
beadarray
October 5, 2010

BASH BASH - BeadArray Subversion of Harshlight

Description

BASH is an automatic detector of physical defects on an array. It is designed to detect three types
of defect - COMPACT, DIFFUSE and EXTENDED.

Usage

BASH(BLData, array, compact = TRUE, diffuse = TRUE, extended = TRUE, log = TRUE, cinvasions = 10, dinvasions = 15, einvasions = 20, bgcorr = "median", maxiter = 10, compcutoff = 8, compdiscard = TRUE, diffcutoff = 10, diffsig = 0.0001, diffn = 3, difftwotail = FALSE)

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot. Alternatively you can supply a vec-
tor of strip/array IDs, and BASH will analyse each in turn.

compact Logical - Perform compact analysis?

diffuse Logical - Perform diffuse analysis?

extended Logical - Perform extended analysis?

log Logical - Perform analyses on the log scale? (recommended)

cinvasions Integer - number of invasions used whenever closing the image - see BASHCompact

dinvasions Integer - number of invasions used in diffuse analysis, to find the kernel - see
BASHDiffuse

einvasions Integer - number of invasions used when filtering the error image - see BGFilter.

bgcorr One of "none", "median", "medianMAD" - Used in diffuse analysis, this deter-
mines how we attempt to compensate for the background varying across an ar-
ray. For example, on a SAM array this should be left at "median", or maybe even
switched to "none", but if analysing a large beadchip then you might consider
setting this to "medianMAD". (this code is passed to the method argument of
BGFilter).

maxiter Integer - Used in compact analysis - the max number of iterations allowed. (Ex-
ceeding this results in a warning.)

compcutoff Integer - the threshold used to determine whether a group of outliers is in a com-
pact defect. In other words, if a group of at least this many connected outliers is
found, then it is labelled as a compact defect.

1

2 BASH

compdiscard Logical - should we discard compact defect beads before doing the diffuse ana-
lyis?

diffcutoff Integer - this is the threshold used to determine the minimum size that clusters
of diffuse defects must be.

diffsig Probability - The significance level of the binomial test performed in the diffuse
analysis.

diffn Numerical - when finding outliers on the diffuse error image, how many MADs
away from the median an intensity must be for it to be labelled an outlier.

difftwotail Logical - If TRUE, then in the diffuse analysis, we consider the high outlier and
low outlier images seperately.

Details

The BASH pipeline function performs three types of defect analysis on an image.

The first, COMPACT DEFECTS, finds large clusters of outliers, as per BASHCompact. The out-
liers are found using findAllOutliers(). We then find which outliers are clustered together.
This process is iterative - having found a compact defect, we remove it, and then see if any more
defects are found.

The second, DIFFUSE DEFECTS, finds areas which are densely populated with outliers (which
are not necessarily connected), as per BASHDiffuse. To make this type of defect more obvi-
ous, we first generate an ERROR IMAGE, and then find outliers based on this image. (The er-
ror image is calculated by using method = "median" and bgfilter = "medianMAD" in
generateE, unless ebgcorr = FALSE in which case we use bgfilter = "median".)
Now we consider a neighbourhood around each bead and count the number of outlier beads in this
region. Using a binomial test we determine whether this is more that we would expect if the out-
liers were evenly spread over the entire array. If so, we mark it as a diffuse defect. (A clustering
algorithm similar to the compact defect analysis is run to reduce false positives.)

After each of these two analyses, we "close" the image, filling in gaps.

The third, EXTENDED DEFECTS, returns a score estimating how much the background is chang-
ing across an array, as per BASHExtended. To estimate the background intensity, we gener-
ate an error image using the median filter (i.e. generateE with method = "median" and
bgfilter = "median"). We divide the variance of this by the variance of an error image
without using the median filter, to obtain our extended score.

It should be noted that to avoid repeated computation of distance, a "neighbours" matrix is used in
the analysis. This matrix describes which beads are close to other beads. If a large number of beads
are missing (for example, if beads with ProbeID = 0 were discarded) then this algorithm may be
affected.

For more detailed descriptions of the algorithms, read the help files of the respective functions listed
in "see also".

Value

The output is a list with three attributes:

wts: A list, where the ith object in the list corresponds to the weights for array i.

ext: A vector of extended scores (null if the extended analysis was disabled)

call: The function you used to call BASH.

Author(s)

Jonathan Cairns

BASHCompact 3

References

J. M. Cairns, M. J. Dunning, M. E. Ritchie, R. Russell, and A. G. Lynch (2008). BASH: a tool for
managing BeadArray spatial artefacts. Bioinformatics 15; 24(24)

See Also

BASHCompact, BASHDiffuse, BASHExtended, generateE, generateNeighbours,

Examples

data(BLData)
output <- BASH(BLData,array=1:4)
boxplot(output$ext) #view spread of extended scores
for(i in 1:4)
{
BLData <- setWeights(BLData, output$wts[[i]], i) #apply BASH weights to BLData
}

#diffuse test is stricter
output <- BASH(BLData, diffsig = 0.00001,array=1)

#more outliers on the error image are used in the diffuse analysis
output <- BASH(BLData, diffn = 2,array=1)

#only perform compact & diffuse analyses (we will only get weights)
output <- BASH(BLData, extended = FALSE,array=1)

#attempt to correct for background.
output <- BASH(BLData, bgcorr = "median",array=1)

BASHCompact BASH - Compact Defect Analysis

Description

Creates a list of probes marked as being in compact defects.

Usage

BASHCompact(BLData, array, neighbours = NULL, log = TRUE, maxiter = 10, cutoff = 8, cinvasions = 10, ...)

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot
neighbours A Neighbours matrix. Optional - if left NULL, it will be computed.
log Logical - If TRUE, find outliers on the log scale.
maxiter Integer - Maximum number of iterations.
cutoff Integer - Size a cluster must be to be labelled a compact defect.
cinvasions Integer - Number of invasions used when closing the image.
... Additional arguments to be passed to findAllOutliers (e.g. what =

"R")

4 BASHDiffuse

Details

BASHCompact finds "compact defects" on an array. A compact defect is defined as a large con-
nected cluster of outliers.

This function first finds the outliers on an array. This is done via the function findAllOutliers.

Next, using the Neighbours matrix and a Flood Fill algorithm, it determines which beads are in
large connected clusters of outliers (of size larger than cutoff). These beads are then temporarily
removed and the process repeated with the remaining beads. The repetition continues until either
no large clusters of outliers remain, or until we have repeated the process maxiter times (and in
this case, a warning will be given). In this way, we obtain a list of defective probes.

Finally, we "close" the image, to fill in small gaps in the defect image. This consists of a "dilation"
and an "erosion". In the dilation, we expand the defect image, by adding beads adjacent to defective
beads into the defect image. This is repeated cinvasions times. In the erosion, we contract the
defect image, by removing beads adjacent to non-defective beads from the defect image. (Erosion
of the defect image is equivalent to a dilation of the non-defective image.)

Value

A vector consisting of the BeadIDs of beads labelled as compact defects.

Author(s)

Jonathan Cairns

References

Mayte Suarez-Farinas, Maurizio Pellegrino, Knut M. Wittkwosky and Marcelo O. Magnasco (2007).
Harshlight: A "corrective make-up" program for microarray chips. R package version 1.8.0. http://asterion.rockefeller.edu/Harshlight/

See Also

BASHDiffuse, generateE, generateNeighbours,

Examples

data(BLData)
o <- BASHCompact(BLData, 1)
o <- BASHCompact(BLData, 1, cinvasions = 10) ##increased no of closure invasions
o <- BASHCompact(BLData, 1, cutoff = 12) ##only larger defects will be found with this setting

BASHDiffuse BASH - Diffuse Defect Analysis

Description

Creates a list of probes marked as being in diffuse defects.

Usage

BASHDiffuse(BLData, array, neighbours = NULL, E = NULL, n = 3, compact = NULL, sig = 0.0001, invasions = 10, cutoff = 8, cinvasions = 10, twotail = FALSE)

BASHDiffuse 5

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

neighbours A Neighbours matrix. Optional - if left NULL, it will be computed, using default
generateNeighbours settings.

E Numerical vector - The error image to use. Optional - if left blank, it will be
computed, using generateE using bgfilter = "median".

n Specify a cut-off for outliers as n median absolute deviations (MADs) from the
median. The default value is 3

compact Vector - Optional. BeadIDs of beads in compact defects to remove from the
analysis.

sig Numerical - Significance level of binomial test.

invasions Integer - Number of invasions to use to find the kernel (see below).

cutoff Integer - Size a cluster must be to be labelled a diffuse defect.

cinvasions Integer - Number of invasions used when closing the image.

twotail Logical - If TRUE, then we analyse positive and negative outliers separately,
and then combine the diffuse defect images at the end.

Details

BASHDiffuse finds "diffuse defects" on an array. A diffuse defect is defined as a region contain-
ing an unusually large number of (not necessarily connected) outliers.

Firstly, we consider the error image E, and find outlier beads on this image. Outliers for a particular
bead type are determined using a 3 MAD cut-off from the median.

We now consider an area around each bead (known as the "kernel"). The kernel is found by an
invasion process using the neighbours matrix - we choose the beads which can be reached from the
central bead in cinvasions steps.

We count how many beads are in the kernel, and how many of these are marked as outliers. Using
a binomial test, we work out if there are significantly more outliers in the kernel than would be
expected if the outliers were equally distributed over the entire array. If so, then the central bead is
marked as a diffuse defect.

Lastly, we run a clustering algorithm and a closing algorithm similar to those in BASHCompact.

Value

A vector consisting of the BeadIDs of beads considered diffuse defects.

Author(s)

Jonathan Cairns

References

Mayte Suarez-Farinas, Maurizio Pellegrino, Knut M. Wittkwosky and Marcelo O. Magnasco (2007).
Harshlight: A "corrective make-up" program for microarray chips. R package version 1.8.0. http://asterion.rockefeller.edu/Harshlight/

See Also

BASHCompact, generateE, generateNeighbours,

6 BASHExtended

Examples

data(BLData)
o <- BASHDiffuse(BLData, 1)
o <- BASHDiffuse(BLData, 1, sig = 0.00001) ##stricter significance value, perhaps more useful on a BeadChip.
o <- BASHDiffuse(BLData, 1, cutoff = 12) ##only larger defects will be found with this setting

BASHExtended BASH - Extended Defect Analysis

Description

Returns a score, which assesses the extent to which the background is changing across the ar-
ray/strip.

Usage

BASHExtended(BLData, array, neighbours = NULL, E = NULL, E.BG = NULL)

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

neighbours A Neighbours matrix. Optional - if left NULL, it will be computed, using default
generateNeighbours settings.

E Numerical vector - The error image to use. Optional - if left blank, it will be
computed, using generateE (with bgfilter = "none", i.e. no back-
ground filter applied).

E.BG Numerical vector - The background error image to use. Optional - if left blank,
it will be computed from E, using default BGFilter settings (i.e. method =
"median").

Details

BASHExtended assesses the change of background across an array.

The error image used should not be background filtered (as opposed to the error image used in
BASHDiffuse). Here, E is the error image

Value

Scalar (Extended defect score)

Author(s)

Jonathan Cairns

References

Mayte Suarez-Farinas, Maurizio Pellegrino, Knut M. Wittkwosky and Marcelo O. Magnasco (2007).
Harshlight: A "corrective make-up" program for microarray chips. R package version 1.8.0. http://asterion.rockefeller.edu/Harshlight/

BGFilter 7

See Also

BASH, generateE, BGFilter, generateNeighbours,

Examples

data(BLData)
an <- arrayNames(BLData)
extended <- NULL

for(i in 1:length(an))
{
extended[i] <- BASHExtended(BLData, i)
}

BGFilter Background Filter

Description

Performs various image transforms, based on statistics from local beads.

Usage

BGFilter(E = NULL, neighbours, invasions = 20, method = "median")

Arguments

E Error Image

neighbours A Neighbours matrix. Required.

invasions Integer - Number of invasions. This argument is passed to the function BGfilter.

method Method for computing local statistics. Options are "median", "mean", "MAD",
"medianMAD"

Details

This function transforms an error image based on a local statistic.

To obtain our statistic, we use an invasion process. Links between beads are defined in the neigh-
bours matrix. We define the local beads as those which can be reached in invasions steps from
the first bead, and then collect their values.

method = "median" subtracts the local median from each error intensity.

method = "mean" subtracts the local mean from each error intensity.

method = "MAD" divides each bead’s intensity by the MAD (median absolute devation from the
median) of local beads.

method = "medianMAD" subtracts the local median from each error intensity, and then divides
each intensity by the local MAD.

Value

A vector - the updated error image.

8 BGFilterWeighted

Author(s)

Jonathan Cairns

See Also

BGFilter

Examples

data(BLData)
E <- generateE(BLData,1,bgfilter = "none")
neighbours <- generateNeighbours(BLData,1)
E.MAD <- BGFilter(E, neighbours, method = "MAD")
E.median <- BGFilter(E, neighbours, method = "median")

BGFilterWeighted Weighted Background Filter

Description

Finds local weighted means at each bead.

Usage

BGFilterWeighted(E = NULL, neighbours, invasions = 20, weights = NULL)

Arguments

E Error Image

neighbours A Neighbours matrix. Required.

invasions Integer - Number of invasions. This argument is passed to the function BGfilter.

weights Numerical vector - A vector of weights, from 0 to 1, to consider in the analysis.
(see below.)

Details

This function finds the weighted mean of local bead intensities, using intensities from the given
error image.

To obtain our weighted mean for each bead, we use an invasion process. Links between beads
are defined in the neighbours matrix. We define the local beads as those which can be reached in
invasions steps from the first bead, and then collect their error values.

We take a weighted mean of these error values, where the weights are calculated by taking the
product of: a) 1/(the number of steps required to get to the bead from the central bead) b) (if
supplied) the weights defined through the weights parameter.

This weighted mean is then assigned to the central bead.

Value

A vector - the weighted means. (NB: Whilst BGFilter manipulates the error image and returns
an updated error image, e.g. subtracting the local median, this function does not - it merely returns
the local weighted means.)

BLData 9

Author(s)

Jonathan Cairns

See Also

BGFilter

Examples

data(BLData)
E <- generateE(BLData,1,method = "mean")
neighbours <- generateNeighbours(BLData,1)
##bgf <- BGFilterWeighted(E, neighbours)

BLData BeadLevelList objec from an example experiment

Description

BLData is an object of class BeadLevelList which contains data from an experiment with 4
arrays.

Usage

data(BLData)

See Also

BeadLevelList

BSData ExpressionSetIllumina object for the example experiment

Description

BSData is an object of class ExpressionSetIllumina which contains the data from the
example Human6 version 1 BeadChips analysed in the bead-summary user guide.

Usage

data(BSData)

See Also

class.ExpressionSetIllumina

10 HULK

ExpressionControlData
Control annotation for Illumina expression chips

Description

Data frames derived from the bgx files from Illumina that give details of the control probes used on
Illumina expression arrays. A list structure is used with the control probes for a particular platform
accessed by name. Note that the HumanHT12 arrays use the same probes and the Humanv3 and
therefore the same annotation can be used.

Usage

data(ExpressionControlData)

Examples

library(beadarray)
data(ExpressionControlData)
names(ExpressionControlData)
ExpressionControlData[["Humanv3"]][1:10,]

HULK HULK - Bead Array Normalization by NEighbourhood Residuals

Description

Normalizes an probe intensities by calculating a weighted average residual based on the residuals
of the surrounding probes.

Usage

HULK(BLData, array, neighbours = NULL, invasions = 20)

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

neighbours A Neighbours matrix. Optional - if left NULL, it will be computed.

invasions Integer - Number of invasions used when identifying neighbouring beads.

HULKResids 11

Details

HULK is a method of intensity normalization based upon the BASH framework. Firstly For each
bead a local neighbourhood of beads is determined, using the same process as the other BASH
functions.

For each bead a weighted average residual is calculated. The average residual is calculated as the
sum of the residuals for each bead in the neighbourhood, divided by 1 plus the number of invasions
it took to reach that bead. This calculation is made by a call to HULKResids.

The average residuals are then subtracted from each bead and the resulting BeadLevelList
object is returned. If single channel data is used then the green channel is normalized, if it is two
channel data then both channels are normalized.

Value

An object of class BeadLevelList

Author(s)

Mike Smith

References

Cairns JM, Dunning MJ, Ritchie ME, Russell R, Lynch AG. (2008). BASH: a tool for managing
BeadArray spatial artefacts. Bioinformatics, 24(24):2921-2.

See Also

HULKResids, BASH

Examples

data(BLData)
o <- HULK(BLData, 1)

HULKResids HULK - Residuals

Description

Calculates an set of weighted average residuals, one for each probe, based on the residuals of the
surrounding probes.

Usage

HULKResids(BLData, array, neighbours = NULL, invasions = 20, what = "G")

12 ArrayMask

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

neighbours A Neighbours matrix. Optional - if left NULL, it will be computed.

invasions Integer - Number of invasions used when identifying neighbouring beads.

what Specify the data in the BLData to create the residuals from. Defaults to the
foreground intensities of the green channel.

Details

HULKResids calculates a weighted average residual for each probe on the specified array of BL-
Data. It makes use of the same neighbourhood calculations as other BASH functions. The average
residuals are calculated as the sum of the residuals for each bead in the neighbourhood, divided by
1 plus the number of invasions it took to reach that bead. It is intended that HULKResids be called
through HULK, but it is quite possible to call it as a stand alone function.

Value

A vector containing an average residual for each bead on the specified array of BLData.

Author(s)

Mike Smith

References

Cairns JM, Dunning MJ, Ritchie ME, Russell R, Lynch AG. (2008). BASH: a tool for managing
BeadArray spatial artefacts. Bioinformatics, 24(24):2921-2.

See Also

HULK, BASH

Examples

data(BLData)
o <- HULKResids(BLData, 1)

ArrayMask Array Mask

Description

Functions to edit or display array masks.

ArrayMask 13

Usage

addArrayMask(BLData, array, SAM = FALSE, nrow = 50, ncol = 50, high = "red",
low = "yellow", zlim = c(7,15), override = FALSE)

removeArrayMask(BLData, array, SAM = FALSE, nrow = 50, ncol = 50,
high = "red", low = "yellow",
zlim = c(7,15), override = FALSE)

showArrayMask(BLData,array, SAM = FALSE, elim = TRUE, override = FALSE)
clearArrayMask(BLData,array)

Arguments

BLData A BeadLevelList object.

array The number of an array in the BeadLevelList object.

SAM Logical. If TRUE, display a hexagonal overlay where appropriate.

elim Logical. If TRUE, plot eliminated beads (with blue crosses).
nrow, ncol, high, low, zlim

Arguments passed to imageplot - see the help for imageplot for details.

override Logical. Plotting a large mask can cause slowdown problems. By default, if
more than 200 000 beads are masked, the current mask will not be plotted. You
can force the mask to be plotted by setting this argument to TRUE, however
beware as this may cause slower systems to freeze.

Details

These functions are used to manipulate the mask on a single array.

addArrayMask adds beads in a specified region to the mask (i.e. sets their weights to 0).

removeArrayMask removes beads in a specified region from the mask (i.e. sets their weights to
0)

On calling either of these functions, an imageplot is displayed. Click on the plot to define vertices
of a polygon, in order. Having specified the last vertex, right-click to close the polygon. A plot is
then produced of the beads currently masked on the array (in grey) and the polygon just defined (in
red), with a menu prompting you to accept the displayed region - if you do so, then all beads in
the polygon then be masked or unmasked as appropriate. Alternatively, you can right-click on the
image without defining any vertices, thus leaving the mask unchanged.

If making the change would result in all beads of a certain probe ID being completely covered by
the mask, then the functions return a warning message, and the beads eliminated in this way are
highlighted with blue crosses on the plot.

showArrayMask plots the beads on an array which have been masked, over a plot of outliers.

clearArrayMask clears the mask on an array, removing all weights associated with it.

Value

None returned

Author(s)

Jonathan Cairns

14 arrayNames

Examples

##data(BLData)
##addArrayMask(BLData,1)
##showArrayMask(BLData,1)

arrayNames Gets the strip/array names from a BeadLevelList Object

Description

Retrieves the strip/array names from a BeadLevelList object.

Usage

arrayNames(object, arrays=NULL)

Arguments

object BeadLevelList

arrays integer (scalar or vector) specifying the strips/arrays to retrieve the names of.
When NULL the names of all strips/arrays are returned.

Details

arrayNames retrieves the name of the strip(s)/array(s) from the arrayInfo slot.

Value

A character vector containing the names of the individual strips(s)/array(s).

Author(s)

Matt Ritchie

Examples

data(BLData)
arrayNames(BLData)

backgroundControlPlot 15

backgroundControlPlot
QA measures based on bead-level negative controls

Description

Function for plotting the bead-level intensities for all the negative controls that are placed on an
array. Typically there are around a thousand of these controls, each replicated 30 times. The se-
quences used for these controls should not target any part of the genome and therefore we should
not observe any signal.

Usage

backgroundControlPlot(BLData, array = 1, plot = FALSE, t1,t2)

Arguments

BLData A BeadLevelList for an Illumina expression chip

array The number of the array in BLData that we want QA of.

plot if TRUE a diagnostic plot will be produced

t1 Pre-computed list of array intensities

t2 List of ProbeIDs for all beads on the array

Details

For QA, we report the mean and variance of all negative controls (of all bead-types) after first
removing outiers using a 3 MAD cut-off. To retrieve the IDs of the negative controls, we make
use of the annotation slot stored with the BeadLevelList object. It is therefore important that this
information is accurate. A plot of all negative control bead-types can also be produced, where each
bead-type is represented by a vertical line covering the inter-quartile range and ordered according
to mean intensity. Too many high intensity values for the negatives could indicate a poor quality
array.

Value

The function returns the mean (AveNeg) and variance (VarNeg) of all negative control beads and a
diagnositc plot if requested.

Author(s)

Mark Dunning and Andy Lynch

See Also

calculateBeadLevelScores

16 backgroundCorrect

backgroundCorrect Background correct a BeadLevelList object

Description

Adapted from the ’limma’ backgroundCorrect function to correct the foreground intensities of a
BeadLevelList object using the background values.

Usage

backgroundCorrect(object, method = "subtract", offset = 0, verbose = FALSE)

Arguments

object a BeadLevelList object
method character string specifying correction method. Possible values are ’"none"’,

’"subtract"’, ’"half"’, ’"minimum"’, ’"edwards"’, ’"normexp"’, ’"rma"’)
offset numeric value to add to the intensities
verbose logical. Used when method = ’"normexp"’. If TRUE, the parameters estimated

by the model are output.

Details

Below is an excerpt from the ’limma’ backgroundCorrect man page:

If ’method="none"’ then the corrected intensities are equal to the foreground intensities, i.e., the
background intensities are treated as zero. If ’method="subtract"’ then this function simply sub-
tracts the background intensities from the foreground intensities which is the usual background
correction method.

The remaining methods are all designed to produce positive corrected intensities. If ’method="half"’
then any intensity which is less than 0.5 after background subtraction is reset to be equal to 0.5. If
’method="minimum"’ then any intensity which is zero or negative after background subtraction is
set equal to half the minimum of the positive corrected intensities for that array. If ’method="edwards"’
the method of Edwards (2003) is used. If ’method="normexp"’ or ’"rma"’, a normal-exponential
convolution model is fitted to the intensities, using different estimation procedures. See Smyth
(2005) for further details on normexp.

The ’offset’ can be used to add a constant to the intensities before log-transforming, so that the
log-ratios are shrunk towards zero at the lower intensities. This may eliminate or reverse the usual
’fanning’ of log-ratios at low intensities associated with local background subtraction.

End of excerpt.

As a result of both having identical function names this function can conflict with the backgroundCorrect
method in ’limma’. If both packages are loaded, the function from whichever package was loaded
last takes precedence. If the ’beadarray’ backgroundCorrect() function is masking that from ’limma’,
one can directly call the ’limma’ method using the command "limma::backgroundCorrect()". Al-
ternatively, one can detach the ’beadarray’ package using "detach(package:beadarray)". Similar
techniques can be used if ’limma’ is masking the ’beadarray’ method.

Value

A BeadLevelList object in which the ’G’ (and ’R’, if present) intensities for each array are
background corrected. Note that the ’Gb’ (and ’Rb’ intensities) are not removed.

beadResids 17

Author(s)

Mark Dunning and Mike Smith based on the limma function

References

Edwards, D. E. (2003). Non-linear normalization and background correction in one-channel cDNA
microarray studies, Bioinformatics, 19, 825-833.

Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry,
W. Huber (eds.), Springer, New York, pages 397-420.

Examples

data(BLData)

#default is to simply subtract Rb from R
BLData.bc = backgroundCorrect(BLData)

#Use 'minimum' method to stop negative values appearing
BLData.min = backgroundCorrect(BLData, method="minimum")

beadResids Calculates per strip/array bead-level residuals

Description

Calculates the per bead residuals for a given strip/array using data from a BeadLevelList.

Usage

beadResids(BLData, what="G", array=1, log=TRUE,
method="illumina", n=3, trim=0.05)

Arguments

BLData BeadLevelList

what character string specifying which intensities to use in the calculation of residu-
als. See getArrayData for a list of possibilities

array integer specifying the strip/array to use

log if TRUE then use log2 intensities of each bead

method character string specifying the summarisation method (see help page for createBeadSummaryData
for further details).

n numeric value defining a cut-off for the number of median absolute deviations
(MADs) from the median to use for determining outliers. The default value is 3.
Only used when method="illumina" (see createBeadSummaryData
help page for further details).

trim fraction of intensities to remove from the bead summary calculations when
method="trim", or the fraction of intensities to set to the trim and 1-trim
percentile intensities when method="winsorize". Default value is 0.05.
Only used when what="residR", "residG" or "residM".

18 beadarrayUsersGuide

Details

Calculates the residuals, i.e. the differences between the summary values obtained from createBeadSummaryData
and the individual values for each bead.

Value

A vector containing the residual values.

Author(s)

Matt Ritchie

Examples

data(BLData)
summary(beadResids(BLData, log=TRUE))

beadarrayUsersGuide
View beadarray User’s Guide

Description

Finds the location of the beadarray User’s Guide and opens it.

Usage

beadarrayUsersGuide(view=TRUE, topic="beadlevel")

Arguments

view logical, should the document be opened using the default PDF document reader?
(default is TRUE)

topic character string specifying topic ("beadlevel", "beadsummary" or "BASH")

Details

The function vignette("beadarray") will find the short beadarray vignette which describes
how to obtain the more detailed user’s guide on the analysis of raw "beadlevel" data, "beadsummary"
data or how to use the "BASH" method for detecting spatial artefacts.

Value

Character string giving the file location.

Author(s)

Matt Ritchie

See Also

limmaUsersGuide

boxplotBeads 19

Examples

beadarrayUsersGuide(view=FALSE)
beadarrayUsersGuide(view=FALSE, topic="beadsummary")

boxplotBeads Box plot of bead intensities

Description

Function to produce box plots of the bead intensities from selected strips/arrays from a BeadLevelList
object.

Usage

boxplotBeads(BLData, whatToPlot = "G", arrays = NULL, log = TRUE,
varwidth = TRUE, method = "illumina", n = 3, trim = 0.05, ...)

Arguments

BLData BeadLevelList

whatToPlot character string specifying which intensities to plot. See getArrayData for
a list of the possibilities.

arrays integer (scalar or vector) specifying the strips/arrays to plot. If NULL, all the
strips/arrays are plotted.

log if TRUE log2 intensities are plotted

varwidth logical, indicating whether box widths should be proportional to the number of
values in each box plot

method character string specifying the summarisation method to use (only applicable
when whatToPlot="residG", "residR" or "residM"). Refer to help
createBeadSummaryData help page for further information.

n numeric value defining a cut-off for the number of median absolute deviations
(MADs) from the median to use for determining outliers. The default value is 3.
Only applicable when whatToPlot="residG", "residR" or "residM"
and method="illumina". Refer to help createBeadSummaryData
help page for further information.

trim fraction of intensities to remove from the bead summary calculations. Only ap-
plicable when whatToPlot="residG", "residR" or "residM". Refer
to createBeadSummaryData help page for further information.

... further graphical parameters to the boxplot function from the graphics pack-
age

Details

Produces box plots of the specified intensities for selected strips/arrays.

Value

A plot is produced on the current graphical device

20 calculateBeadLevelScores

Author(s)

Matt Ritchie

Examples

data(BLData)

boxplotBeads(BLData)

calculateBeadLevelScores
Quality assessment for expression chips

Description

A collection of functions for tabulating and plotting various quality control measurements derived
from the bead-level data for Illumina expression chips. Currently, Humanv1, Humanv2, Humanv3,
Mousev1, Mousev1p1, Mousev2 and Rat chips are supported.

Usage

calculateBeadLevelScores(BLData, path = "QC", log = TRUE, plot = FALSE,
replacePlots = TRUE, writeToFile = TRUE,
fileType = c(".jpeg", ".pdf"))

Arguments

BLData A BeadLeveList for an expression chip. The annotation slot of the object should
define the type of chip

path Specifies the directory where diagnostics plot are to be saved in

log (used for outlier calculations) if TRUE calculate outliers on the log2 scale. If
FALSE calculate outliers on the original scale

plot if TRUE then diagnostic plots will be generated

writeToFile Argument describing whether results of QA assessment should be output to
html, txt or not output at all

replacePlots if TRUE any plots that have already been created will be replaced

fileType File format for images to be written to. Currently either pdf or jpeg

Details

For these QA tools we make use of the controls probes that Illumina use on their expression
chips to detect the presence, or lack of, expression. See www.illumina.com/downloads/
GX_QualityControl_TechNote.pdf for an overview of these controls. Illumina provide a
means to visualize these controls, but the values reported are after outlier removal and there is no
way to infer how many outliers are removed. Therefore, one does not get a true impression of the
quality of an array. For instance, low intensity observations for positive controls may indicate a
spatial defect.

For our QA measurements we perform a detection score calculation the same as Illumina, except on
per-bead observations for each control type rather than the summarized values. Specifically, we test

www.illumina.com/downloads/GX_QualityControl_TechNote.pdf
www.illumina.com/downloads/GX_QualityControl_TechNote.pdf

calculateBeadLevelScores 21

each bead observation of a given control bead-type for detection by computing a p-value: 1−R/N ,
where R is the relative rank of the bead intensity when compared to the N negative controls. Thus,
if a particular bead has higher intensity than all the negative controls it will be assigned a value of 0.
After these p-values have been calculated for all replicates of the bead type we report the percent-
age of beads with p-values lower than a set threshold of 0.05 (currently in favour in the Illumina
literature). The percentage of beads that are detected at a set threshold is then reported. Another
adaptation is to change the bead-types used as a reference in the calculation rather than the negative
controls. For example, there are a series of sample-independent controls that have probe sequences
complementary to oligonucleotides spiked into the hybridization solution and hence should always
have detectable signal. For some of these bead types (six on the Human6 V3), the concentration
is either "medium", "low" or "high", with the intention that there should be a predictable gradient
between the controls. Thus, we test if the bead-types with a medium concentration are detected
compared to the low controls and similar for the medium and high controls.

The purpose of calculateBeadLevelScores is to calculate the following QA measures for all arrays
in the BeadLevelList objects and return them in the arrayInfo slot of the BeadLevelList object. We
also record the number of outliers found on the array.

If the plot argument to calculateBeadLevelScores is set to TRUE, then a number of diagnostic plots
will be produced for each and compiled into a HTML page for that array. The location of these
completed pages is specified by the path argument. Finally, if writeToFile is set to html, a html
page compiling all the QA measures for the chip will be created.

Value

A modified version of BeadLevelList is created with the QA measures stored in a qcScores slot.

HkpDet %age of housekeeping control beads that are detected compared to the negative
controls.

BioDet %age of biotin labelling control beads that are detected compared to the negative
controls.

LowDet %age of "low" control beads that are detected compared to the negative controls.

MedDet %age of "medium" control beads that are detected compared to the negative
controls.

HighDet %age of "high" control beads that are detected compared to the negative con-
trols.

MvsL %age of "medium" control beads that are detected compared to the "low" con-
trols.

HvsM %age of "high" control beads that are detected compared to the "medium" con-
trols.

Author(s)

Mark Dunning and Andy Lynch

See Also

outlierPlot, lmhPlot, poscontPlot, backgroundControlPlot

22 calculateDetection

calculateDetection Calculate detection scores

Description

Function to calculate detection scores for summarized data if they are not available.

Usage

calculateDetection(BSData)

Arguments

BSData An ExpressionSetIllumina object

Details

The function implements Illumina’s method for calculating the detection scores for all bead types
on a given array. Within an array, Illumina discard negative control bead-types whose summary
values are more than three MADs from the median for the negative controls. Illumina then rank
the summarized intensity for each other bead-type against the summarized values for the remaining
negative control bead-types and calculate a detection p-value 1-R/N, where R is the relative rank of
the bead intensity when compared to the N remaining negative controls. Thus, if a particular bead
has higher intensity than all the negative controls it will be assigned a value of 0. This calculation is
repeated for all arrays stored in the BSData object. The annotation slot of the BSData object needs
to be set correctly in order for the function to find the IDs of the negative control beads.

Value

Matrix of detection scores with the same dimensions as the exprs matrix of BSData. This matrix
can be stored in a BSData object using the Detection function

Author(s)

Mark Dunning and Andy Lynch

Examples

##BSData@annotation = "Humanv3"
##Detection(BSData) = calculateDetection(BSData)

chooseClusters 23

chooseClusters Choose Clusters

Description

Find large clusters of beads.

Usage

chooseClusters(IDs, neighbours, cutoff = 8)

Arguments

IDs IDs of beads to be clustered.

neighbours A Neighbours matrix - obtained from generateNeighbours.

cutoff Integer - threshold for the minimum size a cluster must be.

Details

This function will find which beads are in large clusters. Using a flood fill algorithm, it finds clusters
of beads, determines the size of each, and then returns only the beads in clusters of size greater than
cutoff. It is primarily used in BASHCompact and BASHDiffuse.

Value

Vector of bead IDs. (This will be a subset of the argument IDs)

Author(s)

Jonathan Cairns

See Also

BASHCompact, BASHDiffuse, closeImage

Examples

data(BLData)
neighbours <- generateNeighbours(BLData,1)
o <- findAllOutliers(BLData,1,log = TRUE)
##clusters8 <- chooseClusters(o, neighbours)
##clusters12 <- chooseClusters(o, neighbours, cutoff = 12) ## only ##larger clusters

##x11()
##plotBeadLocations(BLData,array=1,BeadIDs = clusters8, pch = ".")

24 BeadLevelList-class

BeadLevelList-class
Class "BeadLevelList"

Description

A class for storing red and green channel foreground and background intensities from an Illumina
experiment.

Objects from the Class

Objects can be created by calls of the form new("BeadLevelList"), but are usually created
by readIllumina.

Slots/List Components

Objects of this class contain the following slots

beadData: an environment for storing the raw bead-level data. Each row correspond to a bead and columns the data.
phenoData: an ’AnnotatedDataFrame’ containing experimental information.
arrayInfo: a list containing array information.
annotation: character storing annotation package information.

Methods

show(BeadLevelList) printing method for BeadLevelList

initialize signature(.Object = "BeadLevelList")

dim dim(object)The dimension of the BeadLevelList object

copyBeadLevelList(object) Creates a new copy of a BeadLevelList object

arrayNames(object,arrays=NULL) Returns the strip/array names from a BeadLevelList
object for selected arrays

combineBeadLevelLists(object1,object2) Combines two BeadLevelList objects
into one

getArrayData(object,what="G",log=TRUE) Retrieves the what intensities on the log
scale from the BeadLevelList

numBeads(object,arrays=NULL) Returns the number of beads on selected arrays

pData(object) Returns a data.frame with samples as rows, variables as columns

phenoData(object) Returns an object containing phenotypic information on both variable
values and variable meta-data

Author(s)

Mark Dunning and Matt Ritchie

See Also

readIllumina

ExpressionSetIllumina 25

ExpressionSetIllumina
Class to Contain Objects Describing High-Throughput Illumina Ex-
pression BeadArrays.

Description

Container for high-throughput assays and experimental metadata. ExpressionSetIllumina
class is derived from eSet, and requires matrices exprs, se.exprs, NoBeads, Detection
as assay data members.

Extends

Directly extends class eSet.

Creating Objects

new(’ExpressionSetIllumina’, phenoData = [AnnotatedDataFrame], exprs
= [matrix], se.exprs = [matrix], NoBeads = [matrix], Detection = [matrix],
annotation = [character], featureData = [AnnotatedDataFrame], experimentData
= [MIAME], ...) ExpressionSetIllumina instances are usually created through
new("ExpressionSetIllumina", ...). Arguments to new include exprs, se.exprs,
NoBeads, Detection, phenoData, experimentData, and annotation. phenoData,
experimentData, and annotation can be missing, in which case they are assigned default
values.

Slots

Inherited from eSet:

assayData: Contains matrices with equal dimensions, and with column number equal to nrow(phenoData).
assayData must contain a matrix exprs with rows representing features (e.g., genes) and
columns representing samples, a matrix se.exprs describing the standard error of each
gene, and matrices NoBeads and Detection to describe the number of beads used to
produce the summary and a probability of a gene being expressed above background. The
contents of these matrices are not enforced by the class. Additional matrices of identical size
may also be included in assayData. Class:AssayData

phenoData: See eSet

experimentData: See eSet

annotation: See eSet

BeadLevelQC: QC information inherited from the BeadLevelList object

QC: QC info for control probes, if available

protocolData: See eSet

featureData: annotation for SNPs, usually will contain a CHR and a MapInfo column for
genomic localization

26 ExpressionSetIllumina

Methods

Class-specific methods:

exprs(ExpressionSetIllumina), exprs(ExpressionSetIllumina,matrix)<-
Access and set elements named exprs in the AssayData slot.

se.exprs(ExpressionSetIllumina), se.exprs(ExpressionSetIllumina,matrix)<-
Access and set elements named se.exprs in the AssayData slot.

NoBeads(ExpressionSetIllumina) Access elements named NoBeads in the AssayData
slot.

Detection(ExpressionSetIllumina) Access elements named Detection in the AssayData
slot.

getVariance(ExpressionSetIllumina) Calculate bead-type specific variance using se.exprs
and NoBeads from the AssayData slot.

QCInfo(ExpressionSetIllumina),QCInfo(ExpressionSetIllumina,list)<-
Access elements named QC in the AssayData slot.

object[(index): Conducts subsetting of matrices and phenoData and reporterInfo compo-
nents

combine(ExpressionSetIllumina,ExpressionSetIllumina): performs union-like
combination in both dimensions of ExpressionSetIllumina objects

show(ExpressionSetSetIllumina) See eSet

Derived from eSet:

sampleNames(ExpressionSetSetIllumina) and sampleNames(ExpressionSetSetIllumina)<-:
See eSet

featureNames(ExpressionSetSetIllumina), featureNames(ExpressionSetSetIllumina, value)<-:
See eSet

dims(ExpressionSetSetIllumina): See eSet

phenoData(ExpressionSetSetIllumina), phenoData(ExpressionSetSetIllumina,value)<-:
See eSet

varLabels(ExpressionSetSetIllumina), varLabels(ExpressionSetSetIllumina, value)<-:
See eSet

varMetadata(ExpressionSetSetIllumina), varMetadata(ExpressionSetSetIllumina,value)<-:
See eSet

pData(ExpressionSetSetIllumina), pData(ExpressionSetSetIllumina,value)<-:
See eSet

varMetadata(ExpressionSetSetIllumina), varMetadata(ExpressionSetSetIllumina,value)
See eSet

experimentData(ExpressionSetSetIllumina),experimentData(ExpressionSetSetIllumina,value)<-:
See eSet

annotation(ExpressionSetSetIllumina), annotation(ExpressionSetSetIllumina,value)<-
See eSet

storageMode(eSet), storageMode(eSet,character)<-: See eSet

Standard generic methods:

initialize(ExpressionSetSetIllumina): Object instantiation, used by new; not to
be called directly by the user.

closeImage 27

validObject(ExpressionSetSetIllumina): Validity-checking method, ensuring that
call, callProbability, G, and R are members of assayData. checkValidity(ExpressionSetSetIllumina)
imposes this validity check, and the validity checks of Biobase:class.eSet.

show(ExpressionSetSetIllumina) See eSet

dim(ExpressionSetSetIllumina), ncol See eSet

ExpressionSetSetIllumina[(index): See eSet

ExpressionSetSetIllumina$, ExpressionSetSetIllumina$<- See eSet

Author(s)

Mark Dunning, based on Biobase eSet class

See Also

eSet

closeImage Close Image

Description

Find the closure of a set of beads on an array.

Usage

closeImage(IDs, neighbours, cinvasions = 10)

Arguments

IDs IDs of beads to be closed.

neighbours A Neighbours matrix - obtained from generateNeighbours.

cinvasions The number of invasions used when dilating and eroding.

Details

This function "closes" the set of beads supplied, as used in the BASH functions. It dilates (expands)
the image, and then erodes (contracts) it. Each is done via an invasion process - if we let the set of
beads supplied be called S, then dilation considers all neighbours of beads in S, and adds them to
S. Erosion finds all beads in S with neighbours outside of S, and removes them from S.

The result of this process is to close "holes" in the group of specified beads during the dilation.
These are not reopened during the erosion.

Value

An updated vector of bead IDs (of which the argument IDs will be a subset).

Author(s)

Jonathan Cairns

28 combineBeadLevelLists

See Also

generateNeighbours

Examples

data(BLData)

##This process is equivalent to one iteration of BASHCompact.
##o <- findAllOutliers(BLData,4)
##neighbours <- generateNeighbours(BLData,4)
##o.clusters <- chooseClusters(o, neighbours)
##o.compact <- closeImage(o.clusters, neighbours)

combineBeadLevelLists
Combines data from two BeadLevelList objects

Description

Combines two BeadLevelList objects.

Usage

combineBeadLevelLists(object1, object2)

Arguments

object1 BeadLevelList

object2 BeadLevelList

Details

combineBeadLevelLists combines two BeadLevelList objects.

Value

A BeadLevelList object holding data from all strips/arrays and beads from the individual ob-
jects.

Author(s)

Matt Ritchie

copyBeadLevelList 29

copyBeadLevelList Copies a BeadLevelList Object

Description

Make a new copy of a BeadLevelList object.

Usage

copyBeadLevelList(object)

Arguments

object BeadLevelList

Details

copyBeadLevelList makes a new copy of a BeadLevelList object. This is necessary
beacuse the beadData slot is stored as an environment.

Value

A new BeadLevelList object containing the data from object.

Author(s)

Matt Ritchie

Examples

data(BLData)
BLDataNew = copyBeadLevelList(BLData)
BLData@beadData # the same bead level data is now
BLDataNew@beadData # stored in different environments

createBeadSummaryData
Produce bead averages

Description

Produce bead averages for each bead type used in an experiment on a specified set of strips/arrays.

Usage

createBeadSummaryData(BLData, log=FALSE, imagesPerArray = 1,
what="G", probes = NULL, arrays=NULL,
method="illumina", n=3, trim=0.05)

30 createBeadSummaryData

Arguments

BLData BeadLevelList

log if TRUE then summarise the log2 intensities of each bead
imagesPerArray

Specifies how many images (strips) there are per array. Normally 1 for a SAM
and 1 or 2 for a BeadChip. The images (strips) from the same array will be
combined so that each column in the output represents a sample

what character string specifying which intensities/values to summarise. See getArrayData
for a list of possibilities.

probes Specify particular probes to summarise. If left NULL then all the probes on the
first array are used.

arrays integer (scalar or vector) specifying the strips/arrays to summarise. If NULL,
then all strips/arrays are summarised.

method chracter string specifying the summarisation method to use. Options are "illumina",
"mean", "median", "trim" and "winsorise".

n numeric value defining a cut-off for the number of median absolute deviations
(MADs) from the median to use for determining outliers. The default value is 3.
Used when method="illumina"

trim fraction of intensities to remove from the bead summary calculations when
method="trim", or the fraction of intensities to set to the trim and 1-trim
percentile intensities when method="winsorize". Default value is 0.05.

Details

To summarise the raw data using the default method used by Illumina (method="illumina")
we first remove outliers for each bead type on each array. Outliers are beads which have an intensity
greater than 3 median absolute deviations (MADs) from the bead median intensity on the original
(un-logged) scale. The n argument can be changed to remove beads with intensity n MADs above
or below the median. With outliers removed, the average (mean) intensities of the remaining beads
are calculated along with the standard error and number of beads.

Other summarisation options are also available. When method="mean", the average and stan-
dard error of all beads for a given bead type is calculated on each array. This would be appropriate
if the scanner has been set up to exclude outlier beads from the bead level .txt or .csv files.

When method="median", the middle value is returned along with the median absolute deviation
(rather than standard error) for each bead type. When method="trim", the trimmed mean and
standard error are calculated and for method="winsorize" the winsorised mean and standard
error are returned.

By setting the log argument to TRUE, we calculate outliers and summary values on the log2-scale.

If there are any NAs or Inf values, they are ignored.

Objects which are created separately by ’createBeadSummaryData’ may be joined using the combine
function.

Value

An ExpressionSetIllumina object (or NChannelSet object for two-colour data, when
what="RG") in which all components are matrices with number of rows equal to the number of
bead types for the experiment and number of columns equal to the number of arrays.

denseRegions 31

Author(s)

Mark Dunning and Mike Smith

See Also

findBeadStatus

Examples

#produce bead summaries for each array
data(BLData)
BSData = createBeadSummaryData(BLData, log=TRUE, what="G")
dim(BSData)

denseRegions Find Dense Regions of Points (as used in diffuse defect analysis).

Description

Given a list of beads, this function finds dense regions of beads on the list.

Usage

denseRegions(IDs, neighbours, ignore = NULL, sig = 0.0001, invasions = 10)

Arguments

IDs Vector - IDs of beads to find dense regions of.

neighbours A Neighbours matrix - obtained from generateNeighbours.

ignore Vector - IDs of beads to be ignored during this process.

sig Significance of the Binomial test performed within each kernel.

invasions Integer - No of invasions used to generate the kernel.

Details

This function, given a list of bead IDs, finds regions where these marked beads are denser.

To do this, we use a "sliding kernel" technique. For each bead, we find the "kernel", a local neigh-
bourhood of beads, obtained via invasion along links defined in the neighbours matrix. We count
the number of beads in the kernel, and we also count how many of these are beads are marked. Now
we test the density of this region with a binomial test.

Assuming that we expect the marked beads to be evenly distributed across the array, then the number
of marked beads in the kernel should have distibution Bin(n,p) under the null hypothesis, where n is
the total number of beads in the kernel, and p is the proportion of marked beads on the entire array.
We test this hypothesis at a level defined by sig, and on rejection of the null hypothesis we label
the kernel’s central bead as being part of a dense region. This is performed for the kernel about each
bead.

If ignore is specified, then these beads will be completely removed before analysis. Any links
attached to a removed bead are severed.

32 findAllOutliers

Value

Vector - IDs of beads in dense regions.

Author(s)

Jonathan Cairns

See Also

generateNeighbours, BASHDiffuse

Examples

data(BLData)
E <- generateE(BLData,1)
E <- generateE(BLData,1, invasions = 10) #reduced no of invasions to increase speed.
E <- generateE(BLData,1, bgfilter = "none") #residuals (median)

findAllOutliers Find outliers on a given strip/array

Description

Function to find all beads which are outliers for their particular bead type on a given strip/array
using Illumina’s standard outlier detection method.

Usage

findAllOutliers(BLData, array, log=FALSE, n=3, what="G", usewts=FALSE)

Arguments

BLData BeadLevelList

array integer specifying which strip/array we want to find outliers on

log if TRUE the intensities will be calculated on the log2 scale. Otherwise un-
logged data is used.

n numeric value defining a cut-off for the number of median absolute deviations
(MADs) from the median to use for determining outliers. The default value is 3.

what character string specifying which intensities to use. See getArrayData for a
list of possibilities.

usewts if TRUE, then beads with weights below 1 will be discarded prior to analysis.

Details

We find the outliers for each bead type on the array in turn using the findBeadStatus func-
tion and store the indices of the outliers found. By default, outliers for a particular bead type are
determined using a 3 MAD cut-off from the median.

findBeadStatus 33

Value

numeric vector giving the row indices of BLData (in the range 1 to total number of beads on the
array) of all beads that are outliers for their bead type.

Author(s)

Mark Dunning

See Also

findBeadStatus

Examples

data(BLData)
how many outliers are there on the original scale?
length(findAllOutliers(BLData, 1))
how many outliers are there on the log2-scale?
length(findAllOutliers(BLData, 1, log=TRUE)) #
how many outliers are there using a 4 MAD
cut-off from the median?
length(findAllOutliers(BLData, 1, n=4))

findBeadStatus Find Outliers

Description

Function finds all beads which are outliers for a given bead type

Usage

findBeadStatus(BLData, probes, array = 1, log = FALSE, what = "G", n = 3,
outputValid = FALSE, intProbeID = NULL, ignoreList = NULL,
probeIndex = NULL, startSearch = 1)

getProbeIntensities(BLData, ProbeIDs, array = 1, log = TRUE, what = "G")

Arguments

BLData BeadLevelList

probes numeric vector for the ProbeIDs of the bead type we want to find outliers for

array integer specifying which strip/array to use

log if TRUE the intensities will be calculated on the log2 scale. Otherwise un-
logged data is used

what character string specifying which intensities to use. Possibilities are "G", "Gb"
for single channel data and "G", "Gb", "R" and "Rb" for two-colour data

n numeric value defining a cut-off for the number of median absolute deviations
(MADs) from the median to use for determining outliers. The default value is 3.

outputValid if TRUE the IDs of beads which are not outliers will be output

34 findBeadStatus

intProbeID BLData\$ProbeID coerced to vector of integers. Never change this, for internal
use only

ignoreList list of ProbeIDs to be omitted from the averaging procedure. These could be Il-
lumina internal controls which are replicated many thousands of times on arrays

probeIndex parameter for internal use only

startSearch integer specify where to start searching for a particular ProbeID

ProbeIDs numeric vector for the ProbeIDs of the bead type we want to find outliers for

Details

The intensities of each bead with ProbeID ’probe’ on the specified array are found and if the ’log’
parameter is set to TRUE we do a log2 transformation of these values.

The median and MAD for the bead intensities are then calculated. Outliers are beads which have
intensity more than ’n’ MADs from the median.

The method used by Illumina is to use un-logged intensities with ’n’ = 3.

Any beads which have intensity NA are also counted as outliers.

The function returns only the outliers for a bead type unless the outputValid parameter is specified.

Value

List of beadIDs dividing the beads of this bead type into two categories.

valid valid beads

outliers beads which are calculated as outliers

Author(s)

Mike Smith and Mark Dunning

See Also

findAllOutliers

Examples

data(BLData)
findBeadStatus(BLData, 2, 1, outputValid=TRUE)
findBeadStatus(BLData, 2, 1, log=TRUE, outputValid=TRUE)
findBeadStatus(BLData, 23, 1, outputValid=TRUE)
findBeadStatus(BLData, 23, 1, log=TRUE, outputValid=TRUE)

generateE 35

generateE Generate Error Image for BeadLevelList object

Description

Generates an Error Image from the data in a BeadLevelList object.

Usage

generateE(BLData, array, neighbours = NULL, log = TRUE, method = "median", what = "residG", bgfilter = "none", invasions = 20)

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

neighbours A Neighbours matrix. Optional - if left NULL, it will be computed.

log Logical. If TRUE, compute residuals on the log scale.

method Method for computing residuals. Options are "mean" and "median"

what What to derive the error image from, as used in getArrayData.

bgfilter Method passed to the function BGFilter. Options are "none", "mean", "me-
dian", "MAD" and "medianMAD".

invasions Integer - Number of invasions. This argument is passed to the function BGfilter.

Details

generateE creates an error image, usually based on bead residuals. This output can then be fed into
BASHDiffuse or BASHExtended.

If what is residG, residR, or residM, then residuals are calculated based on method. For
other values of what, the residuals are not calculated.

We then apply a "background filter" to this data, using the function BGFilter with arguments
bgfilter and invasions - see its help file for more details. The background filter subtracts an
estimate of the local background of the error image, and/or scales by the local MAD. This step is
disabled by using bgfilter = "none".

Value

An "Error Image" - a vector of length equal to the number of beads on the array.

Author(s)

Jonathan Cairns

See Also

BGFilter

36 generateNeighbours

Examples

data(BLData)
E <- generateE(BLData,1)
E <- generateE(BLData,1, invasions = 10) #reduced no of invasions to increase speed.
E <- generateE(BLData,1, bgfilter = "none") #residuals (median)

generateNeighbours Generate Neighbours Matrix for BeadLevelList object

Description

Generates a Neighbours matrix from the X and Y co-ordinates in a BeadLevelList object.

Usage

generateNeighbours(BLData, array, window = 30, margin = 10, thresh = 2.2)

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

window numeric value, specifying window size (see below)

margin numeric value, specifying size of window margin (see below)

thresh numeric value, which determines how large links are removed. (see below)

Details

generateNeighbours determines, for each bead on the array, which beads are next to it. It assumes
that the beads are in a hexagonal lattice.

The algorithm used first links each bead to its 6 closest neighbours. It then removes the longest link
if its squared length is more than thresh multiplied by the squared length of the next longest link.
A similar process is applied to the 2nd and 3rd longest links.

Finally, any one way links are removed (i.e. a link between two beads is only preserved if each bead
considers the other to be its neighbour).

To ease computation, the algorithm only computes neighbours of beads in a square window of side
length 2*(window) which travels across the array. Beads in a margin around the square, of width
(margin), are also considered as possible neighbours.

The Neighbours matrix is designed for use with the BASH functions.

Value

A matrix with 6 columns, and a number of rows equal to the number of beads on the array. The
neighbours of bead i are found in row i. 0 denotes a deleted link. (For example, if row 15 consists
of 20, 35, 0, 0, 60, 4, then bead 15 is considered a neighbour of beads 4, 20, 35 and 60.)

Author(s)

Jonathan Cairns

getAnnotation 37

Examples

data(BLData)
neighbours <- generateNeighbours(BLData, 1)

getAnnotation Storage of annotation information for Illumina expression chips

Description

Illumina use several control types for QA purposes, however the IDs of these controls change be-
tween different organisms and annotation revisions. Therefore we need to store the annotation of a
chip in order to perform QA on the bead-level data. The functions setAnnotation and getAnnotation
are used to manage this annotation information.

Usage

getAnnotation(BLData)
setAnnotation(BLData, aName)

Arguments

BLData BeadLevelList for an Illumina expression array.

aName Character to define the annotation of the chip

Details

We currently store the annotation as a slot in a BeadLevelList. The value in the slot should match
one of entries in ExpressionControlData (see example).

Value

setAnnotation returns a modified BeadLevelList with the new value for the annotation slot.

Author(s)

Mark Dunning

See Also

ExpressionControlData

Examples

data(BLData)
data(ExpressionControlData)
getAnnotation(BLData)
names(ExpressionControlData)

38 getArrayData

getArrayData Get raw data from a BeadLevelList object

Description

Retrieves the raw bead data from a BeadLevelList object for a given strip/array.

Usage

getArrayData(BLData, what="G", array=1,log=TRUE, method="illumina", n=3, trim=0.05)

Arguments

BLData BeadLevelList

what character string specifying the values to retrieve. Possibilities are "ProbeID",
"GrnX", "GrnY", "G", "Gb" for single channel data and "R", "Rb", "residR",
"residG", "M" (log-ratios) "residM", "A" (average log-intensities) and
"beta" (=R/(R+G)) for two-colour data

array integer specifying the strip/array to use

log if TRUE log2 of the raw intensities are returned (ignored if what="beta")

method character string specifying the summarisation method to use in createBeadSummaryData
(see help page for further details). Only used when what="residR", "residG"
or "residM".

n numeric value specifying the number of median absolute deviations (MADs)
from the median to use as a cut-off for outliers. Only used when what="residR",
"residG" or "residM" and method="illumina".

trim fraction of intensities to remove from the bead summary calculations when
method="trim", or the fraction of intensities to set to the trim and 1-trim
percentile intensities when method="winsorize". Default value is 0.05.
Only used when what="residR", "residG" or "residM".

Details

getArrayData retrieves the raw bead data from a given array. The data is either extracted from a
BeadLevelList object (e.g. "ProbeID", "GrnX", "GrnY", "G", "Gb", "R" and "Rb" or
calculated from these values (e.g. "residR", "residG", "M", "residM", "A" or "beta").
When log=TRUE, intensity data is returned on the log2 scale.

Value

A vector containing the raw bead data (or residuals) for a particular array.

Author(s)

Matt Ritchie

Examples

data(BLData)
summary(getArrayData(BLData))

getVariance 39

getVariance Gets the bead-type variances from an ExpressionSetIllumina Object

Description

Calculates the variance for each bead-type on each array from an ExpressionSetIllumina
object.

Usage

getVariance(object, offset=0)

Arguments

object ExpressionSetIllumina object

offset numeric value to add to the variances to avoid very small values

Details

getVariance uses the se.exprs and NoBeads slots in assayData to calculate the vari-
ances for each bead-type on each array.

Value

A matrix containing the variances.

Author(s)

Matt Ritchie

Examples

data(BSData)
v = getVariance(BSData)
boxplot(as.data.frame(log2(v)), ylab="log2var", xlab=colnames(BSData), las=2)

imageplot imageplot for BeadLevelList object

Description

Generates an image plot for data from a BeadLevelList object.

Usage

imageplot(BLData, array = 1, nrow = 100, ncol = 100, low= NULL,
high = NULL, ncolors = 123, whatToPlot ="G", log=TRUE,
zlim=NULL, main=whatToPlot, method="illumina", n = 3,
trim=0.05, legend=TRUE, SAM=FALSE, ...)

40 imageplot

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

nrow integer specifying the number of rows to divide the strip/array into

ncol integer specifying the number of columns to divide the strip/array into

low colour to use for lowest intensity

high colour to use for highest intensity

ncolors The number of colour graduations between high and low

whatToPlot character string specifying which intensities/values to plot. See getArrayData
for a list of possibilities

log if TRUE, log2 intensities are plotted

zlim numerical vector of length 2 giving the extreme values of ’z’ to associate with
colours ’low’ and ’high’.

main character string for plot title

method character string specifying the summarisation method to use. Only applicable
when whatToPlot="residG", "residR" or "residM". Refer to the
createBeadSummaryData help page for further information.

n numeric value specifying the number of median absolute deviations (MADs)
from the median to use as a cut-off for outliers. The default value is 3. Only
applicable when whatToPlot="residG", "residR" or "residM" and
method="illumina". Refer to createBeadSummaryData help page
for further information.

trim fraction of intensities to remove from the bead summary calculations. Only ap-
plicable when whatToPlot="residG", "residR" or "residM". Refer
to createBeadSummaryData help page for further information.

legend logical, if TRUE, zlim and range of data is added to plot.

SAM logical, if TRUE, x and y coordinates are transposed.

... other graphical parameters to plot that can be specified

Details

Because of the large number of beads on each strip/array, this function works by mapping a grid of
size specified by the nrow and ncol arguments and averaging the intensities of the beads within
each section of the grid.

The number of rows and columns may change the appearance of the plots. If the array is divided
into too many squares it will be difficult to detect changes. We recommend using nrow=20 and
ncol=200 for the strips on a BeadChip, and nrow=100 ncol=100 for arrays on a SAM.

An imageplot of the log base 2 foreground intensities is produced by default. Other values can be
plotted by changing the whatToPlot argument. The default colour scheme ranges from white for
low values to blue for high values.

As a result of both having identical function names this function can conflict with the imageplot
method in ’limma’. If both packages are loaded, the function from whichever package was loaded
last takes precedence. If the ’beadarray’ imageplot() function is masking that from ’limma’, one
can directly call the ’limma’ method using the command "limma::imageplot()". Alternatively, one
can detach the ’beadarray’ package using "detach(package:beadarray)". Similar techniques can be
used if ’limma’ is masking the ’beadarray’ method.

interactivePlots 41

Value

A plot is produced on the current graphical device.

Author(s)

Mike Smith, Mark Dunning

Examples

data(BLData)
imageplot(BLData)

interactivePlots Interactive bead-level plotting

Description

Generates spatial plots using bead-level data to discover artefacts on strips/arrays.

Usage

SAMSummary(BLData, mode = "outliers", whatToPlot = "G", samID = NULL,
log = TRUE, n = 3, colour = TRUE,
scale = NULL, low = "yellow", high="red", ...)

BeadChipSummary(BLData, mode = "outliers", whatToPlot = "G", chipID = NULL,
stripsPerChip = 12, log = TRUE, n = 3, colour = TRUE,
scale = NULL, low = "yellow", high = "red", ...)

Arguments

BLData BeadLevelList object
mode character string either "outliers" or "intensities" specifying what to display on

the plots
whatToPlot character string specifying which intensities to plot. Possibilities are "G", "Gb"

for single channel data and "G", "Gb", "R" and "Rb" for two-colour data
samID character string specifying which SAM to plot. If NULL, data from the first

SAM is plotted.
chipID character string specifying which BeadChip to plot. If NULL, data from the first

BeadChip is plotted.
stripsPerChip

integer specifying number of strips on BeadChip (8 or 12)
log if TRUE log2 intensities of each bead are used to find outliers
n numeric value specifying the number of median absolute deviations (MADs)

from the median to use as a cut-off for outliers. The default value is 3
colour if TRUE the hexagons will be plotted in colour
scale numeric value giving the amount by which to divide all numbers by (eg for log2

intensities this should be 16) to transform to range 0 - 1
low colour to use for lowest intensity
high colour to use for highest intensity
... other parameters to imageplot that can be specified

42 lmhPlot

Details

A plot will be displayed giving a summary of each array in the experiment on the left screen and
initially a blank right hand side. The left hand side is coloured according to the number of outliers
found on the array or the mean intensity of the array (depending on the mode parameter). Clicking
on tha particular array on the left will display a location plot of the outliers or an image plot on the
right See RNews article

Value

A plot is produced on the current graphical device

Author(s)

Mark Dunning

lmhPlot Plot the bead-level hybridisation controls

Description

Function for retrieving and plotting the hybridisation controls for an expression array. We know
these controls should show high signal and are therefore useful for QA purposes. Moreover, we
should expect to see a gradient between the low, medium and high controls. By considering all
bead observations (unlike the plots produced by BeadStudio) we get an detailed impression of array
quality.

Usage

lmhPlot(BLData, array = 1, plot = FALSE,t1,t2)

Arguments

BLData BeadLevelList object for an Illumina expression array which must have the an-
notation slot set appropriately.

array The number of the array of interest

plot If TRUE then a diagnostic plot will be produced, other only summary values
will be returned.

t1 Pre-computed list of array intensities

t2 List of ProbeIDs for all beads on the array

Details

The annotation stored with the BLData object in the annotation is used to find the IDs of the hy-
bridisation controls. We try and find these controls among the bead-level data for the array. If not all
the control IDs can be found, then the wrong annotation may be stored for the array and the function
will report an error. If found, we test the replicates of the low, medium and high controls for de-
tection using the same criteria as used by Illumina (implemented in the calculateDetection
function). However, an important difference is that we test each bead observation individually and
report for each bead-type the percentage of beads detected.

medianNormalise 43

The function returns five measures that can be used to evaluate the quality of the array (see below).
On a good quality array, we would expect to see 100% for all these measures and a drop from 100%
could indicate a defect on the array. However, it should be noted that the HvsM percentage could
drop below 100% often due to the saturation effect often observed at high intensity.

If a plot is requested, the intensities of the hybridisation controls are plotted on a y-axis and grouped
according to different control-type (low, medium or high concentration) on the x-axis. Some arrays
may have more than one bead-type for a particular control.

Value

LowDet %age of “low” control beads that are detected compared to the negative controls.

MedDet %age of “medium” control beads that are detected compared to the negative
controls.

HighDet %age of “high” control beads that are detected compared to the negative con-
trols.

MvsL %age of “medium” control beads that are detected compared to the “low” con-
trols.

HvsM %age of “high” control beads that are detected compared to the “medium” con-
trols.

Author(s)

Mark Dunning

References

see www.illumina.com/downloads/GX_QualityControl_TechNote.pdf for descrip-
tion of the hybridisation controls

See Also

calculateBeadLevelScores, setAnnotation, calculateDetection

medianNormalise Median normalise data in a matrix

Description

Normalises expression intensities so that the intensities or log-ratios have equal median values
across a series of arrays (columns).

Usage

medianNormalise(exprs, log=TRUE)

Arguments

exprs a matrix of expression values

log if TRUE then do a log2 transformation prior to normalising

www.illumina.com/downloads/GX_QualityControl_TechNote.pdf

44 normaliseIllumina

Details

Normalisation is intended to remove from the expression measures any systematic trends which
arise from the microarray technology rather than from differences between the probes or between
the target RNA samples hybridized to the arrays.

For median normalisation, the intensity for each gene is adjusted by subtracting the median of all
genes on the array and then adding the median across all arrays. The effect is that each array then
has the same median value.

Value

Produces a matrix of normalised intensity values (on the log2 scale by default) with the same di-
mensions as exprs.

Author(s)

Mark Dunning

Examples

data(BSData)
BSData.med = assayDataElementReplace(BSData, "exprs", medianNormalise(exprs(BSData)))

normaliseIllumina Normalise Illumina expression data

Description

Normalises expression intensities from an ExpressionSetIllumina object so that the inten-
sities are comparable between arrays.

Usage

normaliseIllumina(BSData, method="quantile", transform="none", T=NULL, ...)

Arguments

BSData an ExpressionSetIllumina object

method character string specifying normalisation method (options are "quantile",
"qspline", "vsn", "rankInvariant", "median" and "none".

transform character string specifying transformation to apply to the data prior to normali-
sation (options are "none", "log2" and "vst"

T A target distribution vector used when method="rankInvariant" normal-
isation. If NULL, the mean is used.

... further arguments to be passed to lumiT

numBeads 45

Details

Normalisation is intended to remove from the expression measures any systematic trends which
arise from the microarray technology rather than from differences between the probes or between
the target RNA samples hybridized to the arrays.

In this function, the transform specified by the user is applied prior to the chosen normalisation
procedure.

When transform="vst" the variance-stabilising transformation from the ’lumi’ package is ap-
plied to the data. Refer to the lumiT documentation for further particulars. Note that the Detection
P values are only passed on when they are available (i.e. not NA)

For further particulars on the different normalisation methods options refer to the individual help
pages (?normalize.quantiles for "quantile", ?normalize.qspline for "qspline",
?rankInvariantNormalise for "rankInvariant", ?medianNormalise for "median"
and ?vsn2 for "vsn".

For median normalisation, the intensity for each gene is adjusted by subtracting the median of all
genes on the array and then adding the median across all arrays. The effect is that each array then
has the same median value.

Note: If your BSData object contains data already on the log-scale, be careful that you choose an
appropriate transform to avoid transforming it twice. The same applies for the "vst" transfor-
mation and "vsn" normalisation methods which require the expression data stored in BSData to
be on the original (un-logged) scale. When method="vsn", transform must be set to "none",
since this method transforms and normalises the data as part of the model.

Value

An ’ExpressionSetIllumina’ object which conatains the transformed and normalised expression val-
ues for each array.

Author(s)

Matt Ritchie

Examples

data(BSData)
BSData.norm = normaliseIllumina(BSData, method="quantile", transform="log2")

numBeads Gets the number of beads from a BeadLevelList object

Description

Retrieves the number of beads on selected strips/arrays from a BeadLevelList object.

Usage

numBeads(object, arrays=NULL)

46 outlierPlot

Arguments

object BeadLevelList

arrays either NULL to return the bead numbers for all arrays, or a scalar or vector of
integers specifying a subset of strips/arrays

Details

numBeads retrieves the number of beads on arrays from the arrayInfo slot.

Value

A vector containing the number of beads on individual strips/arrays.

Author(s)

Matt Ritchie

Examples

data(BLData)
numBeads(BLData)
numBeads(BLData, arrays=2)

outlierPlot Locations of outliers on an Illumina chip

Description

Diagnostic function that reports how many outliers are found on a specific array on a chip. We
take advantage of the segmental structure of the array and break-down the number of outliers into 9
sections.

Usage

outlierPlot(BLData, array = array, log = FALSE, plot = FALSE)

Arguments

BLData A BeadLevelList object containing the bead-level data for an Illumina experi-
ment

array The number of the array of interest
log if TRUE calculate outliers on the log2 scale. If FALSE calculate outliers on the

original scale
plot if TRUE a diagnostic plot will be produced, otherwise only the numbers of out-

liers will be returned.

Details

The number of outliers are computed for the whole array using the Illumina default method that
specifies a cut-off of 3 MADs from the median on either the log2 or original scale. These outliers
are then split into 9 different sections on the array (the separation between these sections can usually
be seen in the plots).

plotBeadDensities 47

Author(s)

Mark Dunning

plotBeadDensities plot densities of bead intensities

Description

Function to produce smoothed density plots of the bead intensities from different bead strips/arrays.

Usage

plotBeadDensities(BLData, whatToPlot = "G", arrays = NULL, log = TRUE,
type="l", col=1, xlab="Intensity", ylab="Density",
xlim=NULL, ylim=NULL, ...)

Arguments

BLData BeadLevelList

whatToPlot character string specifying which intensities to plot. Possibilities are "G", "Gb"
for single channel data and "G", "Gb", "R" and "Rb" for two-colour data

arrays integer (scalar or vector) specifying the strip(s)/array(s) to plot. If set to NULL
(default value), data from all strips/arrays are plotted

log if TRUE log2 intensities are plotted

type character string specifying what type of plot to draw

col the colours for lines and points

xlab label for x-axis

ylab label for y-axis

xlim numeric vector specifying x-axis limits

ylim numeric vector specifying y-axis limits

... further graphical parameters to plot

Details

Produces density plots of the raw intensities from a BeadLevelList When arrays="NULL",
densities from all arrays are plotted.

Value

A plot is produced on the current graphical device

Author(s)

Matt Ritchie

Examples

data(BLData)
plotBeadDensities(BLData)

48 plotBeadIntensities

plotBeadIntensities
Plot bead intensities

Description

Function to plot the intensities of all beads of a particular type on a strip/array.

Usage

plotBeadIntensities(BLData, ProbeIDs, arrays, log = FALSE,
whatToPlot="G", ProbeCols=NULL, ylim=NULL,...)

Arguments

BLData BeadLevelList

ProbeIDs numeric value giving the ProbeID(s) for the bead type(s) to plot

arrays integer (scalar or vector) specifying the strip(s)/array(s) to plot

log if TRUE log2 intensities are plotted

whatToPlot character string specifying which intensities to plot. Possibilities are "G", "Gb"
for single channel data and "G", "Gb", "R" and "Rb" for two-colour data

ProbeCols vector of colour names to assign to each bead type

ylim vector providing the upper and lower bounds for the y-axis in the plotting win-
dow

... further graphical parameters to plot

Details

Boxplots of the specified intensities on the original or log-scale for each bead type specified by
ProbeIDs on selected arrays is produced.

A vertical line separates the intensities from different strips/arrays.

Value

A plot is displayed on the current graphical device.

Author(s)

Mark Dunning

Examples

data(BLData)

plotBeadIntensities(BLData, arrays=1:4, ProbeIDs=c(2,1000), log=TRUE)

plotBeadLocations 49

plotBeadLocations Plot bead locations

Description

Shows location of a set of beads on a strip/array. The beads can either be defined to be all beads
with particular ProbeIDs or as rows in BeadLevelList.

Usage

plotBeadLocations(BLData, ProbeIDs = NULL, BeadIDs = NULL, array = 1,
SAM = FALSE, xlab = "x-coordinate",
ylab = "y-coordinate",
main = paste("Bead", ProbeIDs,"locations"), ...)

Arguments

BLData BeadLevelList

ProbeIDs a vector of ProbeIDs to plot
BeadIDs logical/integer vector specifying which rows of data from BeadLevelList)

to plot (used if ProbeIDs is NULL)
array integer specifying the strip/array to plot
SAM if TRUE then the data is assumed to be taken from a SAM array and therefore

hexagonal
xlab character string specifying x-axis label
ylab character string specifying y-axis label
main character string specifying plot title
... further graphical parameters to plot

Details

The outline of the hexagonal array is drawn and the locations of the specified beads are overlayed.

Value

A plot is produced on the current graphical device.

Author(s)

Mark Dunning

Examples

data(BLData)

#plot all beads with ProbeID 2 on array 1
plotBeadLocations(BLData, array=1, ProbeIDs=2, SAM=TRUE)

#find all outliers on the first array and plot their locations
o=findAllOutliers(BLData, 1)
plotBeadLocations(BLData, BeadIDs=o, array=1, SAM=TRUE)

50 plotMA

plotMA Show MA plots

Description

Function which produces an MA plot between two specified arrays.

Usage

plotMA(exprs, array1=1, array2=2, genesToLabel=NULL, labelCol="red", foldLine=2, log=TRUE, labelpch=16, ma.ylim=2, sampleSize=NULL,...)

Arguments

exprs a matrix of expression values
array1 integer specifying the first array to plot
array2 integer specifying the second array to plot
genesToLabel vector of genes to highlight on the plot. These must match the rownames of

exprs.
labelCol plotting colours for highlighted genes
foldLine a numeric value defining where to draw horizontal fold-change lines on the plot
log if TRUE the data will be log-transformed before plotting
labelpch plotting characters for highlighted genes
ma.ylim numeric value specifying the range of the plot (from -ma.ylim to ma.ylim)
sampleSize The number of genes to plot. Default is NULL, which plots every gene.
... other graphical parameters to plot that can be specified

Details

The log2 difference in intensity (M-value, log-ratio) are plotted against the log2 average intensity
(A-value) for each probe for the two arrays selected.

As a result of both having identical function names this function can conflict with the plotMA
method in ’limma’. If both packages are loaded, the function from whichever package was loaded
last takes precedence. If the ’beadarray’ plotMA() function is masking that from ’limma’, one can
directly call the ’limma’ method using the command "limma::plotMA()". Alternatively, one can
detach the ’beadarray’ package using "detach(package:beadarray)". Similar techniques can be used
if ’limma’ is masking the ’beadarray’ method.

Value

A smoothed MA scatter plot is displayed on the current graphical device.

Author(s)

Mark Dunning

Examples

data(BSData)

plotMA(exprs(BSData), array1=1, array2=2)

plotMAXY 51

plotMAXY Scatter plots and MA-plots for all specified arrays

Description

Produces smoothed scatter plots of M versus A and X versus Y for all pairwise comparisons from a
set of arrays.

Usage

plotMAXY(exprs, arrays, log = TRUE, genesToLabel=NULL,
labels=colnames(exprs)[arrays],labelCol="red",
labelpch=16,foldLine=2,sampleSize=NULL,...)

Arguments

exprs a matrix of expression values

arrays integer vector giving the indices of the arrays (columns of exprs) to plot

log if TRUE then all values will be log2-transformed before plotting

genesToLabel vector of genes to highlight on the plot. These must match the rownames of
exprs.

labels vector of array names to display on the plot

labelCol plotting colours for highlighted genes

labelpch plotting characters for highlighted genes

foldLine a numeric value defining where to draw horizontal fold change lines on the plot

sampleSize The number of genes to plot. Default is NULL, which plots every gene

... other graphical parameters to be passed

Details

This graphical tool shows differences that exist between two arrays and can be used to highlight
biases between arrays as well as highlighting genes which are differentially expressed. For each
bead type, we calculate the average (log2) intensity and difference in intensity (log2-ratio) for each
pair of arrays.

In the lower-left section of the plot we see XY plots of the intensities for all pairwise comparisons
between the arrays and in the upper right we have pairwise MA plots. Going down the first column
we observe XY plots of array 1 against array 2 and array 1 against array 3 etc. Similarly, in the
upper-right corner we can observe pairwise MA plots.

Author(s)

Mark Dunning

Examples

data(BSData)
plotMAXY(exprs(BSData), arrays=1:3)

52 plotOnSAM

plotOnSAM Show variation between all 96 arrays

Description

Function to show how quantities vary across all 96 arrays. eg mean intensity of a certain control
probe

Usage

plotOnSAM(values, mx = max(values, na.rm = TRUE), scale = max(values,
na.rm = TRUE), min = 0, main = NULL, label = TRUE, missing_arrays = NULL, colour=TRUE)

Arguments

values vector containing 96 numeric values to plot

mx maximum value to display on y axis of plot

scale numeric value giving the amount by which to divide all numbers by (eg for log2
intensities this should be 16) to transform to range 0 - 1

min numeric value giving the minimum value to display on y axis

main character string giving a title for the plot

label boolean defining if the arrays are labeled on the plot

missing_arrays
vector of numeric values specifying the index of any arrays that have been re-
moved from the SAM.

colour if TRUE the hexagons will be plotted in colour

Details

Two plots are produced side-by-side. The first is a plot of the set of values against the index 1-96
and secondly we plot 8 x 12 hexagonal arrays with array number 1 being the hexagon in the top-left
corner and array 96 in the bottom-right. The colour of hexagon is directly related to the value in v
for the particular array number. An array which has a higher value in v will be coloured brighter.

Value

Plot is produced on current graphical device.

Author(s)

Mark Dunning

plotRG 53

plotRG Plot bead-level data: R vs G intensities

Description

Plot R versus G intensities fom a BeadLevelList object.

Usage

plotRG(BLData, ProbeIDs=NULL, BeadIDs=NULL, log=TRUE, arrays=1,
xlim=c(8,16), ylim=c(8,16), xlab="G intensities",
ylab="R intensities",
main=arrayNames(BLData)[arrays], smooth=TRUE,
cols=NULL, ...)

Arguments

BLData BeadLevelList

ProbeIDs a vector of ProbeIDs to plot

BeadIDs logical/integer vector specifying which rows of data from BeadLevelList to
plot (used if ProbeIDs is NULL)

log logical, if TRUE, take log base 2 of intensities

arrays which array/s to plot

xlim x-axis limits for plot

ylim y-axis limits for plot

xlab character string specifying x-axis label

ylab character string specifying y-axis label

main main plot title

smooth logical, whether to smooth the points (only used when one array is selected for
plotting)

cols colours to use on the plot

... further graphical parameters to plot

Details

The R and G intensities from selected beads and arrays are plotted.

Value

Plot is produced on the current graphical device.

Author(s)

Matt Ritchie

54 plotTIFF

plotTIFF Produce plots of the Illumina tiff images

Description

Produces a plot of an Illumina tiff image, which can be useful for observing spatial artifacts on an
array and checking the alignment of spot centres features in the image.

Usage

plotTIFF(tiff, xstart = 0, xend = ncol(tiff)-1, ystart = 0, yend = nrow(tiff)-1, high = "cyan", low = "black", mid = NULL, ncolours = 100, log = TRUE, values = FALSE, textCol = "black", accountForZero = FALSE, ...)

Arguments

tiff Intended to the the result of readTIFF, but in reality can be any matrix

xstart Starting X coordinate to plot.

xend End X coordinate to plot.

ystart Starting Y coordinate to plot.

yend End Y coordinate to plot.

high Colour to plot the brightest pixels in the image.

low Colour to plot the dimmest pixels.

mid If specified the colour gradient will go from low to mid to high. If not specified
then the gradient simply goes from low to high.

ncolours Specify how many steps there should be in the gradient between the high and
low colours

log If TRUE the pixel values are logged before the colour gradient is created.

values When set to TRUE each pixel in the image has it’s value displayed over it. This
should only be used when displaying a very small number of pixels as the text
very quickly covers the entire image.

textCol If values is TRUE this argument specifies the colour of the text.
accountForZero

Sometimes the Illumina tiff images have a very small number of pixels with an
intensity value of zero. plotTIFF scales the colours from the smallest value
to the largest. The presence of these zeros affects this scaling, resulting in a
much smaller range of colours covering the majority of the pixel values. This in
turn gives an image where it is hard to discern the spots from the background.
Setting this argument to TRUE adjusts all pixels with a value of zero to the
second smallest value, which should help restore the range of colours. NEEDS
WORK!

... Other graphical parameters specified in par

Details

This can be very slow, especially when the Cairo graphics library is being used. When using the
Cairo library, if one is plotting a large tiff with 10’s of millions of pixels, the plotting time increases
from around 20 seconds to 5 minutes on an Intel E5420.

If running on a Linux system I would recommend using:

plotXY 55

x11(type = "Xlib")

before running plotTIFF(), on order to force the quicker plotting mechanism.

Of course it is debatable whether it is useful to plot all of those pixels, given that there are far more
than can be displayed on a normal screen, and future revisions of the code may address this.

Value

A plot is produced on the current graphical device.

Author(s)

Mike Smith

plotXY XY plots for two samples

Description

Function which produces an XY plot of the intensities from two specified arrays.

Usage

plotXY(exprs,array1=1, array2=2, genesToLabel=NULL, labelCol="red", log=TRUE,labelpch=16, foldLine=2,sampleSize=NULL,...)

Arguments

exprs a matrix of expression values

array1 integer specifying the first array to plot

array2 integer specifying the second array to plot

genesToLabel vector of genes to highlight on the plot. These must match the rownames of
exprs.

labelCol plotting colours for highlighted genes

log if TRUE the data will be log-transformed before plotting

labelpch plotting characters for highlighted genes

foldLine a numeric value defining where to fold change lines on the plot

sampleSize The number of genes to plot. Default is NULL, which plots every gene.

... other graphical parameters to plot that can be specified

Details

Plots the array1 intensities versus the array2 intensities for all probes.

Value

A smoothed scatter plot is displayed on the current graphical device

Author(s)

Mark Dunning

56 poscontPlot

Examples

data(BSData)

plotXY(exprs(BSData), array1=1, array2=2)

poscontPlot Plot bead-level housekeeping and biotin controls

Description

Function for retrieving and plotting the biotin and housekeeping controls for an expression array.
We know these controls should show high signal and are therefore useful for QA purposes. The
housekeeping control targets a bead-type believed to be universally expressed whereas the biotin
control targets the biotin used for staining. By considering all bead observations (unlike the plots
produced by BeadStudio) we get an detailed impression of array quality.

Usage

poscontPlot(BLData, array = 1, plot = FALSE,t1,t2)

Arguments

BLData A BeadLevelList object for an Illumina expression array
array The number of the array of interest
plot if TRUE a diagnostic plot will be produced, otherwise only summary values are

returned.
t1 Pre-computed list of array intensities
t2 List of ProbeIDs for all beads on the array

Details

The IDs for the housekeeping and biotin controls are retrieved making use of the annotation in-
formation stored for the array. If this information is incorrect, or missing, then the function will
not proceed correctly. Valid names for the annotation slot must match the names of the Expres-
sionControlData object provided with beadarray. Assuming the controls can be identified, we then
perform a detection test for each bead observation by computing a p-value: of 1-R/N, where R is the
relative rank of the bead intensity when compared to the N negative controls. Thus, if a particular
bead has higher intensity than all the negative controls it will be assigned a value of 0. After these
p-values have been calculated for all replicates of the bead type we report the percentage of beads
with p-values lower than a set threshold of 0.05 (currently in favour in the Illumina literature). The
percentage of beads that are detected at a set threshold is then reported for the housekeeping and
biotin controls respecitvely.

If plot is TRUE, the values of all bead observations are plotted for each bead-type respectively
grouped together according to the type of control (housekeeping or biotin). Any beads with low
intensity may be due to array defects and would be impossible to detect with summarized data only.
If available, the intensities of any high stringency probes will also be plotted.

An important point to note that the utility of these housekeeping controls is dependant on the
probe sequences used targeting the intended genes. If a particular housekeeping control shows
lower expression, then it is worth checking the probe sequence by a BLAT search of by check-
ing pre-complied tables from http://www.compbio.group.cam.ac.uk/Resources/
Annotation/index.html.

http://www.compbio.group.cam.ac.uk/Resources/Annotation/index.html
http://www.compbio.group.cam.ac.uk/Resources/Annotation/index.html

probePairsPlot 57

Value

HkpDet %age of housekeeping control beads that are detected compared to the negative
controls.

BioDet %age of biotin labelling control beads that are detected compared to the negative
controls.

Author(s)

Mark Dunning and Andy Lynch

References

www.illumina.com/downloads/GX_QualityControl_TechNote.pdf

See Also

calculateBeadLevelScores, setAnnotation

probePairsPlot QA plot using perfect match and mismatch controls

Description

QA using the hybridisations controls that are identical expect for a few bases. Hence lower signal
should be observed for the mismatch probes.

Usage

probePairsPlot(BLData, array = 1,t1,t2,plot=FALSE)

Arguments

BLData A BeadLevelList object for an Illumina expression array

array Number of the array in BLData that we want QA for

t1 Pre-computed list of array intensities

t2 List of ProbeIDs for all beads on the array

plot Return the plot or not

Details

Firstly, the annotation of the control probes found on the BeadLevelList object is retrieved. We then
search the annoation for the perfect and mismatch controls (labeled phage_lambda_genome:pm
and phage_lambda_genome:mm2). For each perfect match we find the corresponding mismatch
control by comparing the sequences and plot the perfect match control next to the mismatch control.

Value

Plot on the current graphical device with the perfect match beads in red and mismatches in purple.
The labels on the x-axis show the ID of the controls.

www.illumina.com/downloads/GX_QualityControl_TechNote.pdf

58 qcBeadLevel

Author(s)

Mark Dunning

See Also

calculateBeadLevelScores

qcBeadLevel Generate simple diagnostic plots for Illumina bead-level data

Description

Generate simple diagnostic plots for Illumina bead-level data

Usage

qcBeadLevel(object, whatToPlot="G", RG=FALSE, log=TRUE, nrow = 100, ncol= 100,
colDens=1, colBox=0, html=TRUE,
fileName="qcsummary.htm", plotdir=NULL,
experimentName=NULL, targets=NULL, ...)

Arguments

object BeadLevelList

whatToPlot character string or vector specifying which intensities to plot. Possibilities are
"G", "Gb" for single channel data and "G", "Gb", "R", "Rb" and "M" for
two-colour data

RG if TRUE, plot R vs G intensities per array. Default value is FALSE. Only useful
for two-channel data

log if TRUE log2 intensities are plotted

nrow integer specifying the number of rows to divide the image into (used by imageplot
function)

ncol integer specifying the number of columns to divide the image into (used by
imageplot)

colDens colours for density plots (default is 1)

colBox colours for box plot (default is 0)

html logical scalar. If TRUE an html summary page is generated. If FALSE, no
summary page is generated.

fileName name of html summary page. Default is "qcsummary.htm".

plotdir optional character string specifying the filepath where the plots will be saved.
Defaults to the current working directory.

experimentName
name to appear on HTML report (default is NULL).

targets data.frame containing sample information

... further arguments that can be passed to the plotting functions.

rankIvariantNormalise 59

Details

This function creates boxplots, smoothed histogram (density) plots and imageplots of raw bead-
level intensity data.

An html page which displays the results, is created when html=TRUE. The html page name is
specified by the fileName argument.

Author(s)

Matt Ritchie

Examples

#data(BLData)
#qcBeadLevel(BLData)

rankIvariantNormalise
Rank Invariant normalise data in a matrix

Description

Normalise expression matrix using rank invariant genes

Usage

rankInvariantNormalise(exprs, T)

Arguments

exprs a matrix of expression values

T A target distribution vector to normalise the data to. The default is NULL in
which case the average quantiles are used

Details

Using the normalize.invariantset function from the affy package, we find a list of rank
invariant genes whose rank does not change significantly between the columns of exprs. We then
fit a normalising curve to each array using the values of the rank invariant genes of the array and a
target distribution.

The target distribution may be specified by the user and by default is the vector of average quantiles
across all arrays.

Value

Matrix of normalised expression data with the same dimensions as exprs.

Author(s)

Mark Dunning

60 readBGX

Examples

data(BSData)

BSData.ri = assayDataElementReplace(BSData, "exprs", rankInvariantNormalise(exprs(BSData)))

readBGX Read Illumina .bgx file into R

Description

Reads in an unzipped Illumina .bgx file, which provides further information on each bead type,
including the controls.

Usage

readBGX(filename, path=".", sep="\t", quote="", header=TRUE,
probeStart="\\[Probes\\]", controlStart="\\[Controls\\]", ...)

Arguments

filename character vector specifying name of unzipped bgx file

path character string specifying the location of the bgx file

sep separator character (default is tab, "\t")

quote character string specifying the quoting characters (disabled by default with quote="").
See scan for further information.

header logical, TRUE if the bgx file has a header, FALSE otherwise

probeStart character string, below which the information for the beads of interest appear.
Default value is "\\[Probes\\]"

controlStart character string, below which the information for the control beads appear. De-
fault value is "\\[Controls\\]"

... further arguments to read.table

Details

The .bgx file is a zip file which contains information about each probe on an expression BeadArray.

To read in the file, you first need to unzip it. To do this, replace the .bgx extension with .zip (for ex-
ample rename HumanRef-8_V2_0_R0_11223162_A.bgx as HumanRef-8_V2_0_R0_11223162_A.zip)
and then unzip this file (which should leave one file HumanRef-8_V2_0_R0_11223162_A for
our example). The unzipped file is tab delimited file and should be readable using readBGX. At
present this should work for Human and Rat expression arrays. For Mouse arrays, the .bgx has a
more complicated structure.

Value

data.frame containing information about each bead type (probe sequence, ID, control status,
etc)

Author(s)

Matt Ritchie

readBeadSummaryData 61

Examples

#human8bgx = readBGX("HumanRef-8_V2_0_R0_11223162_A", fill=TRUE)
#colnames(human8bgx)
#summary(human8bgx$Status)
#human6bgx = readBGX("HumanWG-6_V2_0_R0_11223189_A", fill=TRUE)
#ratbgx = readBGX("RatRef-12_V1_0_R0_11222119_A", fill=TRUE)

readBeadSummaryData
Read BeadStudio gene expression output

Description

Function to read the output of Illumina’s BeadStudio software into beadarray

Usage

readBeadSummaryData(dataFile, qcFile=NULL, sampleSheet=NULL,
sep="\t", skip=8, ProbeID="ProbeID",
columns = list(exprs = "AVG_Signal", se.exprs="BEAD_STDERR",

NoBeads = "Avg_NBEADS", Detection="Detection Pval"),
qc.sep="\t", qc.skip=8, controlID="ProbeID",
qc.columns = list(exprs="AVG_Signal", se.exprs="BEAD_STDERR",

NoBeads="Avg_NBEADS", Detection="Detection Pval"),
annoPkg=NULL, dec=".", quote="")

Arguments

dataFile character string specifying the name of the file containing the BeadStudio output
for each probe on each array in an experiment (required). Ideally this should be
the ’SampleProbeProfile’ from BeadStudio.

qcFile character string giving the name of the file containing the control probe intensi-
ties (optional). This file should be either the ’ControlProbeProfile’ or ’Control-
GeneProfile’ from BeadStudio.

sampleSheet character string used to specify the file containing sample infomation (optional)

sep field separator character for the dataFile ("\t" for tab delimited or "," for
comma separated)

skip number of header lines to skip at the top of dataFile. Default value is 8.

ProbeID character string of the column in dataFile that contains identifiers that can
be used to uniquely identify each probe

columns list defining the column headings in dataFile which correspond to the matri-
ces stored in the assayData slot of the final ExpressionSetIllumina
object

qc.sep field separator character for qcFile

qc.skip number of header lines to skip at the top of qcFile

controlID character string specifying the column in qcFile that contains the identifiers
that uniquely identify each control probe

62 readBeadSummaryData

qc.columns list defining the column headings in qcFile which correspond to the matrices
stored in the QCInfo slot of the final ExpressionSetIllumina object

annoPkg character string specifying the name of the annotation package (only available
for certain expression arrays at present)

dec the character used in the dataFile and qcFile for decimal points
quote the set of quoting characters (disabled by default)

Details

This function can be used to read gene expression data exported from versions 1,2 and 3 of the
Illumina BeadStudio application. The format of the BeadStudio output will depend on the version
number. For example, the file may be comma or tab separated of have header information at the
top of the file. The parameters sep and skip can be used to adapt the function as required (i.e.
skip=7 is appropriate for data from earlier version of BeadStudio, and skip=0 is required if header
information hasn’t been exported.

The format of the BeadStudio file is assumed to have one row for each probe sequence in the
experiment and a set number of columns for each array. The columns which are exported for
each array are chosen by the user when running BeadStudio. At a minimum, columns for average
intensity standard error, the number of beads and detection scores should be exported, along with a
column which contains a unique identifier for each bead type (usually named "ProbeID").

It is assumed that the average bead intensities for each array appear in columns with headings of
the form ’AVG_Signal-ARRAY1’, ’AVG_Signal-ARRAY2’,...,’AVG_Signal-ARRAYN’ for the
N arrays found in the file. All other column headings are matched in the same way using the
character strings specified in the columns argument.

NOTE: With version 2 of BeadStudio it is possible to export annotation and sequence information
along with the intensities. We _don’t_ recommend exporting this information, as special characters
found in the annotation columns can cause problems when reading in the data. This annotation
information can be retrieved later on from other Bioconductor packages.

The default object created by readBeadSummaryData is an ExpressionSetIllumina object.

If the control intensities have been exported from BeadStudio (’ControlProbeProfile’) this may be
read into beadarray as well. The qc.skip, qc.sep and qc.columns parameters can be used
to adjust for the contents of the file. If the ’ControlGeneProfile’ is exported, you will need to set
controlID="TargetID".

Sample sheet information can also be used. This is a file format used by Illumina to specify which
sample has been hybridised to each array in the experiment.

Note that if the probe identifiers are non-unique, the duplicated rows are removed. This may oc-
cur if the ’SampleGeneProfile’ is exported from BeadStudio and/or ProbeID="TargetID" is
specified (the "ProbeID" column has a unique identifier in the ’SampleProbeProfile’, whereas the
"TargetID" may not, as multiple beads can target the same transcript).

Value

An ExpressionSetIllumina object.

Author(s)

Mark Dunning and Mike Smith

See Also

ExpressionSetIllumina

readIllumina 63

Examples

##code to read the example BeadStudio (version 2) output distributed with the package
#dataFile = "SampleProbeProfile.txt"
#sampleSheet = "SampleSheet.csv"
#qcFile = "ControlGeneProfile.txt"
#BSData =readBeadSummaryData(dataFile, qcFile=qcFile, sampleSheet=sampleSheet, controlID="TargetID")

readIllumina Read bead-level data into R

Description

Uses .csv or .txt and TIFFs (where available) to load information about each bead on each array in
a BeadChip or SAM experiment.

Usage

readIllumina(arrayNames=NULL, path=".", textType=".txt",
annoPkg=NULL, useImages=TRUE,
singleChannel=TRUE, targets=NULL,
imageManipulation="sharpen", backgroundSize=17, backgroundCalc = "mean",
storeXY=TRUE, sepchar="_", dec=".", metrics=FALSE,
metricsFile="Metrics.txt", backgroundMethod="subtract",
offset=0, normalizeMethod="none",
tiffExtGrn="_Grn.tif", tiffExtRed="_Red.tif", ...)

Arguments

arrayNames character vector containing names of arrays to be read in. If NULL, all arrays
that can be found in the current working directory will be read in.

path character string specifying the location of files to be read by the function

textType character string specifiying the extension of the files which store the bead-level
information. Typically ".txt", ".csv" or "_perBeadFile.txt".

annoPkg character string specifying the annotation package for the arrays being read
in (only available for certain expression arrays at present). Default value is
"illuminaProbeIDs" which is not an annotation package, and indicates
that Illumina bead IDs have been used to identify each bead.

useImages logical. If TRUE, the foregound and background values are retrieved from the
TIFFs. When FALSE, the intensity values in the text files are used. Note that
background values will not be available (set to 0) when FALSE, as the current
option in BeadScan is to store background corrected intensities.

singleChannel
logical. Set to TRUE if the data is single channel (Green images only) or FALSE
for two-colour (both Green and Red data available).

targets data.frame containing sample information
imageManipulation

character string specifying which image analysis method to use. The current op-
tions are "none" (no image manipulation or "sharpen" (the Illumina sharp-
ening mask will be used prior to the foreground averages being calculated).

64 readIllumina

backgroundSize
integer value which defines the size of the n x n region (in pixels) used to calcu-
late local background values. Default value is 17

backgroundCalc
Specifies how the background value for each bead is calculated. Currently the
only options are "mean" and "median", which return the specified statistic for the
five dimest pixels in the region defined by the backgroundSize argument.
If any other value is given then the mean is returned.

storeXY logical scalar, indicating whether the xy coordinates should be stored

sepchar character string which separates the row and column positions in the file names
(default value is "_")

dec character used in the files for decimal points. The default value is "."

metrics logical scalar, indicating whether the scanner metrics file metricsFile is to
be read in

metricsFile name of the scanner metrics file ("Metrics.txt" by default)
backgroundMethod

method to use for background correcting the data. Options are "none", "subtract",
"half", "minimum", "edwards", "normexp" or "rma"

offset numeric value to add to intensities
normalizeMethod

method to use to normalize the background corrected bead-level data. Options
are "none", "quantile" and "vsn". Note that the normalization occurs at
the bead-level and is only available for two-colour data at this stage

tiffExtGrn character string specifying the file extension of the Cy3 (Green) images. Default
is "_Grn.tif"

tiffExtRed character string specifying the file extension of the Cy5 (Red) images (where
present). Default is "_Red.tif"

... other arguments

Details

This function can be used to read in bead-level information from the raw .tif and .csv or .txt files
output by BeadScan.

Note that the .txt or .csv files must contain the raw data for each bead on each array/strip, not the
summarised data. The .csv or .txt files specify the location and identity of each bead on the array
and must contain columns for the x and y position of each bead as well as a ProbeID. For
two-colour arrays, this information is required for each channel.

The foreground and background intensities of each bead are calculated from the images when
useImages=TRUE. For the foreground calculations the sharpening mask used by Illumina is ap-
plied prior to averaging over the 9 pixels in a 3 x 3 square closest to the bead centre by default
(imageManipulation="sharpen"). If imageManipulation="none", no sharpening
is performed. The local background estimate for each bead is calculated by averaging the 5 mini-
mum pixels in a 17 x 17 square around each bead centre from the unsharpened image. The size of
this window is controlled by the backgroundSize argument. If a bead is too close to the edge
of the image, it is ignored.

When useImages=FALSE, the intensities from the .txt or .csv files are stored as the foreground
values for each bead. Note that the values stored in these files have already undergone a local
background adjustment, so the background values are set to 0.

readLocs 65

To keep track of the samples hybridised to each array, we recommend using a targets data.frame,
which lists each strip/array in the rows, and experimental information about each strip/array in the
columns (sample, array name, etc.) Targets information can easily be created and saved in tab delim-
ited text format, read in using read.table and passed to readIllumina using the targets
argument.

The pairs of strips from a BeadChip can be combined when the data is summarised with createBeadSummaryData.

The function creates a BeadLevelList containing foreground and background intensities for
each bead on each array.

NOTE: Reading in bead-level data, particularly with the TIFFs is memory intensive. For example,
reading in text and image data from a Human-6 BeadChip requires several Gigabytes of RAM. If
you have limited memory, it is recommnded that you read in the data using the useImages=FALSE
option.

Value

BeadLevelList object

Author(s)

Mark Dunning, Mike Smith

Examples

#BLData = readIllumina()

#targets = read.table("targets.txt", header=T)

#targets
#May take a while to run
#BLData.s = readIllumina(arrayNames=target$Institute.Sample.Label, targets=targets, imageManipulation="none")

#Create foreground intensities without using sharpening. Should take less time
#BLData.ns = readIllumina(arrayNames=targets$Institute.Sample.Label, targets=targets, imageManipulation="sharpen")

readLocs Read the .locs file produced with each array

Description

Reads the binary Illumina bead location files and returns a matrix of the coordinate pairs for every
bead on the array.

Usage

readLocs(fileName)

Arguments

fileName String specifying the name of the locs file to be read.

66 readQC

Details

The locs file contains bead centre locations for every bead on the array, unlike the bead level text
files, with contain just the beads that were decoded. Reading these can be useful if one wants to
verify that the image registration was successful, or is interested in the locations of the undecoded
beads.

The locs file itself is in a binary format, with each of the bead locations stored as a pair of doubles.
The first 2 bytes contain header information, with the 3rd byte containing the number of probes on
the array. The location information begins with the 4th byte.

Value

Returns a matrix with 2 colums containing the X and Y coordinates of each bead on the array.

Author(s)

Mike Smith

readQC Read Illumina control intensities

Description

Reads the standard format of Illumina control intensities output by BeadStudio

Usage

readQC(file, sep="\t", skip=8, controlID = "ProbeID", columns = list(exprs = "AVG_Signal", se.exprs="BEAD_STDERR", NoBeads = "Avg_NBEADS", Detection="Detection Pval"), dec=".", quote="")

Arguments

file character string giving the name of the file output by BeadStudio containing the
control probe intensities. This file should be either the ’ControlProbeProfile’ or
’ControlGeneProfile’.

sep a character string for the file separator
skip number of lines of header information to ignore in the file
controlID character string specifying the column that contains the (unique) control probe

IDs
columns a vector of column names to read from the file
dec the character used in the file for decimal points
quote the set of quoting characters (disabled by default)

Details

The format of the quality control files differs slightly between BeadStudio versions 1 and later
versions. This function is able to read in data in either format

Note that if the control identifiers are non-unique, the duplicated rows are removed. This may
occur if the ’ControlProbeProfile’ is exported from BeadStudio and controlID="TargetID"
is specified (the "ProbeID" column has a unique identifier in the ’ControlProbeProfile’, whereas the
"TargetID" may not, as multiple beads can be of the same type).

Once read in, the control intensities can be used for quality assessment purposes.

readTIFF 67

Value

readQC produces an assayData object with a list of items defined by the columns parameter.
The row names of each matrix are given by the controlID argument .

Author(s)

Mark Dunning

Examples

##Code to read the example quality control file included with the
#package.
#QC = readQC("ControlGeneProfile.txt", controlID="TargetID")
#the average expression of each control can then be accessed by the $ operator
#QC$exprs

readTIFF Read the Illumina tiff images

Description

Reads Illumina tiff images and produces a matrix of pixel values.

Usage

readTIFF(fileName, verbose = FALSE)

Arguments

fileName String specifying the name of the tiff image to be read.

verbose If TRUE then details from the header of the tiff are printed as it is read. These
include things like the byte order, the number of pixels in the image, the number
of tags in the header etc. Defaults to FALSE as this is generally not of interest.

Details

This function has been specifically written to read the grayscale tiff images which are produced by
the Illumina scanners. It is not generic enough to read all tiff files, although this functionality may
be added in the future.

Given that the raw images can be quite large, functionality has also been included to read tiffs
that have been compressed as either .bz2 or .gz files. Identification is performed based on the file
extension and it is assumed that each tif is compressed individually. Support for zip files may be
added in the future.

Value

Returns a matrix with the same dimensions as the pixels in the tiff file to be read in.

Author(s)

Mike Smith

68 setWeights

setWeights Set BeadLevelList Weights

Description

Replaces the weights of a BeadLevelList with user-specified ones.

Usage

setWeights(BLData, wts, array, combine=FALSE)

Arguments

BLData BeadLevelList

wts either a numerical vector of weights to use, or 0 or 1 to set all weights to 0 or 1.

array integer specifying the strip/array to use

combine logical. If TRUE, the new weights specified by wts are combined with the
existing weights by storing the minimum of the two for each bead. If FALSE
the new weights replace any existing weights.

Details

This function replaces the weights column, wts, on the specified array, with user-specified values.

Only rows with wts != 1 are used in createBeadSummaryData.

Value

BeadLevelList object, with updated wts values.

Author(s)

Mark Dunning

Examples

data(BLData)
BLData <- setWeights(BLData,1,1) ##set all weights to 1
BLData <- setWeights(BLData,0,1) ##set all weights to 0

viewBeads 69

viewBeads View Beads

Description

View an image of the beads in a certain region, optionally with links between neighbours or certain
beads highlighted.

Usage

viewBeads(BLData, array, x, y, xwidth = 100, ywidth = 100, neighbours = NULL, mark = NULL, markcol = "blue", markpch = 21, inten = TRUE, low = "black", high = "green", what = "G", log = TRUE, zlim = NULL, ...)

Arguments

BLData BeadLevelList

array integer specifying which strip/array to plot

x numeric value - x co-ordinate to centre on

y numeric value - y co-ordinate to centre on

xwidth numeric value - width of square

ywidth numeric value - width of square

neighbours Neighbours matrix (optional) - if specified, links will be drawn between neigh-
bours. (See generateNeighbours.)

mark integral vector (optional) - a list of beadIDs to highlight.

markcol The colour used for the highlighted beads.

markpch The colour used for the highlighted beads.

inten logical - if true, plot coloured circles, with shades corresponding to intensities.
Intensities are retrieved using getArrayData, and the arguments below.

low Colour used for low intensities.

high Colour used for high intensities.

what Data to be used - passed to getArrayData.

log Data to be used - passed to getArrayData.

zlim Limits to be used. Supply in form c(0,5).

... Additional arguments passed to getArrayData.

Details

viewBeads plots the beads within the defined square region.

Specifying a neighbours matrix will result in links between neighbours being plotted. Specify-
ing a mark vector of beadIDs will result in the beads with these beadIDs being highlighted with a
blue circular border.

Value

Outputs to the active graphical device.

70 viewBeads

Author(s)

Jonathan Cairns

See Also

generateNeighbours

Examples

##data(BLData)
##o <- findAllOutliers(BLData,2)

##x11()
##viewBeads(BLData, 2, 1000,1200,250,250, mark = o) ## outliers in this ##region are marked in blue
##x11()
##viewBeads(BLData, 2, 1000,1200,250,250, mark = o, inten = FALSE) ## ##removing the intensities makes the outlier locations easier to see

##neighbours <- generateNeighbours(BLData, 2)
##x11()
##viewBeads(BLData, 2, 1000,1200,250,250, neighbours) ## observe that ##there are many missing beads in this region, affecting the neighbours ##algorithm

Index

∗Topic IO
readBeadSummaryData, 61
readBGX, 60
readIllumina, 63
readTIFF, 67

∗Topic classes
BeadLevelList-class, 24
ExpressionSetIllumina, 25

∗Topic datasets
BLData, 9
BSData, 9
ExpressionControlData, 10

∗Topic documentation
beadarrayUsersGuide, 18

∗Topic hplot
boxplotBeads, 19
imageplot, 39
interactivePlots, 41
plotBeadDensities, 47
plotBeadIntensities, 48
plotBeadLocations, 49
plotMA, 50
plotMAXY, 51
plotOnSAM, 52
plotRG, 53
plotTIFF, 54
plotXY, 55
qcBeadLevel, 58
viewBeads, 69

∗Topic manip
arrayNames, 14
beadResids, 17
combineBeadLevelLists, 28
copyBeadLevelList, 29
getArrayData, 38
getVariance, 39
numBeads, 45

∗Topic methods
backgroundCorrect, 16
createBeadSummaryData, 29
findAllOutliers, 32
findBeadStatus, 33
medianNormalise, 43

normaliseIllumina, 44
rankIvariantNormalise, 59
readQC, 66

∗Topic misc
ArrayMask, 12
BASH, 1
BASHCompact, 3
BASHDiffuse, 4
BASHExtended, 6
BGFilter, 7
BGFilterWeighted, 8
chooseClusters, 23
closeImage, 27
denseRegions, 31
generateE, 35
generateNeighbours, 36
HULK, 10
HULKResids, 11
readLocs, 65
setWeights, 68

[,ExpressionSetIllumina-method
(ExpressionSetIllumina), 25

[[,BeadLevelList,ANY,missing-method
(BeadLevelList-class), 24

addArrayMask (ArrayMask), 12
ArrayMask, 12
arrayNames, 14
arrayNames,BeadLevelList-method

(BeadLevelList-class), 24
AssayData, 25

backgroundControlPlot, 15, 21
backgroundCorrect, 16, 16
backgroundCorrect,BeadLevelList,character,double,logical-method

(BeadLevelList-class), 24
backgroundCorrect,BeadLevelList-method

(backgroundCorrect), 16
backgroundCorrect,RGList-method

(backgroundCorrect), 16
BASH, 1, 7, 11, 12, 27
BASHCompact, 1, 3, 3, 5, 23
BASHDiffuse, 1, 3, 4, 4, 6, 23, 32
BASHExtended, 3, 6, 35

71

72 INDEX

beadarrayUsersGuide, 18
BeadChipSummary

(interactivePlots), 41
BeadLevelList, 9–12, 16, 28, 29
BeadLevelList

(BeadLevelList-class), 24
BeadLevelList-class, 24
beadResids, 17
BGFilter, 1, 6, 7, 7–9, 35
BGFilterWeighted, 8
BLData, 9
boxplotBeads, 19
BSData, 9

calculateBeadLevelScores, 15, 20,
43, 57, 58

calculateDetection, 22, 43
chooseClusters, 23
class.ExpressionSetIllumina, 9
class:ExpressionSetIllumina

(ExpressionSetIllumina), 25
clearArrayMask (ArrayMask), 12
closeImage, 23, 27
combine,ExpressionSetIllumina,ANY-method

(ExpressionSetIllumina), 25
combine,ExpressionSetIllumina,ExpressionSetIllumina-method

(ExpressionSetIllumina), 25
combineBeadLevelLists, 28
combineBeadLevelLists,BeadLevelList-method

(BeadLevelList-class), 24
copyBeadLevelList, 29
copyBeadLevelList,BeadLevelList-method

(BeadLevelList-class), 24
createBeadSummaryData, 29

denseRegions, 31
Detection

(ExpressionSetIllumina), 25
Detection,ExpressionSetIllumina-method

(ExpressionSetIllumina), 25
Detection<-

(ExpressionSetIllumina), 25
Detection<-,ExpressionSetIllumina,matrix-method

(ExpressionSetIllumina), 25
dim,BeadLevelList-method

(BeadLevelList-class), 24

eSet, 25–27
ExpressionControlData, 10, 37
ExpressionSetIllumina, 25, 62
ExpressionSetIllumina-class

(ExpressionSetIllumina), 25

exprs,ExpressionSetIllumina-method
(ExpressionSetIllumina), 25

exprs<-,ExpressionSetIllumina,matrix-method
(ExpressionSetIllumina), 25

findAllOutliers, 3, 4, 32
findBeadStatus, 31, 32, 33, 33

generateE, 3–7, 35
generateNeighbours, 3–7, 23, 27, 28,

31, 32, 36, 69, 70
getAnnotation, 37
getArrayData, 32, 38, 69
getArrayData,BeadLevelList-method

(BeadLevelList-class), 24
getControlAnno (getAnnotation), 37
getProbeIntensities

(findBeadStatus), 33
getProbeIntensities,BeadLevelList-method

(findBeadStatus), 33
getVariance, 39
getVariance,ExpressionSetIllumina-method

(ExpressionSetIllumina), 25
gradientPlot

(calculateBeadLevelScores),
20

HULK, 10, 12
HULKResids, 11, 11

imageplot, 39, 40
initialize,BeadLevelList-method

(BeadLevelList-class), 24
initialize,ExpressionSetIllumina-method

(ExpressionSetIllumina), 25
interactivePlots, 41

limmaUsersGuide, 18
lmhPlot, 21, 42

medianNormalise, 43

NoBeads (ExpressionSetIllumina),
25

NoBeads,ExpressionSetIllumina-method
(ExpressionSetIllumina), 25

NoBeads<-
(ExpressionSetIllumina), 25

NoBeads<-,ExpressionSetIllumina,matrix-method
(ExpressionSetIllumina), 25

normaliseIllumina, 44
numBeads, 45
numBeads,BeadLevelList-method

(BeadLevelList-class), 24

INDEX 73

openTIFF (readTIFF), 67
outlierPlot, 21, 46

pData,BeadLevelList-method
(BeadLevelList-class), 24

phenoData,BeadLevelList-method
(BeadLevelList-class), 24

plotBeadDensities, 47
plotBeadIntensities, 48
plotBeadLocations, 49
plotMA, 50, 50
plotMAXY, 51
plotOnSAM, 52
plotRG, 53
plotTIFF, 54
plotXY, 55
poscontPlot, 21, 56
probePairsPlot, 57

qcBeadLevel, 58
QCInfo (ExpressionSetIllumina), 25
QCInfo,ExpressionSetIllumina-method

(ExpressionSetIllumina), 25
QCInfo<- (ExpressionSetIllumina),

25
QCInfo<-,ExpressionSetIllumina,list-method

(ExpressionSetIllumina), 25

rankInvariantNormalise
(rankIvariantNormalise), 59

rankIvariantNormalise, 59
readBeadSummaryData, 61
readBGX, 60
readIllumina, 24, 63
readLocs, 65
readQC, 66
readTIFF, 54, 67
removeArrayMask (ArrayMask), 12

SAMSummary (interactivePlots), 41
se.exprs,ExpressionSetIllumina-method

(ExpressionSetIllumina), 25
se.exprs<-,ExpressionSetIllumina,matrix-method

(ExpressionSetIllumina), 25
setAnnotation, 43, 57
setAnnotation (getAnnotation), 37
setWeights, 68
show,BeadLevelList-method

(BeadLevelList-class), 24
show,ExpressionSetIllumina-method

(ExpressionSetIllumina), 25
showArrayMask (ArrayMask), 12

viewBeads, 69

	BASH
	BASHCompact
	BASHDiffuse
	BASHExtended
	BGFilter
	BGFilterWeighted
	BLData
	BSData
	ExpressionControlData
	HULK
	HULKResids
	ArrayMask
	arrayNames
	backgroundControlPlot
	backgroundCorrect
	beadResids
	beadarrayUsersGuide
	boxplotBeads
	calculateBeadLevelScores
	calculateDetection
	chooseClusters
	BeadLevelList-class
	ExpressionSetIllumina
	closeImage
	combineBeadLevelLists
	copyBeadLevelList
	createBeadSummaryData
	denseRegions
	findAllOutliers
	findBeadStatus
	generateE
	generateNeighbours
	getAnnotation
	getArrayData
	getVariance
	imageplot
	interactivePlots
	lmhPlot
	medianNormalise
	normaliseIllumina
	numBeads
	outlierPlot
	plotBeadDensities
	plotBeadIntensities
	plotBeadLocations
	plotMA
	plotMAXY
	plotOnSAM
	plotRG
	plotTIFF
	plotXY
	poscontPlot
	probePairsPlot
	qcBeadLevel
	rankIvariantNormalise
	readBGX
	readBeadSummaryData
	readIllumina
	readLocs
	readQC
	readTIFF
	setWeights
	viewBeads
	Index

