qpgraph

October 5, 2010

EcoliOxygen Preprocessed microarray oxygen deprivation data and filtered RegulonDB data

Description

The data consist of two objects, one containing normalized gene expression microarray data from Escherichia coli (E. coli) and the other containing a subset of filtered RegulonDB transcription regulatory relationships on E. coli.

Usage

```
data(EcoliOxygen)
```

Format

gds680.eset	ExpressionSet object containing n=43 experiments of various mutants under oxygen
filtered.regulon6.1	Data frame object containing a subset of the E. coli transcriptional network from RegulonI

Source

Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., and Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. *Nature*, 429(6987):92-96, 2004.

Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-Flores, I., Salgado, H., Bonavides-Martinez, C., Abreu-Goodger, C., Rodriguez-Penagos, C., Miranda-Rios, J., Morett, E., Merino, E., Huerta, A.M., Trevino-Quintanilla, L., and Collado-Vides, J. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. *Nucleic Acids Res.*, 36(Database issue):D120-124, 2008.

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

Examples

data(EcoliOxygen)

qpAnyGraph A graph

Description

Obtains an undirected graph from a matrix of pairwise measurements

Usage

Arguments

measurementsMatrix		
	matrix of pairwise measurements.	
threshold	threshold on the measurements below or above which pairs of variables are as- sumed to be disconnected in the resulting graph.	
remove	direction of the removal with the threshold. It should be either "below" (default) or "above".	
topPairs	number of edges from the top of the ranking, defined by the pairwise measure- ments in measurementsMatrix, to use to form the resulting graph. This parameter is incompatible with a value different from NULL in threshold.	
decreasing	logical, only applies when topPairs is set; if TRUE then the ranking is made in decreasing order; if FALSE then is made in increasing order.	
pairup.i	subset of vertices to pair up with subset pairup.j	
pairup.j	subset of vertices to pair up with subset pairup.i	
return.type	type of data structure on which the resulting undirected graph should be re- turned. Either a logical adjacency matrix with cells set to TRUE when the two indexing variables are connected in the graph (default), or a list of edges in a matrix where each row corresponds to one edge and the two columns con- tain the two vertices defining each edge, or a graphNEL-class object, or a graphAM-class object.	

Details

This function requires the graph package when return.type=graphNEL or return.type=graphAM.

Value

The resulting undirected graph as either an adjacency matrix, a graphNEL object or a graphAM object, depending on the value of the return.type parameter. Note that when some gold-standard graph is available for comparison, a value for the parameter threshold can be found by calculating a precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when we specify with topPairs=n that we want a graph with n edges then threshold cannot be used.

2

qpAvgNrr

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

```
qpNrr qpAvgNrr qpEdgeNrr qpGraph qpGraphDensity qpClique qpPrecisionRecall
qpPRscoreThreshold
```

Examples

```
require(mvtnorm)
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable</pre>
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)</pre>
Sigma <- qpG2Sigma(A, rho=0.5)</pre>
X <- rmvnorm(nObs, sigma=Sigma)</pre>
## estimate Pearson correlations
pcc.estimates <- qpPCC(X)</pre>
## the higher the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.9,
                 remove="below")
## the sparser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)
\#\# the lower the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.5,
                remove="below")
# the denser the graph
(sum(g)/2) / (nVar*(nVar-1)/2)
```

```
qpAvgNrr
```

Average non-rejection rate estimation

Description

Estimates average non-rejection rates for every pair of variables.

Usage

```
## S4 method for signature 'ExpressionSet':
qpAvgNrr(data, qOrders=4, nTests=100, alpha=0.05,
                                   pairup.i=NULL, pairup.j=NULL,
                                   type=c("arith.mean"), verbose=TRUE,
                                   identicalQs=TRUE, R.code.only=FALSE)
## S4 method for signature 'data.frame':
qpAvgNrr(data, qOrders=4, nTests=100, alpha=0.05,
                                pairup.i=NULL, pairup.j=NULL,
                                long.dim.are.variables=TRUE,
                                type=c("arith.mean"), verbose=TRUE,
                                identicalQs=TRUE, R.code.only=FALSE)
## S4 method for signature 'matrix':
qpAvgNrr(data, qOrders=4, nTests=100, alpha=0.05,
                            pairup.i=NULL, pairup.j=NULL,
                            long.dim.are.variables=TRUE,
                            type=c("arith.mean"), verbose=TRUE,
                            identicalQs=TRUE, R.code.only=FALSE)
```

Arguments

data	data set from where to estimate the average non-rejection rates. It can be an ExpressionSet object, a data frame or a matrix.	
qOrders	either a number of partial-correlation orders or a vector of vector of particular orders to be employed in the calculation.	
nTests	number of tests to perform for each pair for variables.	
alpha	significance level of each test.	
pairup.i	subset of vertices to pair up with subset pairup.j	
pairup.j	subset of vertices to pair up with subset pairup.i	
long.dim.are.variables		
	logical; if TRUE it is assumed that when the data is a data frame or a matrix, the longer dimension is the one defining the random variables; if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.	
type	type of average. By now only the arithmetic mean is available.	
verbose	show progress on the calculations.	
identicalQs	use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.	
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.	

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to min (p, n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly within each q value and quadratically in p. When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on p and q) while asymptotically the estimation of the non-rejection rate converges to the same value.

qpCItest

Value

A symmetric matrix of estimated average non-rejection rates with the diagonal set to NA. When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get also a NA value.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

See Also

qpNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require (mvtnorm)

nVar <- 50 ## number of variables maxCon <- 5 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate set.seed(123) A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon) Sigma <- qpG2Sigma(A, rho=0.5) X <- rmvnorm(nObs, sigma=Sigma) avgnrr.estimates <- qpAvgNrr(X, verbose=FALSE) ## distribution of average non-rejection rates for the present edges summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A]) ## distribution of average non-rejection rates for the missing edges

qpCItest

Conditional independence test

summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A])

Description

Performs a conditional independence test between two variables given a conditioning set.

Usage

Arguments

data	data set where the test should be performed. It can be either an ExpressionSet object, a data frame, or a matrix. If it is a matrix and the matrix is squared then this function assumes the matrix is the sample covariance matrix of the data and the sample size parameter N should be provided.
Ν	number of observations in the data set. Only necessary when the sample covariance matrix is provided through the data parameter.
i	index or name of one of the two variables.
j	index or name of the other variable.
Q	indexes or names of the variables forming the conditioning set.
long.dim.are	.variables
	logical; if TRUE it is assumed that when data are in a data frame or in a ma- trix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

Note that the size of possible Q sets should be in the range 1 to min (p, n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly with the number of variables in Q.

Value

A list with two members, the t-statistic value and the p-value on rejecting the null hypothesis of independence.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpEdgeNrr

qpClique

Examples

```
require(mvtnorm)
nObs <- 100 ## number of observations to simulate
## the following adjacency matrix describes an undirected graph
## where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=Sigma)
qpCItest(X, i=3, j=4, Q=1, long.dim.are.variables=FALSE)
qpCItest(X, i=3, j=4, Q=c(1,2), long.dim.are.variables=FALSE)</pre>
```

qpClique

Complexity of the resulting qp-graphs

Description

Calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate.

Usage

```
qpClique(nrrMatrix, N=NA, threshold.lim=c(0,1), breaks=5, plot=TRUE,
    exact.calculation=TRUE, approx.iter=100,
    qpCliqueOutput=NULL, density.digits=0,
    logscale.clqsize=FALSE,
    titleclq="maximum clique size as function of threshold",
    verbose=FALSE)
```

Arguments

nrrMatrix	matrix of non-rejection rates.	
Ν	number of observations from where the non-rejection rates were estimated.	
threshold.lin	n	
	range of threshold values on the non-rejection rate.	
breaks	either a number of threshold bins or a vector of threshold breakpoints.	
plot	logical; if TRUE makes a plot of the result; if FALSE it does not.	
exact.calculation		
	logical; if TRUE then the exact clique number is calculated; if FALSE then a lower bound is given instead.	
approx.iter	number of iterations to be employed in the calculation of the lower bound (i.e., only applies when exact.calculation=FALSE).	

qpCliqueOutp	ut
	output from a previous call to qpClique. This allows one to plot the result
	changing some of the plotting parameters without having to do the calculation again.
density.digit	ts
	number of digits in the reported graph densities.
logscale.clqsize	
	logical; if TRUE then the scale for the maximum clique size is logarithmic which is useful when working with more than 1000 variables; FALSE otherwise (default).
titleclq	main title to be shown in the plot.
verbose	show progress on calculations.

Details

The estimate of the complexity of the resulting qp-graphs is calculated as the area enclosed under the curve of maximum clique sizes.

The maximum clique size, or clique number, is obtained by calling the function qpCliqueNumber The calculation of the clique number of an undirected graph is an NP-complete problem which means that its computational cost is bounded by an exponential running time (Pardalos and Xue, 1994). Therefore, giving breakpoints between 0.95 and 1.0 may result into very dense graphs which can lead to extremely long execution times. If it is necessary to look at that range of breakpoints it is recommended either to use the lower bound on the clique number (exact.calculation=FALSE) or to look at qpGraphDensity.

Value

A list with the maximum clique size and graph density as function of threshold, an estimate of the complexity of the resulting qp-graphs across the thresholds, the threshold on the non-rejection rate that provides a maximum clique size strictly smaller than the sample size N and the resulting maximum clique size.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpCliqueNumber qpGraphDensity

Examples

```
require (mvtnorm)
```

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate</pre>
```

qpCliqueNumber

```
set.seed(123)
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=Sigma)
## the higher the q the less complex the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpClique(nrr.estimates, plot=FALSE)$complexity
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpClique(nrr.estimates, plot=FALSE)$complexity</pre>
```

qpCliqueNumber Clique number

Description

Calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph.

Usage

Arguments

g	either a graphNEL object or an adjacency matrix of the given undirected graph.	
exact.calcul	ation	
	logical; if TRUE then the exact clique number is calculated; if FALSE then a lower bound is given instead.	
return.vertices		
	logical; if TRUE a set of vertices forming a maximal clique of maximum size is returned; if FALSE only the maximum clique size is returned.	
approx.iter	number of iterations to be employed in the calculation of the lower bound (i.e., only applies when exact.calculation=FALSE.	
verbose	show progress on calculations.	
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.	

Details

The calculation of the clique number of an undirected graph is one of the basic NP-complete problems (Karp, 1972) which means that its computational cost is bounded by an exponential running time (Pardalos and Xue, 1994). The current implementation uses C code from the GNU GPL Cliquer library by Niskanen and Ostergard (2003) based on the, probably the fastest to date, algorithm by Ostergard (2002). The lower bound on the maximum clique size is calculated by ranking the vertices by their connectivity degree, put the first vertex in a set and go through the rest of the ranking adding those vertices to the set that form a clique with the vertices currently within the set. Once the entire ranking has been examined a large clique should have been built and eventually one of the largests ones. This process is repeated a number of times (approx.iter) each of which the ranking is altered with increasing levels of randomness acyclically (altering 1 to p vertices and again). Larger values of approx.iter should provide tighter lower bounds although it has been proven that no polynomial time algorithm can approximate the maximum clique size within a factor of n^{ϵ} ($\epsilon > 0$), unless P=NP (Feige et al, 1991; Pardalos and Xue, 1994).

Value

a lower bound of the size of the largest maximal clique in the given graph, also known as its clique number.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Feige, U., Goldwasser, S., Lov\'asz, L., Safra, S. and Szegedy, M. Approximating the maximum clique is almost NP-Complete. *Proc. 32nd IEEE Symp. on Foundations of Computer Science*, 2-12, 1991.

Karp, R.M. Reducibility among combinatorial problems. *Complexity of computer computations*, 43:85-103, 1972.

Niskanen, S. Ostergard, P. Cliquer User's Guide, Version 1.0. Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (http://users.tkk.fi/ ~pat/cliquer.html)

Ostergard, P. A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120:197-207, 2002.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpClique

Examples

```
require(graph)
```

```
nVar <- 50
```

set.seed(123)

g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
qpCliqueNumber(g1, verbose=FALSE)</pre>

```
g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
qpCliqueNumber(g2, verbose=FALSE)</pre>
```

10

qpEdgeNrr

Description

Estimates non-rejection rate for one pair of variables.

Usage

Arguments

data	data set from where the non-rejection rate should be estimated. It can be either an ExpressionSet object, a data frame, or a matrix. If it is a matrix and the matrix is squared then this function assumes the matrix is the sample covariance matrix of the data and the sample size parameter N should be provided.
Ν	number of observations in the data set. Only necessary when the sample covari- ance matrix is provided through the data parameter.
i	index or name of one of the two variables.
j	index or name of the other variable.
q	partial-correlation order.
nTests	number of tests to perform for each pair for variables.
alpha	significance level of each test.
long.dim.are	.variables
	logical; if TRUE it is assumed that when data are in a data frame or in a ma- trix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.

Details

The estimation of the non-rejection rate for a pair of variables is calculated as the fraction of tests that accept the null hypothesis of independence given a set of randomly sampled q-order conditionals.

Note that the possible values of q should be in the range 1 to min (p, n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly with q.

An estimate of the non-rejection rate for the particular given pair of variables.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpHist qpGraphDensity qpClique

Examples

```
require(mvtnorm)
nObs <- 100 ## number of observations to simulate
## the following adjacency matrix describes an undirected graph
## where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, on row=4, ncol=4, byrow=TRUE)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=Sigma)
qpEdgeNrr(X, i=3, j=4, q=1, long.dim.are.variables=FALSE)
qpEdgeNrr(X, i=3, j=4, q=2, long.dim.are.variables=FALSE)</pre>
```

qpFunctionalCoherence

Functional coherence estimation

Description

Estimates functional coherence for a given transcriptional regulatory network.

Usage

```
qpFunctionalCoherence(A, TFgenes, chip, minRMsize=5, verbose=FALSE)
```

Arguments

A	adjacency matrix of the undirected graph representing the transcriptional regulatory network.
TFgenes	vector of transcription factor gene (matching the genes at the rows and column names of A .
chip	name of the .db package containing the Gene Ontology (GO) annotations.
minRMsize	minimum size of the target gene set in each regulatory module where functional enrichment will be calculated and thus where functional coherence will be estimated.
verbose	logical; if TRUE the function will show progress on the calculations; if FALSE the function will remain quiet (default).

Details

This function estimates the functional coherence of a transcriptional regulatory network represented by means of an undirected graph encoded by an adjacency matrix and of a set of transcription factor genes. The functional coherence of a transcriptional regulatory network is calculated as specified by Castelo and Roverato (2009) and corresponds to the distribution of individual functional coherence values of every of the regulatory modules of the network each of them defined as a transcription factor and its set of putatively regulated target genes. In the calculation of the functional coherence value of a regulatory module, Gene Ontology (GO) annotations are employed through the given annotation . db package and the conditional hyper-geometric test implemented in the GOstats package from Bioconductor.

Value

A list with three slots, a first one containing the transcriptional regulatory network as a list of regulatory modules and their targets, a second one containing this same network but including only those modules with GO BP annotations and a third one consisting of a vector of functional coherence values.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

See Also

qpAvgNrr qpGraph

Examples

```
require(annotate)
require(org.EcK12.eg.db)
# load RegulonDB data from this package
data(EcoliOxygen)
# pick two TFs from the RegulonDB data in this package
```

qpG2Sigma

```
TFgenes <- c("mhpR", "iscR")</pre>
# get their Entrez Gene Identifiers
TFgenesEqIDs <- unlist(mget(TFgenes, revmap(getAnnMap("SYMBOL", "org.EcK12.eg.db"))))</pre>
# get all genes involved in their regulatory modules from
# the RegulonDB data in this package
mt <- match(filtered.regulon6.1[,"EgID_TF"], TFgenesEgIDs)</pre>
allGenes <- as.character(unique(as.vector(
            as.matrix(filtered.regulon6.1[!is.na(mt),
                                            c("EqID_TF", "EqID_TG")))))
mtTF <- match(filtered.regulon6.1[, "EgID_TF"], allGenes)</pre>
mtTG <- match(filtered.regulon6.1[, "EgID_TG"], allGenes)</pre>
# select the corresponding subset of the RegulonDB data in this package
subset.filtered.regulon6.1 <- filtered.regulon6.1[!is.na(mtTF) & !is.na(mtTG),]</pre>
TFi <- match(subset.filtered.regulon6.1[,"EgID_TF"], allGenes)</pre>
TGi <- match(subset.filtered.regulon6.1[,"EgID_TG"], allGenes)</pre>
subset.filtered.regulon6.1 <- cbind(subset.filtered.regulon6.1,</pre>
                                      idx_TF=TFi, idx_TG=TGi)
# build an adjacency matrix representing the transcriptional regulatory
# relationships from these regulatory modules
p <- length(allGenes)</pre>
adjacencyMatrix <- matrix(FALSE, nrow=p, ncol=p)</pre>
rownames(adjacencyMatrix) <- colnames(adjacencyMatrix) <- allGenes</pre>
idxTFTG <- as.matrix(subset.filtered.regulon6.1[,c("idx_TF","idx_TG")])</pre>
adjacencyMatrix[idxTFTG] <-
  adjacencyMatrix[cbind(idxTFTG[,2],idxTFTG[,1])] <- TRUE</pre>
# calculate functional coherence on these regulatory modules
fc <- qpFunctionalCoherence(adjacencyMatrix, TFgenesEgIDs, "org.EcK12.eg.db")
print(sprintf("the %s module has a FC value of %.2f",
              mget(names(fc$functionalCoherenceValues), org.EcK12.egSYMBOL),
               fc$functionalCoherenceValues))
```

qpG2Sigma	Random covariance matrix

Description

Builds a positive definite matrix from an undirected graph G that can be used as a covariance matrix for a Gaussian graphical model with graph G. The inverse of the resulting matrix contains zeroes at the missing edges of the given undirected graph G.

Usage

```
qpG2Sigma(g, rho=0, verbose=FALSE, R.code.only=FALSE)
```

qpG2Sigma

Arguments

g	undirected graph specified either as a graphNEL object or as an adjacency matrix.
rho	real number between 1/(n.var-1) and 1.
verbose	show progress on the calculations.
R.code.only	logical; if FALSE then the faster C implementation is used in the internal call to the IPF algorithm (default); if TRUE then only R code is executed.

Details

The random covariance matrix is built by first generating a random matrix with the function <code>qpRndWishart</code> from a Wishart distribution whose expected value is a matrix with unit diagonal and constant off-diagonal entries equal to rho.

Value

A random positive definite matrix that can be used as a covariance matrix for a Gaussian graphical model with graph G.

Author(s)

A. Roverato

References

Castelo, R. and Roverato, A. Utilities for large Gaussian graphical model inference and simulation with the R package qpgraph, submitted.

See Also

qpGetCliques qpIPF qpRndWishart rmvnorm

Examples

```
require(graph)
```

```
n.var <- 5 # number of variables
set.seed(123)
g <- randomEGraph(as.character(1:n.var), p=0.15)
Sigma <- qpG2Sigma(g, rho=0.5)
round(solve(Sigma), digits=2)
as(g, "matrix")
```

qpGetCliques Clique list

Description

Finds the set of (maximal) cliques of a given undirected graph.

Usage

qpGetCliques(g, clqspervtx=FALSE, verbose=TRUE)

Arguments

g	either a graphNEL object or an adjacency matrix of the given undirected graph.
clqspervtx	logical; if TRUE then the resulting list returned by the function includes addi- tionally p entries at the beginning (p=number of variables) each corresponding to a vertex in the graph and containing the indices of the cliques where that vertex belongs to; if FALSE these additional entries are not included (default).
verbose	show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979). For this reason, this is an extremely time and memory consuming computation for large dense graphs. The current implementation uses C code from the GNU GPL Cliquer library by Niskanen and Ostergard (2003).

Value

A list of maximal cliques. When clqspervtx=TRUE the first p entries (p=number of variables) contain, each of them, the indices of the cliques where that particular vertex belongs to.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Garey, M.R. and Johnson D.S. *Computers and intractability: a guide to the theory of NP-completeness*. W.H. Freeman, San Francisco, 1979.

Niskanen, S. Ostergard, P. Cliquer User's Guide, Version 1.0. Communications Laboratory, Helsinki University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (http://users.tkk.fi/ ~pat/cliquer.html)

See Also

qpCliqueNumber qpIPF

qpGraph

Examples

```
require(graph)
set.seed(123)
nVar <- 50
g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
clqs1 <- qpGetCliques(g1, verbose=FALSE)
length(clqs1)
summary(sapply(clqs1, length))
g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
clqs2 <- qpGetCliques(g2, verbose=FALSE)
length(clqs2)
clqs2 <- qpGetCliques(g2, verbose=FALSE)
summary(sapply(clqs2, length))</pre>
```

qpGraph

The qp-graph

Description

Obtains a qp-graph from a matrix of non-rejection rates

Usage

```
qpGraph(nrrMatrix, threshold=NULL, topPairs=NULL, pairup.i=NULL, pairup.j=NULL,
return.type=c("adjacency.matrix", "edge.list", "graphNEL", "graphAM"))
```

Arguments

nrrMatrix	matrix of non-rejection rates.	
threshold	threshold on the non-rejection rate above which pairs of variables are assumed to be disconnected in the resulting qp-graph.	
topPairs	number of edges from the top of the ranking, defined by the non-rejection rates in nrrMatrix, to use to form the resulting qp-graph. This parameter is incom- patible with a value different from NULL in threshold.	
pairup.i	subset of vertices to pair up with subset pairup.j	
pairup.j	subset of vertices to pair up with subset pairup.i	
return.type	type of data structure on which the resulting undirected graph should be re- turned. Either a logical adjacency matrix with cells set to TRUE when the two indexing variables are connected in the qp-graph (default), or a list of edges in a matrix where each row corresponds to one edge and the two columns con- tain the two vertices defining each edge, or a graphNEL-class object, or a graphAM-class object.	

qpGraph

Details

This function requires the graph package when return.type=graphNEL or return.type=graphAM.

Value

The resulting qp-graph as either an adjacency matrix, a graphNEL object or a graphAM object, depending on the value of the return.type parameter. Note that when some gold-standard graph is available for comparison, a value for the parameter threshold can be found by calculating a precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when we specify with topPairs=n that we want a qp-graph with n edges then threshold cannot be used.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpAnyGraph qpGraphDensity qpClique qpPrecisionRecall qpPRscoreThreshold

Examples

```
require(mvtnorm)
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable</pre>
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)</pre>
Sigma <- qpG2Sigma(A, rho=0.5)</pre>
X <- rmvnorm(nObs, sigma=Sigma)
## estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)</pre>
## the higher the threshold
g <- qpGraph(nrr.estimates, threshold=0.9)</pre>
## the denser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)
## the lower the threshold
g <- qpGraph(nrr.estimates, threshold=0.5)
## the sparser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)
```

18

qpGraphDensity Densities of resulting qp-graphs

Description

Calculates and plots the graph density as function of the non-rejection rate.

Usage

Arguments

nrrMatrix	matrix of non-rejection rates.		
threshold.li	threshold.lim		
	range of threshold values on the non-rejection rate.		
breaks	either a number of threshold bins or a vector of threshold breakpoints.		
plot	logical; if TRUE makes a plot of the result; if FALSE it does not.		
qpGraphDensityOutput			
	output from a previous call to qpGraphDensity. This allows one to plot the result changing some of the plotting parameters without having to do the calculation again.		
density.digits			
	number of digits in the reported graph densities.		
titlegd	main title to be shown in the plot.		

Details

The estimate of the sparseness of the resulting qp-graphs is calculated as one minus the area enclosed under the curve of graph densities.

Value

A list with the graph density as function of threshold and an estimate of the sparseness of the resulting qp-graphs across the thresholds.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

qpHist

See Also

qpNrr qpAvgNrr qpEdgeNrr qpClique

Examples

```
require(mvtnorm)
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=Sigma)
## the higher the q the sparser the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness</pre>
```

qpHist

Histograms of non-rejection rates

Description

Plots the distribution of non-rejection rates.

Usage

Arguments

nrrMatrix	matrix of non-rejection rates.
A	adjacency matrix of an undirected graph whose present and missing edges will be employed to show separately the distribution of non-rejection rates.
titlehist	main title of the histogram(s).
freq	logical; if TRUE, the histograms show frequencies (counts) of occurrence of the different non-rejection rate values; if FALSE, then probability densities are plotted

Details

This function plots histograms using the R-function hist and therefore the way they are displayed follows that of this R-function.

20

qpIPF

Value

None

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraphDensity qpClique

Examples

```
require(mvtnorm)
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=Sigma)
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpHist(nrr.estimates, A)</pre>
```

qpIPF

Iterative proportional fitting algorithm

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints from in input list of (maximal) cliques.

Usage

```
qpIPF(vv, clqlst, tol = 0.001, verbose = FALSE, R.code.only = FALSE)
```

Arguments

VV	input matrix, in the context of this package, the sample covariance matrix.		
clqlst	list of maximal cliques obtained from an undirected graph by using the function qpGetCliques.		
tol	tolerance under which the iterative algorithm stops.		
verbose	show progress on calculations.		
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.		

Details

The Iterative proportional fitting algorithm (see, Whittaker, 1990, pp. 182-185) adjusts the input matrix to the independence constraints in the undirected graph from where the input list of cliques belongs to, by going through each of the cliques fitting the marginal distribution over the clique for the fixed conditional distribution of the clique. It stops when the adjusted matrix at the current iteration differs from the matrix at the previous iteration in less or equal than a given tolerance value.

Value

The input matrix adjusted to the constraints imposed by the list of cliques, i.e., a maximum likelihood estimate of the sample covariance matrix that includes the independence constraints encoded in the undirected graph formed by the given list of cliques.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Whittaker, J. Graphical models in applied multivariate statistics. Wiley, 1990.

See Also

qpGetCliques qpPAC

Examples

```
require(graph)
require(mvtnorm)
nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate
set.seed(123)
g <- randomEGraph(as.character(1:nVar), p=0.15)</pre>
Sigma <- qpG2Sigma(g, rho=0.5)</pre>
X <- rmvnorm(nObs, sigma=Sigma)</pre>
## MLE of the sample covariance matrix
S < - cov(X)
## more efficient MLE of the sample covariance matrix using IPF
clqs <- qpGetCliques(g, verbose=FALSE)</pre>
S_ipf <- qpIPF(S, clqs)</pre>
## get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1
## entries in S and S_ipf for present edges in g should coincide
```

qpImportNrr

```
max(abs(S_ipf[A==1] - S[A==1]))
## entries in the inverse of S_ipf for missing edges in g should be zero
max(solve(S_ipf)[A==0])
```

qpImportNrr Import non-rejection rates

Description

Imports non-rejection rates from an external flat file.

Usage

qpImportNrr(filename, nTests)

Arguments

filename	name of the flat file with the data on the non-rejection rates.
nTests	number of tests performed in the estimation of these non-rejection rates.

Details

This function expects a flat file with three tab-separated columns corresponding to, respectively, 0-based index of one of the variables, 0-based index of the other variable, number of non-rejected tests for the pair of variables of that row in the text file. An example of a few lines of that file would be:

6	3	95
6	4	98
6	5	23
7	0	94
7	1	94

After reading the file the function builds a matrix of non-rejection rates by dividing the number of non-rejected tests by nTests. Note that if the flat file to be imported would eventually have directly the rates instead of the number of tests, these can be also imported by setting nTests=1. This function is thought to be used to read files obtained from the standalone parallel version of qpNrr which can be downloaded from http://functionalgenomics.upf.edu/qp.

Value

A symmetric matrix of non-rejection rates with the diagonal set to the NA value.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr

qpK2ParCor Partial correlation coefficients

Description

Obtains partial correlation coefficients from a given concentration matrix.

Usage

qpK2ParCor(K)

Arguments

Κ

positive definite matrix, typically a concentration matrix.

Details

This function applies cov2cor to the given concentration matrix and then changes the sign of the off-diagonal entries in order to obtain a partial correlation matrix.

Value

A partial correlation matrix.

Author(s)

R. Castelo and A. Roverato

References

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

See Also

qpG2Sigma

Examples

```
require(graph)
```

```
n.var <- 5 # number of variables
set.seed(123)
g <- randomEGraph(as.character(1:n.var), p=0.15)
Sigma <- qpG2Sigma(g, rho=0.5)
K <- solve(Sigma)
round(qpK2ParCor(K), digits=2)
as(g, "matrix")
```

24

qpNrr

Description

Estimates non-rejection rates for every pair of variables.

Usage

Arguments

data	data set from where to estimate the non-rejection rates. It can be an Expression- Set object, a data frame or a matrix.		
q	partial-correlation order to be employed.		
nTests	number of tests to perform for each pair for variables.		
alpha	significance level of each test.		
pairup.i	subset of vertices to pair up with subset pairup.j		
pairup.j	subset of vertices to pair up with subset pairup.i		
long.dim.are.variables			
	logical; if TRUE it is assumed that when data are in a data frame or in a ma- trix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.		
verbose	show progress on the calculations.		
identicalQs	use identical conditioning subsets for every pair of vertices (default), otherwise sample a new collection of nTests subsets for each pair of vertices.		
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.		

Details

Note that the possible values of q should be in the range 1 to min (p, n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly with q and quadratically in p. When setting identicalQs to FALSE the computational cost may increase between 2 times and one order of magnitude (depending on p and q) while asymptotically the estimation of the non-rejection rate converges to the same value.

Value

A symmetric matrix of estimated non-rejection rates with the diagonal set to NA. When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get also a NA value.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require (mvtnorm)

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=Sigma)
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
## distribution of non-rejection rates for the present edges
summary(nrr.estimates[upper.tri(nrr.estimates) & A])
## distribution of non-rejection rates for the missing edges
summary(nrr.estimates[upper.tri(nrr.estimates) & !A])
```

qpPAC

Estimation of partial correlation coefficients

Description

Estimates partial correlation coefficients (PACs) for a Gaussian graphical model with undirected graph G and their corresponding P-values for the hypothesis of zero partial correlations.

qpPAC

Usage

Arguments

data	data set from where to estimate the partial correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.		
g	either a graphNEL object or an adjacency matrix of the given undirected graph.		
return.K	logical; if TRUE this function also returns the concentration matrix K; if FALSE it does not return it (default).		
long.dim.are.variables			
	logical; if TRUE it is assumed that when data are in a data frame or in a ma- trix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.		
verbose	show progress on the calculations.		
R.code.only	logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.		

Details

In the context of maximum likelihood estimation (MLE) of PACs it is a necessary condition for the existence of MLEs that the sample size n is larger than the clique number w (G) of the graph G.

The PAC estimation is done by first obtaining a MLE of the covariance matrix using the $\{link \{qpIPF\}\}$ function and the P-values are calculated based on the estimation of the standard errors (see Roverato and Whittaker, 1996).

Value

A list with two matrices, one with the estimates of the PACs and the other with their P-values.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comp. Biol.*, 16(2):213-227, 2009.

Roverato, A. and Whittaker, J. Standard errors for the parameters of graphical Gaussian models. *Stat. Comput.*, 6:297-302, 1996.

See Also

qpGraph qpCliqueNumber qpClique qpGetCliques qpIPF

Examples

```
require (mvtnorm)
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable</pre>
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)</pre>
Sigma <- qpG2Sigma(A, rho=0.5)</pre>
X <- rmvnorm(nObs, sigma=Sigma)</pre>
nrr.estimates <- qpNrr(X, verbose=FALSE)</pre>
g <- qpGraph(nrr.estimates, 0.5)</pre>
pac.estimates <- qpPAC(X, g=g, verbose=FALSE)</pre>
## distribution absolute values of the estimated
## partial correlation coefficients of the present edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & A]))
## distribution absolute values of the estimated
## partial correlation coefficients of the missing edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & !A]))
```

qpPCC

Estimation of Pearson correlation coefficients

Description

Estimates Pearson correlation coefficients (PCCs) and their corresponding P-values between all pairs of variables from an input data set.

Usage

```
## S4 method for signature 'ExpressionSet':
qpPCC(data)
## S4 method for signature 'data.frame':
qpPCC(data, long.dim.are.variables=TRUE)
## S4 method for signature 'matrix':
qpPCC(data, long.dim.are.variables=TRUE)
```

qpPCC

Arguments

data	data set from where to estimate the Pearson correlation coefficients. It can be an
	ExpressionSet object, a data frame or a matrix.
long.dim.are.variables	
	logical; if TRUE it is assumed that when data are in a data frame or in a ma-
	trix, the longer dimension is the one defining the random variables (default);
	if FALSE, then random variables are assumed to be at the columns of the data
	frame or matrix.

Details

The calculations made by this function are the same as the ones made for a single pair of variables by the function cor.test but for all the pairs of variables in the data set.

Value

A list with two matrices, one with the estimates of the PCCs and the other with their P-values.

Author(s)

R. Castelo and A. Roverato

See Also

qpPAC

Examples

```
require(graph)
require(mvtnorm)
nVar <- 50 ## number of variables
nObs <- 10 ## number of observations to simulate
set.seed(123)
g <- randomEGraph(as.character(1:nVar), p=0.15)
Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=Sigma)
pcc.estimates <- qpPCC(X)
## get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1
## Pearson correlation coefficients of the present edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & A]))
## Pearson correlation coefficients of the missing edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & [A]))</pre>
```

qpPRscoreThreshold Calculation of scores thresholds attaining nominal precision or recall levels

Description

Calculates the score threshold at a given precision or recall level from a given precision-recall curve.

Usage

```
qpPRscoreThreshold(preRecFun, level, recall.level=TRUE, max.score=9999999)
```

Arguments

preRecFun	precision-recall function (output from qpPrecisionRecall).		
level	recall or precision level.		
recall.level	logical; if TRUE then it is assumed that the value given in the level parameter corresponds to a desired level of recall; if FALSE then it is assumed a desired level of precision.		
max.score	maximum score given by the method that produced the precision-recall function to an association.		

Value

The score threshold at which a given level of precision or recall is attained by the given precisionrecall function. For levels that do not form part of the given function their score is calculated by linear interpolation and for this reason is important to carefully specify a proper value for the max.score parameter.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.

See Also

qpPrecisionRecall qpGraph

Examples

```
require(mvtnorm)
```

nVar <- 50 ## number of variables maxCon <- 5 ## maximum connectivity per variable nObs <- 30 ## number of observations to simulate set.seed(123) A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)</pre>

qpPrecisionRecall

qpPrecisionRecall Calculation of precision-recall curves

Description

Calculates the precision-recall curve (see Fawcett, 2006) for a given measure of association between all pairs of variables in a matrix.

Usage

Arguments

measurementsMatrix

	matrix containing the measure of association between all pairs of variables.
refA	adjacency matrix of reference from which to calculate the precision-recall curve.
decreasing	logical; if TRUE then the measurements are ordered in decreasing order; if FALSE then in increasing order.
pairup.i	subset of vertices to pair up with subset pairup.j.
pairup.j	subset of vertices to pair up with subset pairup.i.
recallSteps	steps of the recall on which to calculate precision.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will not be taken into account. That is an alternative way to restricting the variable pairs with the parameters pairup.i and pairup.j.

Value

A matrix where rows correspond to recall steps and columns correspond, respetively, to the actual recall, the precision, the number of true positives at that recall rate and the threshold score that yields that recall rate.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.

See Also

qpPRscoreThreshold qpGraph qpAvgNrr qpPCC

Examples

```
require(mvtnorm)
```

```
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable</pre>
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)</pre>
Sigma <- qpG2Sigma(A, rho=0.5)</pre>
X <- rmvnorm(nObs, sigma=Sigma)</pre>
## estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)</pre>
## estimate Pearson correlation coefficients
pcc.estimates <- qpPCC(X)</pre>
## calculate area under the precision-recall curve
## for both sets of estimated values of association
nrr.prerec <- qpPrecisionRecall(nrr.estimates, refA=A, decreasing=FALSE,</pre>
                                  recallSteps=seq(0, 1, 0.1))
f <- approxfun(nrr.prerec[, c("Recall", "Precision")])</pre>
integrate(f, 0, 1)$value
pcc.prerec <- qpPrecisionRecall(abs(pcc.estimates$R), refA=A,</pre>
                                  recallSteps=seq(0, 1, 0.1))
f <- approxfun(pcc.prerec[, c("Recall", "Precision")])</pre>
integrate(f, 0, 1)$value
```

qpRndGraph	Random undirected	graphs with maximum	connectivity degree
-11		8	

Description

Builds a random undirected graph with a bounded maximum connectivity degree (boundary) on every vertex.

Usage

```
qpRndGraph(n.vtx, n.bd)
```

qpRndWishart

Arguments

n.vtx	number of vertices.
n.bd	maximum boundary for every vertex.

Details

This is a very simple function to generate random undirected graphs where we impose a maximum order of correlation between disconnected vertices when using it to sample multivariate normal data reflecting the conditional independencies encoded in this graph. Note that the maximum order of correlation between two disconnected vertices is bounded by the minimum degree of connectivity of the two vertices.

The algorithm employed is not designed to ensure a uniform probability distribution on the set of graphs with the given maximum boundary that may be sampled with positive probability.

Value

The adjacency matrix of the resulting graph.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, *J. Mach. Learn. Res.*, 7:2621-2650, 2006.

See Also

qpNrr

Examples

```
nVar <- 50 ## number of vertices
maxCon <- 5 ## maximum connectivity per vertex
A <- qpRndGraph(n.vtx=nVar, n.bd=maxCon)
summary(rowSums(A))
```

qpRndWishart Random Wishart distribution

Description

```
Random generation for the (n.var * n.var) Wishart distribution (see Press, 1972) with matrix parameter A=diag(delta) %*%P%*%diag(delta) and degrees of freedom df.
```

Usage

```
qpRndWishart(delta=1, P=0, df=NULL, n.var=NULL)
```

Arguments

delta	a numeric vector of n.var positive values. If a scalar is provided then this is extended to form a vector.
P	a (n.var $*$ n.var) positive definite matrix with unit diagonal. If a scalar is provided then this number is used as constant off-diagonal entry for P.
df	degrees of freedom.
n.var	dimension of the Wishart matrix. It is required only when both delata and P are scalar.

Details

The degrees of freedom are df > n.var-1 and the expected value of the distribution is equal to df * A. The random generator is based on the algorithm of Odell and Feiveson (1966).

Value

A list of two n.var * n.var matrices rW and meanW where rW is a random value from the Wishart and meanW is the expected value of the distribution.

Author(s)

A. Roverato

References

Odell, P.L. and Feiveson, A.G. A numerical procedure to generate a sample covariance matrix. J. Am. Statist. Assoc. 61, 199-203, 1966.

Press, S.J. Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. New York: Holt, Rinehalt and Winston, 1972.

See Also

qpG2Sigma

Examples

```
## Construct an adjacency matrix for a graph on 6 vertices
```

```
nVar <- 6
A <- matrix(0, nVar, nVar)
A[1,2] <- A[2,3] <- A[3,4] <- A[3,5] <- A[4,6] <- A[5,6] <- 1
A=A + t(A)
A
set.seed(123)
M <- qpRndWishart(delta=sqrt(1/nVar), P=0.5, n.var=nVar)
M
set.seed(123)
d=1:6
M <- qpRndWishart(delta=d, P=0.7, df=20)
M</pre>
```

qpgraph-package The q-order partial correlation graph learning software, qpgraph.

Description

q-order partial correlation graphs, or qp-graphs for short, are undirected Gaussian graphical Markov models built from q-order partial correlations. They are useful for learning undirected graphical Gaussian Markov models from data sets where the number of random variables p exceeds the available sample size n as, for instance, in the case of microarray data where they can be employed to reverse engineer a molecular regulatory network.

Details

Package:	qpgraph
Version:	1.4.1
Date:	23-04-2010
biocViews:	Microarray, GeneExpression, Transcription, Pathways, Bioinformatics, GraphsAndNetworks
Suggests:	mvtnorm, graph, Rgraphviz, annotate, genefilter, Category (>= 2.9.7), org.EcK12.eg.db (>= 2.2.6), GOstats
License:	GPL (>= 2)
URL:	http://functionalgenomics.upf.edu/qpgraph

Functions

- qpNrr estimates non-rejection rates for every pair of variables.
- qpAvgNrr estimates average non-rejection rates for every pair of variables.
- qpEdgeNrr estimate the non-rejection rate of one pair of variables.
- qpCItest performs a conditional independence test between two variables given a conditioning set.
- qpHist plots the distribution of non-rejection rates.
- qpGraph obtains a qp-graph from a matrix of non-rejection rates.
- qpAnyGraph obtains an undirected graph from a matrix of pairwise measurements.
- qpGraphDensity calculates and plots the graph density as function of the non-rejection rate.
- qpCliqueNumber calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph.
- qpClique calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate.
- qpGetCliques finds the set of (maximal) cliques of a given undirected graph.
- qpRndWishart random generation for the Wishart distribution.
- qpG2Sigma builds a random covariance matrix from an undrected graph. The inverse of the resulting matrix contains zeroes at the missing edges of the given undirected graph.
- qpK2ParCor obtains the partial correlation coefficients from a given concentration matrix.

- qpIPF performs maximum likelihood estimation of a sample covariance matrix given the independence constraints from an input list of (maximal) cliques.
- qpPAC estimates partial correlation coefficients and corresponding P-values for each edge in a given undirected graph, from an input data set.
- qpPCC estimates pairwise Pearson correlation coefficients and their corresponding P-values between all pairs of variables from an input data set.
- qpRndGraph builds a random undirected graph with a bounded maximum connectivity degree on every vertex.
- qpPrecisionRecall calculates the precision-recall curve for a given measure of association between all pairs of variables in a matrix.
- qpPRscoreThreshold calculates the score threshold at a given precision or recall level from a given precision-recall curve.
- qpImportNrr imports non-rejection rates.
- qpFunctionalCoherence estimates functional coherence of a given transcriptional regulatory network using Gene Ontology annotations.

This package provides an implementation of the procedures described in (Castelo and Roverato, 2006, 2009). An example of its use for reverse-engineering of transcriptional regulatory networks from microarray data is available in the vignette qpTxRegNet. This package is a contribution to the Bioconductor (Gentleman et al., 2004) and gR (Lauritzen, 2002) projects.

Author(s)

R. Castelo and A. Roverato

Maintainer: R. Castelo <robert.castelo@upf.edu>

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. *J. Comput. Biol.*, 16(2):213-227, 2009.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K. Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M. Rosinni, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, T.Y.H. and Zhang, J. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol.*, 5:R80, 2004.

Lauritzen, S.L. (2002). gRaphical Models in R. R News, 3(2)39.

Index

*Topic **datasets** EcoliOxygen, 1 *Topic graphs qpqraph-package, 35 *Topic **models** qpAnyGraph, 2 qpAvqNrr, 3 qpCItest, 5 qpClique,7 qpCliqueNumber,9 qpEdgeNrr, 11 qpFunctionalCoherence, 12 qpG2Sigma, 14 qpGetCliques, 16 qpGraph, 17 qpgraph-package, 35 qpGraphDensity, 19 qpHist, 20 qpImportNrr, 23 qpIPF, 21 qpK2ParCor, 24 qpNrr, 25 qpPAC, 26 qpPCC, 28 qpPrecisionRecall, 31 qpPRscoreThreshold, 30 qpRndGraph, 32 qpRndWishart, 33 *Topic **multivariate** qpAnyGraph, 2 qpAvgNrr, 3 qpCItest, 5 qpClique,7 qpCliqueNumber,9 qpEdgeNrr, 11 qpFunctionalCoherence, 12 qpG2Siqma, 14 qpGetCliques, 16 qpGraph, 17 qpgraph-package, 35 qpGraphDensity, 19 qpHist, 20 qpImportNrr, 23

qpIPF, 21 qpK2ParCor, 24 qpNrr, 25 qpPAC, 26 qpPCC, 28 qpPrecisionRecall, 31 qpPRscoreThreshold, 30 qpRndGraph, 32 qpRndWishart, 33 *Topic package qpgraph-package, 35 cor.test.29 cov2cor,24 EcoliOxygen, 1 filtered.regulon6.1 (EcoliOxygen), 1 gds680.eset (EcoliOxygen), 1 hist,20 qpAnyGraph, 2, 18, 35 qpAvqNrr, 3, 3, 12, 13, 18, 20, 21, 26, 32, 35 qpAvqNrr, data.frame-method (qpAvgNrr), 3 qpAvgNrr, ExpressionSet-method (qpAvqNrr), 3 qpAvgNrr, matrix-method (qpAvgNrr), 3 qpCItest, **5**, *35* qpCItest, data.frame-method (qpCItest), 5 qpCItest, ExpressionSet-method (qpCItest), 5 qpCItest, matrix-method (qpCItest), 5 qpClique, 3, 5, 7, 8, 10, 12, 18, 20, 21, 26, 28,35 gpCliqueNumber, 8, 9, 16, 28, 35 qpEdgeNrr, 3, 5, 6, 11, 18, 20, 21, 26, 35 qpEdgeNrr, data.frame-method (qpEdgeNrr), 11

38

qpEdgeNrr, ExpressionSet-method (qpEdgeNrr), 11 qpEdgeNrr, matrix-method (qpEdgeNrr), 11 qpFunctionalCoherence, 12, 36 qpG2Sigma, 14, 24, 34, 35 qpGetCliques, 15, 16, 21, 22, 28, 35 qpGraph, 3, 13, 17, 28, 30, 32, 35 qpgraph (qpgraph-package), 35 qpgraph-package, 35 qpGraphDensity, 3, 5, 8, 12, 18, 19, 19, 21, 26, 35 qpHist, 5, 12, 20, 26, 35 qpImportNrr, 23, 36 qpIPF, 15, 16, 21, 28, 36 qpK2ParCor, 24, 35 qpNrr, 3, 5, 6, 12, 18, 20, 21, 23, 24, 25, 33, 35 qpNrr, data.frame-method (qpNrr), 25 qpNrr,ExpressionSet-method (qpNrr), 25 qpNrr, matrix-method (qpNrr), 25 qpPAC, 22, 26, 29, 36 qpPAC, data.frame-method (qpPAC), 26 qpPAC, ExpressionSet-method (*qpPAC*), 26 qpPAC, matrix-method (qpPAC), 26 qpPCC, 28, 32, 36 qpPCC, data.frame-method (qpPCC), 28 qpPCC, ExpressionSet-method (*qpPCC*), 28 qpPCC, matrix-method (qpPCC), 28 qpPrecisionRecall, 3, 18, 30, 31, 36 qpPRscoreThreshold, 3, 18, 30, 32, 36 qpRndGraph, 32, 36 qpRndWishart, 15, 33, 35

rmvnorm, 15