
runflowcytests, 103
summary.ProbBin.FCS, 113
WLR.flowcytest, 37

.Defunct, 102
[,cytoSet-method (cytoSet-class),

54

118

INDEX 119

[-methods, 46, 64
[<--methods, 46, 64
[[,cytoSet-method

(cytoSet-class), 54
[[<-,cytoSet-method

(cytoSet-class), 54

add.parallel.coordinates, 39
add.parallelCoordinates, 41
addParameter, 7, 99, 100
addParameter-methods, 46, 64
as, 29, 47

bkde, 24
boxplot, 43, 44
boxplot.FCS, 43
boxplot.stats, 44
breakpoints.ProbBin, 29, 44

checkvars, 7
chisq.test, 115
coerce,cytoFrame,FCS-method

(coerce-FCSformat), 47
coerce,FCS,cytoFrame-method

(coerce-FCSformat), 47
coerce-FCSformat, 47
colnames,cytoSet-method

(cytoSet-class), 54
colnames<-,cytoSet-method

(cytoSet-class), 54
colors, 95
contour, 2, 3
ContourScatterPlot, 1, 21, 72–75, 95,

101, 108
convertS3toS4, 48
createGate, 10, 15, 16, 26, 29, 35, 36, 50,

50, 51, 58–61, 108, 116, 117
cytoFrame, 54
cytoFrame-class, 55
cytoSet-class, 54

density.lf, 92
densityplot.FCS

(plotdensity.FCS), 92
dim.FCS, 7

ecdf, 90
emp.f, 56, 70–72, 109
environment, 54, 55
equals, 7
extractGatedData, 10, 15, 26, 29, 35, 36,

46, 51, 52, 59, 59, 64, 99, 100, 116,
117

extractGateHistory, 10, 36, 51, 52, 58

FCS, 49, 52, 64
FCS-class, 59, 61
FCS.type (fcs.type), 61
fcs.type, 61, 97
FCSgate, 50, 52
FCSgate-class, 59, 61
FCSmetadata, 49
FHCRC.HVTNFCS, 10, 15, 36, 51, 52, 108
fixvars, 7
fluors, 7

gate.IPC, 21, 65
get.h, 57, 69, 71, 72, 109
get.num.modes, 57, 70, 70, 72, 109
get.p, 57, 70, 71, 71, 109
getwd, 100

heat.colors, 3, 21, 73, 75, 95
hist, 28, 29, 32, 45, 68, 86, 87, 95

icreateGate, 10, 15, 16, 29, 35, 36, 50, 51,
108, 117

icreateGate (createGate), 50
image, 3, 72–75
ImageParCoord, 17, 40, 41, 68, 82, 86
is, 29

JointImageParCoord, 68
JointImageParCoord

(ImageParCoord), 17

KS (KS.flowcytest), 22
KS.flowcytest, 22, 38, 84
ks.test, 23, 24

lattice, 89, 90
legend.CSP, 3, 72, 75
length,cytoSet-method

(cytoSet-class), 54
lines, 40, 41
locfit, 92

make.density, 1, 2, 73, 78
make.density (make.grid), 74
make.grid, 2, 3, 73, 74
metaData, 7
MODE, 25

pairs, 82
pairs.CSP, 75, 77, 86
palette, 95
par, 40, 41

120 INDEX

parallelCoordinates, 21, 40, 41, 81
pData,cytoSet-method

(cytoSet-class), 54
percentile.FCS, 26, 27, 34
percentile.FCS (PercentPos.FCS),

26
PercentPos.FCS, 26, 26, 27, 34
phenoData, 54, 55
phenoData,cytoSet-method

(cytoSet-class), 54
phenoData<-,cytoSet,phenoData-method

(cytoSet-class), 54
pkci2 (pkci2.flowcytest), 83
pkci2.flowcytest, 24, 38, 83
plot, 20, 40, 41, 43, 67, 68, 82, 88, 91, 92, 95
plot-methods, 117
plot.ProbBin.FCS, 29, 32, 86
plot2sets.FCS, 88
plotdensity.FCS, 92
plotECDF.FCS, 89
plotQA.FCS, 25, 90
plotvar.FCS, 16, 36, 51, 93, 108, 117
pnorm, 84
print, 99, 100
ProbBin.by.control

(ProbBin.flowcytest), 30
ProbBin.combined

(ProbBin.flowcytest), 30
ProbBin.FCS, 21, 28, 32, 45, 87, 115
ProbBin.flowcytest, 24, 29, 30, 38, 84,

115

qnorm, 84

rainbow, 21
read.FCS, 7, 13, 49, 61, 63, 96, 100
read.series.FCS, 100
readBin, 62, 63
readCytoSet, 54, 55, 100
rect, 101
rect.box.idx, 101
rflowcyt-defunct, 102
ROC.FCS, 26, 27, 33
runflowcytests, 10, 24, 32, 38, 84, 103

show,cytoSet-method
(cytoSet-class), 54

showgate.FCS, 16, 51, 107, 108
standard, 109
summary, 99, 100
summary.ProbBin.FCS, 29, 32, 113

VRC.HVTNFCS, 10, 16, 35, 51, 52, 108

WLR (WLR.flowcytest), 37
WLR.flowcytest, 37, 84, 105

xgobi.FCS, 11, 116
xyplot, 43, 89, 90

	ContourScatterPlot
	"FCS-class"
	"FCSgate-class"
	"FCSggobi-class"
	"FCSmetadata-class"
	"FCSsummary-class"
	FHCRC.HVTNFCS
	ImageParCoord
	KS.flowcytest
	MODE
	PercentPos.FCS
	ProbBin.FCS
	ProbBin.flowcytest
	ROC.FCS
	VRC.HVTNFCS
	WLR.flowcytest
	add.parallel.coordinates
	add.parallelCoordinates
	"addParameter-methods"
	boxplot.FCS
	breakpoints.ProbBin
	"checkvars-methods"
	coerce-FCSformat
	"coerce-methods"
	convertS3toS4
	createGate
	cytoSet-class
	"dim.FCS-methods"
	emp.f
	"equals-methods"
	extractGateHistory
	extractGatedData
	fcs.type
	"fixvars-methods"
	"fluors-methods"
	gate.IPC
	get.h
	get.num.modes
	get.p
	"ggobi-methods"
	legend.CSP
	make.grid
	"metaData-methods"
	pairs.CSP
	parallelCoordinates
	pkci2.flowcytest
	"plot-methods"
	plot.ProbBin.FCS
	plot2sets.FCS
	plotECDF.FCS
	plotQA.FCS
	plotdensity.FCS
	plotvar.FCS
	"print-methods"
	read.FCS
	read.series.FCS
	rect.box.idx
	rflowcyt-defunct
	runflowcytests
	"show-methods"
	showgate.FCS
	standard
	"[-methods"
	"[[-methods"
	"[[<--methods"
	"[<--methods"
	"summary-methods"
	summary.ProbBin.FCS
	xgobi.FCS
	Index

