XDE

October 5, 2010

ExpressionSetList-class

A class for containing a list of ExpressionSets

Description

Each element in the list must be a valid ExpressionSet. The featureNames must be identical for each ExpressionSet.

Objects from the Class

Objects can be created by calls of the form new ("ExpressionSetList", ...).

Slots

.Data: Object of class "list"

Extends

Class "list", from data part. Class "vector", by class "list", distance 2. Class class.AssayData, by class "list", distance 2.

Methods

.integrativeCorrelationFilter signature(object = "ExpressionSetList") Experimental function for filtering an arbitrary list of ExpressionSets by integrative correlation. Genes are excluded that do not exceed the fdr threshold in at least 1 of the studies.

- "[" signature(x = "ExpressionSetList") Subsets each ExpressionSet element in the list.
- coerce signature(from = "list", to = "ExpressionSetList") Coerces a list of ExpressionSet objects to an object of class ExpressionSetList. The validityMethod for the ExpressionSetList class will return an error if the featureNames for each ExpressionSet are not identical.
- dim signature (x="ExpressionSetList") applies dim to each element of the list.

featureNames signature(object = "ExpressionSetList") Accessor for the featureNames

geneCenter signature (object = "ExpressionSetList") See geneCenter

- lapply signature(object="ExpressionSetList") Coerces instance of Expression-SetList to a list and does lapply on the list. Returns an object of class ExpressionSetList
- nSamples signature(x = "ExpressionSetList") Numerical vector giving the number
 of samples in each ExpressionSet

nrow signature (x = "ExpressionSetList") Numerical: number of features or genes

- pData signature(object = "ExpressionSetList") returns a list of data.frames. The elements of the list correspond to the studies in the ExpressionSetList object.
- .pca signature(object = "ExpressionSetList") Runs principal components to generate cross-study summary scores of differential expression in multiple studies. Not meant to be called directly. See xsScores.

```
standardizeSamples signature(object = "ExpressionSetList") See standardizeSamples
studyCenter signature(object = "ExpressionSetList") See studyCenter
zeroNu signature(object = "ExpressionSetList") See zeroNu.
```

Author(s)

R. Scharpf

See Also

XdeMcmc-class, XdeParameter-class

Examples

```
showClass("ExpressionSetList")
data(expressionSetList)
```

XdeMcmc-class Class for storing output from the Bayesian model

Description

Stores output, including the last iteration of the MCMC.

Objects from the Class

```
Objects can be created by calls of the form new ("XdeMcmc", studyNames, featureNames, iterations, seed, output, directory, lastMcmc, posteriorAvg, bayesianEffectSize)
```

Slots

studyNames: Object of class "character"
featureNames: Object of class "character"
iterations: Object of class "numeric"
directory: Object of class "character"
seed: Object of class "integer"
output: Object of class "numeric"
lastMcmc: Object of class "environment"
posteriorAvg: Object of class "NULLorMatrix"
bayesianEffectSize: Object of class "NULLorMatrix"

Methods

\$ signature(x = "XdeMcmc") .standardizedDelta signature(object = "XdeMcmc") bayesianEffectSize signature(object = "XdeMcmc") bayesianEffectSize<- signature(object = "XdeMcmc", value = "matrix")</pre> calculatePosteriorAvg signature(object = "XdeMcmc"): See calculatePosteriorAvg directory signature(object = "XdeMcmc") featureNames signature(object = "XdeMcmc") initialize signature(.Object = "XdeMcmc") iterations signature(object = "XdeMcmc") lastMcmc signature(object = "XdeMcmc") nrow signature(x = "XdeMcmc") output signature(object = "XdeMcmc") plot signature(x = "XdeMcmc") posteriorAvg signature(object = "XdeMcmc") seed signature(object = "XdeMcmc") show signature(object = "XdeMcmc") studyNames signature(object = "XdeMcmc")

Author(s)

R. Scharpf

See Also

The class for storing the data: ExpressionSetList-class and the class that contains default options for fitting the Bayesian model: XdeParameter-class

Examples

```
##See XDE vignette:
## Not run:
openVignette(package="XDE")
```

End(Not run)

XdeParameter-class Container class for storing options of the Bayesian hierarchical model

Description

This class contains initial values for the first iteration of the MCMC, options for saving MCMC chains, options for changing the tuning parameters of the Metropolis-Hastings algorithm, options for changing hyperparameters from their defaults, etc.

```
XdeParameter-class
```

Objects from the Class

Objects can be created by calls of the form new ("XdeParameter", esetList, updates, tuning, hyperparameters, output, iterations, burnin, seed, randomSeed, genes, studies, firstMcmc, specifiedInitialValues, directory, phenotypeLabel, seed, showIterations, verbose, studyNames, one.delta).

Slots

- updates: Object of class numeric. The frequency of updates for each iteration of the chain.
- tuning: Object of class numeric. Tuning parameters for the Metropolis-Hastings proposals
- hyperparameters: Object of class numeric. Hyperparameters for the Bayesian hierarchical model
- output: Object of class numeric. Indicator for whether to save the MCMC chain to file. If the value is zero, the chain is not saved.

iterations: Object of class numeric. The total number of MCMC iterations.

burnin: Object of class logical. If set to FALSE, by default none of the chains will be saved (called for its side-effect of setting the output to zero for each parameter).

notes: Object of class character.

firstMcmc: Object of class environment. Values for the first iteration of the MCMC

seed: Object of class integer. Seed used for simulating random numbers.

- showIterations: Object of class logical. Whether to show the MCMC iteration when fitting the model
- specifiedInitialValues: Object of class logical. If TRUE (the default), the values stored in firstMcmc will be used for the first iteration of the MCMC.
- directory: Object of class character. Specifies where to write the log files
- phenotypeLabel: Object of class character. The name of the binary covariate used for differential expression
- verbose: Object of class logical
- studyNames: Object of class character. Names of the datasets
- one.delta: Logical. If TRUE, a gene is assumed to be differentially in all studies or none of the studies.

Methods

- burnin signature(object = "XdeParameter") logical. See burnin
- burnin<- signature(object = "XdeParameter", value = "logical") logical.
 See burnin</pre>
- directory signature(object = "XdeParameter") character string giving the path or relative path to store log files from the MCMC chain
- directory<- signature(object = "XdeParameter") Path to store log files.</pre>
- firstMcmc signature(object = "XdeParameter") See firstMcmc

firstMcmc<- signature(object = "XdeParameter", value = "environment")</pre>

firstMcmc<- signature(object = "XdeParameter", value = "list")</pre>

hyperparameters signature(object = "XdeParameter") See the XdeParameterClass
vignette

XdeParameter-class

- hyperparameters<- signature(object = "XdeParameter") See the XdeParameterClass
 vignette</pre>
- initialize signature(.Object = "XdeParameter") Method for initializing an instance
 of the class. The default values provided work well in most cases.
- iterations signature(object = "XdeParameter") Accessor for the total number of MCMC
 iterations to run
- iterations<- signature(object = "XdeParameter", value = numeric) The replacement method is useful for setting a different number of iterations.
- iterations<- signature(object = "XdeParameter", value = "integer")</pre>
- output signature(object = "XdeParameter") See also output. This method is also
 defined for class XdeMcmc

output<- signature(object = "XdeParameter") See also output</pre>

- phenotypeLabel signature(object = "XdeParameter") The name of a binary covariate present in each study
- phenotypeLabel<- signature(object = "XdeParameter", value = "character")</pre>
- savedIterations signature(object = "XdeParameter") The number of MCMC iterations written to file. It is the value of the total number of iterations divided by the thinning parameter. See also output
- seed signature(object = "XdeParameter") See seed
- seed<- signature(object = "XdeParameter", value="integer") Replacement method. See also seed.
- show signature(object = "XdeParameter") Produces a short summary of objects that
 are instances of the XdeParameter class
- showIterations signature(object = "XdeParameter") logical
- showIterations<- signature(object = "XdeParameter")</pre>
- studyNames signature(object = "XdeParameter") Names of the high-throughput gene
 expression studies
- studyNames<- signature(object = "XdeParameter")</pre>

thin signature(x = "XdeParameter") See output and thin

thin<- signature(x = "XdeParameter", value = numeric) See thin</pre>

- tuning signature(object = "XdeParameter") See also tuning
- tuning<- signature(object = "XdeParameter")</pre>
- updates signature(object = "XdeParameter") See also updates
- updates<- signature(object = "XdeParameter")</pre>

Author(s)

R. Scharpf

References

R. Scharpf

See Also

ExpressionSetList-class

burnin

Examples

```
showClass("XdeParameter")
##See the XdeParameterClass vignette
```

burnin

Indicator for running a MCMC burnin

Description

When TRUE, log files from MCMC chains are not written to file. When FALSE, log files are written for every parameter by default.

Usage

burnin(object)

Arguments

object An object of class XdeParameter

Value

logical

Author(s)

R. Scharpf

See Also

XdeParameter-class

Examples

6

calculatePosteriorAvg

Calculate the posterior average for indicators of concordant and discordant differential expression

Description

This function calculates the posterior average for indicators of concordant and discordant differential expression from the saved log files. See details.

Usage

```
calculatePosteriorAvg(object, NCONC=2, NDIFF=1, burnin=0)
```

Arguments

object	Object of class XdeMcmc
NCONC	Integer: number of studies for which the gene must be differentially expressed (in the same direction) to be classified as concordant differential expression
NDIFF	Integer: number of studies for which a gene must be up- or down-regulated to be classified as differentially expressed. It is the union of concordant and discordant differential expression.
burnin	Integer: number of MCMC iterations for the burnin. Posterior means are com- puted from the MCMC samples following burnin.

Details

For each iteration,

1. calculate the sign of delta * Delta

2. For each gene, compute the number of positive signs (P) and the number of negative signs (N) (a G x 2 matrix, where G is the number of genes in common across all studies). P + N is <= S, where S is the number of studies.

3. for a given gene, the discordant indicator is simply when P * N is nonzero.

4. The concordant indicator requires P * N = 0 AND $P + N \ge NCONC$, where NCONC is specified by the user.

5. differential expression is simply $|P| + |N| \ge NDIFF$. By default, NDIFF is 1 but can be user-specified.

The posterior average is then computed from the mean over all MCMC iterations.

Value

AGx3 matrix.

Author(s)

RS

See Also

posteriorAvg

empiricalStart Empirical starting values for the MCMC

Description

Empirical starting values for the MCMC are based on data in objects of class ExpressionSetList

Usage

empiricalStart(object, zeroNu = FALSE, phenotypeLabel, one.delta=FALSE, T_THRESH

Arguments

object	An object of class ExpressionSetList
zeroNu	Logical: if TRUE, the nu in the Bayesian model are not modeled – set to zero and not updated in the MCMC. Setting zeroNu to TRUE should be regarded as experimental
phenotypeLab	bel
	character: binary phenotype. phenotypeLabel must be in the varLabels of each ExpressionSet object
one.delta	delta in the Bayesian model is a gene-specific indicator for differential expres- sion. If one.delta is FALSE, we assume that a gene can be differentially ex- pressed in a subset of studies. When TRUE, we assume that a gene is differen- tially expressed in all studies or in none.
T_THRESH	A threshold of t-statistics (calculated row-wise for each study) for determining starting values of the differential expression indicator, delta.

Value

A list containing starting values for the MCMC that are derived from empirical estimates of the data.

Author(s)

R. Scharpf

See Also

zeroNu,XdeParameter-class,ExpressionSetList-class

Examples

expressionSetList Example of ExpressionSetList

Description

Object of class ExpressionSetList containing three studies. Each element in the list is an ExpressionSet

Usage

```
data(expressionSetList)
```

Details

Parmigiani et al. (2004) performed a cross-study analysis of three lung cancer studies. The studies used in this analysis were merged by UniGene identifiers to obtain a set of 3,171 gene. The R experiment data package lungExpression that was developed to facilitate the reproducibility of this analysis contains the three studies as ExpressionSets. Here, we take a random sample of 500 features from one study (the "stanford" study), and split this study into three artificial studies that each contain 4 squamous carcinomas and 3 adenocarcinomas. The three artificial studies are then used to create an instance of the ExpressionSetList class.

See Garber et al. (2001) for the raw data and description of the stanford study.

Source

The experiment data package lungExpression (www.bioconductor.org)

References

Parmigiani et al. (2004) A cross-study comparison of gene expression studies for the molecular classification of lung cancer, Clin Cancer Res, 10(9): 2922-2927

Garber et al. (2001) Diversity of gene expression in adenocarcinoma of the lung, PNAS, 98:13784-13789

Examples

```
data(expressionSetList)
```

firstMcmc

Values for the first MCMC iteration

Description

Accessor method for the values of the first MCMC iteration

Usage

firstMcmc(object)

geneCenter

Arguments

```
object An object of class XdeParameter
```

Value

Returns a list of the values to be used in the first iteration of the MCMC.

Author(s)

R. Scharpf

See Also

XdeParameter-class, lastMcmc

Examples

```
geneCenter
```

Center the expression values for each gene in a study to zero

Description

Mean centers the genes for each study in a list

Usage

```
geneCenter(object)
```

Arguments

object Object of class ExpressionSetList

Value

Object of class ExpressionSetList

Author(s)

R. Scharpf

See Also

studyCenter,ExpressionSetList-class

Examples

```
data(expressionSetList)
centered <- geneCenter(expressionSetList)</pre>
```

10

hyperparameters Accessor for hyperparameters of the Bayesian model

Description

Accessor and replacement methods for hyperparameters of the Bayesian model are provided

Usage

```
hyperparameters (object)
```

Arguments

object An object of class XdeParameter

Details

See the XdeParameterClass vignette for a more detailed discussion. The default values provided when initializing an object of class XdeParameter works well in most instances.

Value

A numerical vector

Author(s)

R. Scharpf

References

R. Scharpf et al., A Bayesian Model for Cross-Study Differential Gene Expression, Technical Report 158, Johns Hopkins University, Department of Biostatistics, 2007

Examples

```
data(expressionSetList)
xlist <- new("XdeParameter", esetList=expressionSetList, phenotypeLabel="adenoVsquamous")
hyperparameters(xlist)</pre>
```

iterations

Description

Number of MCMC iterations

Usage

```
iterations (object)
```

Arguments

object An object of class XdeParameter or XdeMcmc.

Details

For an object of class XdeParameter, iterations specifies the total number of MCMC iterations. Note that by setting the thin parameter to a value greater than 1, the number of MCMC iterations will be greater than the number of saved MCMC iterations (saved iterations = iterations / thin).

For an object of class XdeMcmc (a class that stores output from the MCMC), iterations specifies the number of iterations that were saved.

The replacement method is only defined for the XdeParameter class. The class XdeMcmc is meant to reflect the information in an already run chain, whereas XdeParameter is a class for parameterizing the Bayesian model that has not yet been fit.

Value

An integer

Author(s)

R. Scharpf

See Also

XdeParameter-class, XdeMcmc-class

lastMcmc

MCMC values for the last iteration

Description

MCMC values for the last iteration. Useful if more iterations are needed.

Usage

lastMcmc(object)

output

Arguments

object Object of class XdeMcmc

Value

An environment.

Author(s)

R. Scharpf

See Also

firstMcmc

Examples

output

Options for storing results of the MCMC chains

Description

A numeric vector indicating which chains to write to file and, for those parameters that are written to file, how often the chains should be written to file.

Usage

```
output (object)
```

Arguments

object An object of class XdeParameter or XdeMcmc

Details

Replacement methods are only available for objects of class XdeParameter. Accessor methods are available for objects of class XdeParameter and XdeMcmc.

Value

A named numerical vector. The first element (thin) specifies how often to write chains to file. For instance, if output[1]=2 the chains will be written to file every other iteration. Elements 2 - 22 of the vector are indicators for whether to write the write the chains of the Bayesian parameters to file.

Note

Parameters indexed by gene and study (Delta, Phi, Nu, and sigma2) grow very large quickly.

Author(s)

R. Scharpf

See Also

burnin, XdeParameter-class, XdeMcmc-class

Examples

data(xmcmc)
output(xmcmc)

pairs-methods pairs function for high-throughput data

Description

A convenient wrapper for pairs that uses smoothScatter to plot the density of the points and displays the spearman correlation coefficient of the pairwise scatterplots.

Methods

- **x** = "matrix" Typically a matrix of effect size estimates obtained in each study. Rows are genes, columns are studies.
- x = "data.frame" Typically a data.frame of effect size estimates obtained in each study. Rows are genes, columns are studies.

posteriorAvg	Accessor and replacement methods for posterior averages of differen-
	tial expression

Description

Accessor and replacement methods for objects of class XdeMcmc for posterior averages of differential expression

Usage

```
posteriorAvg(object)
posteriorAvg(object) <- value</pre>
```

14

seed

Arguments

object	Object of class XdeMcmc
value	A matrix of dimension G x 3, where G is the number of genes and 3 are different ways of quantifying differential expression in the context of multiple studies (concordant, discordant, or the union).

Value

A matrix of dimension G x 3, where G is the number of genes and 3 are different ways of quantifying differential expression in the context of multiple studies (concordant, discordant, or the union).

Author(s)

RS

See Also

calculatePosteriorAvg

```
seed
```

Seed for the MCMC

Description

Setting a seed is useful for reproducing MCMC chains

Usage

seed(object)
seed(object) <- value</pre>

Arguments

object	An object of XdeParameter or XdeMcmc
value	Numeric or integer

Details

The seed stored in the slot of an object of class XdeParameter and an object of class XdeMcmc are useful in different ways. For the XdeParameter class, the seed indicates what seed was used to initialize an MCMC chain. By contrast, an object of class XdeMcmc contains a seed that would be useful for running additional iterations – the seed here is guaranteed to be different from the seed that was used to initiate the MCMC.

Value

An integer

Author(s)

R. Scharpf

ssStatistic

Description

Calculate single study estimates of effect size for lists of ExpressionSets

Usage

```
ssStatistic(statistic = c("t", "sam", "z")[1], phenotypeLabel, esetList, ...)
```

Arguments

statistic Character string indicating Welch t-statistic (t), SAM (sam), or a z-statistic (z) phenotypeLabel

	Character string indicating the name of the binary covariate
esetList	An object of class ExpressionSetList
	Not implemented. Potentially additional arguments to the above methods that are implemented in other packages

Details

This function is a wrapper that provides an estimate of effect size for each study (element) in an ExpressionSetList object.

For Welch t-statistic, this function is a wrapper for mt.teststat in the multtest package.

For SAM, this function is a wrapper for the sam function in the siggenes package.

The "z" statistic is a standardized unbiased estimate of effect size (Hedges and Olkin, 1985) – implementation is in the zScores function in the R package GeneMeta.

See the complete references below.

Value

A matrix: rows are genes and columns are studies

Author(s)

R. Scharpf

References

J.K. Choi, U. Yu, S. Kim, and O.J. Yoo (2003), Combining multiple microarray studies and modeling interstudy variation, Bioinformatics, 19(1) I84-I90.

Y. Ge, S. Dudoit & T. P. Speed (2003), Resampling-based multiple testing for microarray data hypothesis Test 12(1): 1-44 (with discussions on 44-77).

L. Lusa R. Gentleman, and M. Ruschhaupt, GeneMeta: MetaAnalysis for High Throughput Experiments

L.V. Hedges and I. Olkin, Statistical Methods for Meta-analysis (1985), Academic Press

Tusher, Tibshirani and Chu (2001), Significance analysis of microarrays applied to the ionizing radiation response, PNAS 2001 98: 5116-5121, (Apr 24).

standardizeSamples

Examples

```
data(expressionSetList)
if(require(siggenes)){
  sam <- ssStatistic("sam", esetList=expressionSetList, phenotypeLabel="adenoVsquamous")
}</pre>
```

standardizeSamples Centers the genes at zero and standardizes the samples to have variance 1

Description

For each study (element) in an ExpressionSetList object, this function centers the genes to have mean zero (rows) and scales the variance of the samples to 1.

Usage

```
standardizeSamples(object, ...)
```

Arguments

object	Object of class ExpressionSetList
	Additional arguments not implemented

Value

An object of class ExpressionSetList

Note

Requires genefilter package

Author(s)

R. Scharpf

studyCenter Center the expression values in a study to zero

Description

Centers each study in a list so that the average expression value of each stuy is zero

Usage

```
studyCenter(object)
```

Arguments

object An object of class ExpressionSetList

18

An object of class ExpressionSetList

Author(s)

R. Scharpf

See Also

geneCenter, ExpressionSetList-class

Examples

```
data(expressionSetList)
centered <- studyCenter(expressionSetList)
lapply(centered, function(object) round(mean(exprs(object)), 4))</pre>
```

symbolsInteresting Useful for changing the look of pairs plots to emphasize concordant or discordant genes

Description

This function can be used to order genes in a matrix by the rank of a statistic and provide different plotting symbols and colors for genes that exceed a certain threshold of the ranking statistic.

Usage

```
symbolsInteresting(rankingStatistic, percentile = 0.9, colors = c("grey50", "roy
```

Arguments

rankingStatistic	
	Any numerical vector
percentile	A percentile of the rankingStatistic – above which a gene would be classified as 'interesting'
colors	character string of length 2: a color for genes not exceeding the percentile and a color for genes exceeding the thresold
symbols	two plotting symbols (numeric or character): symbol for genes not exceeding percentile and symbol for genes exceeding percentile
size	numeric vector of length 2: size of plotting symbol for genes not exceeding percentile and size of plotting symbol for genes exceeding percentile
background	character vector of length 2: background color of plotting symbols for gene not exceeding percentile and for genes exceeding the percentile

Value

order	the order of the rankingStatistic
pch	plotting symbols (same length as rankingStatistic)
col	color of plotting symbols (same length as rankingStatistic)
bg	background color of plotting symbols (same length as rankingStatistic)
cex	size of plotting symbols (same length as rankingStatistic)

thin

Author(s)

R. Scharpf

Examples

thin

How often to write MCMC iterations to file

Description

A value greater than one means that not every MCMC iteration is written to file.

Usage

 $thin(x, \ldots)$

Arguments

Х	An object of class XdeParameter
	not implemented

Details

thin is an accessor for the first element in the vector returned by the method output.

The replacement method replaces the first element in the output vector.

Value

An integer.

Author(s)

R. Scharpf

See Also

output

tuning

Description

Accessor and replacement methods for tuning the Metropolis-Hastings proposal parameters.

Usage

```
tuning(object)
```

Arguments

object Object of class XdeParameter

Details

See the XdeParameterClass vignette

Value

A numerical vector

Author(s)

R. Scharpf

updates

Frequency of updating a parameter per MCMC iteration

Description

Accessor and replacement methods for the class XdeParameter are available. Specifying an update of integer N for a Metropolis-Hastings parameter means that N values are proposed for that parameter for each MCMC iteration.

Usage

```
updates (object)
```

Arguments

object An object of class XdeParameter

Details

See the XdeParameterClass vignette

Value

A numerical vector

xde

Author(s)

R. Scharpf

xde

Fit the Bayesian hierarchical model for cross-study differential gene expression

Description

Fits the Bayesian hierarchical model for cross-study differential gene expression.

Usage

xde(paramsMcmc, esetList, outputMcmc, batchSize=NULL, NCONC=2, center=TRUE)

Arguments

paramsMcmc	Object of class XdeParameter
esetList	Object of class ExpressionSetList
outputMcmc	Object of class XdeMcmc (optional)
batchSize	Integer or NULL. The number of iterations written to log files before summa- rizing the chain and then removing. Experimental.
NCONC	The number of studies for which a gene must be differentially expressed in the same direction to be considered as concordantly differentially expressed.
center	Logical. If TRUE, each study is centered to have mean zero.

Details

Details for fitting the Bayesian model are discussed elsewhere (see citation below and XdeParameterClass vignette)

If an integer is specified for the batchSize, summary statistics for the log-files are calculated for every batchSize iterations. The log files are then removed and the next iteration will start a new log file. This allows one to do many iterations without creating enormous log files. This is only reasonable to do if one has already assessed convergence.

Value

Object of class XdeMcmc

Note

See the vignettes for XdeParameterClass and XDE.

Author(s)

R. Scharpf

хтстс

References

R. Scharpf et al., A Bayesian Model for Cross-Study Differential Gene Expression, Technical Report 158, Johns Hopkins University, Department of Biostatistics, 2007

See Also

XdeMcmc-class, XdeParameter-class, ExpressionSetList-class

Examples

```
## Not run:
    data(expressionSetList)
    xparam <- new("XdeParameter", phenotypeLabel="adenoVsquamous", esetList=expressionSetLi
    iterations(xparam) <- 10
    fit <- xde(xparam, esetList=expressionSetList)
## End(Not run)
```

```
xmcmc
```

Object of class XdeMcmc

Description

An object of class XdeMcmc is created by fitting the Bayesian hierarchical model to the expressionSetList example data.

Usage

```
data(xmcmc)
```

Details

The xmcmc data example was obtained as described in the XDE vignette.

Examples

```
data(xmcmc)
xmcmc

##ordinarily, one should not need to change the directory in an object
##of class XdeMcmc -- therefore, a replacment method is not defined
pathToLogFiles <- system.file("logFiles", package="XDE")
xmcmc@directory <- pathToLogFiles

##The $ operator can be used to extract chains. For instance, here we
##extract the c2 chain
c2 <- xmcmc$c2
if(require(coda)){
    plot(as.mcmc(c2))
}</pre>
```

xsScores

Description

Alternative cross-study scores of differential expression

Usage

```
xsScores(statistic, N)
```

Arguments

statistic	a matrix of study-specific estimates of effect size. Rows are genes and columns are studies.
Ν	numerical vector: the number of samples in each study (the length should be the number of columns in statistic)

Value

A matrix of cross-study scores for differential expression ("diffExpressed"), concordant differential expression, and discordant differential expression.

Author(s)

R. Scharpf

References

J.K. Choi, U. Yu, S. Kim, and O.J. Yoo (2003), Combining multiple microarray studies and modeling interstudy variation, Bioinformatics, 19(1) I84-I90.

E. Garrett-Mayer, G. Parmigiani, X. Zhong, L. Cope, and E. Gabrielson (2007), Cross-study validation and combined analysis of gene expression microarray data, Biostatistics, September

R. Scharpf et al., A Bayesian Model for Cross-Study Differential Gene Expression, Technical Report 158, Johns Hopkins University, Department of Biostatistics, 2007

See Also

the GeneMeta package, ssStatistic

Examples

```
data(expressionSetList)
t <- ssStatistic(statistic="t", phenotypeLabel="adenoVsquamous", esetList=expressionSet
tScores <- xsScores(t, N=nSamples(expressionSetList))</pre>
```

zeroNu

Description

Nu is the average expression value in each study.

Usage

```
zeroNu(object, ...)
```

Arguments

object	object of class ExpressionSetList
•••	Not implemented

Details

This function should be regarded as experimental.

The nu parameter models the average expression value in each study. Modeling nu allows one to estimate differential expression across studies that may differ in location and scale (as often occurs when multiple platforms are used). The price to pay for modeling nu are additional assumptions (the nu\'s are assumed Gaussian) and a more heavily parameterized model.

The method zeroNu allows one to fit the Bayesian model without estimating nu:

- each gene is centered at zero
- initial values for the first MCMC are chosen on the basis of empirical starting values
- the initial values for a and rho are set to zero.
- the nu, a, gamma2, and rho parameters are not updated during MCMC

Value

object of class XdeParameter

Author(s)

R. Scharpf

References

R. Scharpf et al. (2007), A Bayesian Model for Cross-Study Differential Gene Expression, Technical Report 158, Johns Hopkins University, Department of Biostatistics

Index

*Topic classes ExpressionSetList-class, 1 XdeMcmc-class, 2 XdeParameter-class, 3 *Topic datasets expressionSetList,9 xmcmc, 22 *Topic **dplot** symbolsInteresting, 18 *Topic **hplot** pairs-methods, 14 *Topic **htest** xsScores, 23 *Topic **manip** calculatePosteriorAvg, 7 *Topic methods burnin,6 empiricalStart,8 firstMcmc,9 geneCenter, 10 hyperparameters, 11 iterations, 12 lastMcmc, 12 output, 13 pairs-methods, 14 posteriorAvg, 14 seed, 15 ssStatistic, 16 standardizeSamples, 17 studyCenter, 17 thin, 19 tuning, 20 updates, 20zeroNu, 24 *Topic models xde, 21 xsScores, 23 *Topic **multivariate** xde, 21 .integrativeCorrelationFilter, ExpressibinSetLorst, XnderMound-method (ExpressionSetList-class), 1 .standardizedDelta,XdeMcmc-method

(XdeMcmc-class), 2 [,ExpressionSetList-method (ExpressionSetList-class), 1 \$ (XdeMcmc-class), 2 \$,XdeMcmc-method(XdeMcmc-class), 2 bayesianEffectSize (XdeMcmc-class), 2 bayesianEffectSize,XdeMcmc-method (XdeMcmc-class), 2 bayesianEffectSize<-(XdeMcmc-class), 2 bayesianEffectSize<-,XdeMcmc,matrix-method</pre> (XdeMcmc-class), 2 burnin, 4, 6, 14 burnin, XdeParameter-method (XdeParameter-class), 3 burnin<-(burnin),6</pre> burnin<-,XdeParameter,logical-method</pre> (XdeParameter-class), 3 calculateBayesianEffectSize (XdeMcmc-class), 2 calculateBayesianEffectSize,XdeMcmc-method (XdeMcmc-class), 2 calculatePosteriorAvg, 3, 7, 15 calculatePosteriorAvg,XdeMcmc-method (XdeMcmc-class), 2 class.AssayData, 1 coerce,list,ExpressionSetList-method (ExpressionSetList-class),

dim, ExpressionSetList-method (ExpressionSetList-class), directory (XdeMcmc-class), 2 (XdeMcmc-class), 2 directory, XdeParameter-method (XdeParameter-class), 3

1

INDEX

directory<-(XdeParameter-class), 3 directory<-,XdeParameter-method (XdeParameter-class), 3 empiricalStart,8 expressionSetList,9 ExpressionSetList-class, 3, 5, 8, 10, list,*l* 18,22 ExpressionSetList-class, 1 featureNames, ExpressionSetList-method (ExpressionSetList-class), 1 nSamples featureNames,XdeMcmc-method (XdeMcmc-class), 2 firstMcmc, 4, 9, 13 firstMcmc,XdeParameter-method (XdeParameter-class), 3 firstMcmc<-(firstMcmc), 9</pre> firstMcmc<-,XdeParameter,environment-(XdeParameter-class), 3 firstMcmc<-,XdeParameter,list-method</pre> (XdeParameter-class), 3 geneCenter, 1, 10, 18 geneCenter, ExpressionSetList-method (ExpressionSetList-class), 1 hyperparameters, 11 hyperparameters, XdeParameter-method (XdeParameter-class), 3 hyperparameters<-(hyperparameters), 11 hyperparameters <-, XdeParameter-method (XdeParameter-class), 3 1 initialize, XdeMcmc-method (XdeMcmc-class), 2 initialize, XdeParameter-method (XdeParameter-class), 3 iterations, 12 iterations, XdeMcmc-method (XdeMcmc-class), 2 iterations, XdeParameter-method (XdeParameter-class), 3 iterations<-(iterations), 12 iterations <-, XdeParameter, integer-methodot, XdeMcmc, ANY-method (XdeParameter-class), 3 iterations <-, XdeParameter, numeric-methpddot, XdeMcmc-method (XdeParameter-class), 3

lapply, ExpressionSetList-method (ExpressionSetList-class), lastMcmc, 10, 12 lastMcmc,XdeMcmc-method (XdeMcmc-class), 2 lastMcmc<-(lastMcmc), 12</pre> nrow,ExpressionSetList-method (ExpressionSetList-class), nrow,XdeMcmc-method (XdeMcmc-class), 2 (ExpressionSetList-class), nSamples, ExpressionSetList-method (ExpressionSetList-class), method output, 5, 13, 19 output, XdeMcmc-method (XdeMcmc-class), 2 output, XdeParameter-method (XdeParameter-class), 3 output<-(output), 13 output<-,XdeParameter-method</pre> (XdeParameter-class), 3 pairs, data.frame-method (pairs-methods), 14 pairs, matrix-method (pairs-methods), 14 pairs-methods, 14 pca,ExpressionSetList-method (ExpressionSetList-class), pData, ExpressionSetList-method (ExpressionSetList-class), phenotypeLabel (XdeParameter-class), 3 phenotypeLabel, XdeParameter-method (XdeParameter-class), 3 phenotypeLabel <-(XdeParameter-class), 3 phenotypeLabel <-, XdeParameter, character-method (XdeParameter-class), 3 (XdeMcmc-class), 2 (XdeMcmc-class), 2

26

INDEX

posteriorAvg, 7, 14 posteriorAvg,XdeMcmc-method (XdeMcmc-class), 2 posteriorAvg<-(posteriorAvg), 14</pre> posteriorAvg<-,XdeMcmc,matrix-method thin<-,XdeParameter,numeric-method</pre> (XdeMcmc-class), 2 savedIterations (XdeParameter-class), 3 savedIterations, XdeParameter-method (XdeParameter-class), 3 seed. 5. 15 seed, XdeMcmc-method (XdeMcmc-class), 2 seed,XdeParameter-method (XdeParameter-class), 3 seed<-(seed), 15 seed<-,XdeParameter,integer-method</pre> (XdeParameter-class), 3 seed<-,XdeParameter,numeric-method</pre> (XdeParameter-class), 3 show, XdeMcmc-method (XdeMcmc-class), 2 show, XdeParameter-method (XdeParameter-class), 3 showIterations (XdeParameter-class), 3 showIterations,XdeParameter-method (XdeParameter-class), 3 showIterations<-(XdeParameter-class), 3 showIterations<-,XdeParameter-method zeroNu,ExpressionSetList-method (XdeParameter-class), 3 ssStatistic, 16, 23 standardizeSamples, 2, 17 standardizeSamples, ExpressionSetList-method (ExpressionSetList-class), studyCenter, 2, 10, 17 studyCenter, ExpressionSetList-method (ExpressionSetList-class), studyNames (XdeParameter-class), 3 studyNames,XdeMcmc-method (XdeMcmc-class), 2 studyNames,XdeParameter-method (XdeParameter-class), 3 studyNames<-(XdeParameter-class), 3 studyNames<-,XdeParameter-method (XdeParameter-class), 3 symbolsInteresting, 18

thin. 5. 19 thin,XdeParameter-method (XdeParameter-class), 3 thin<-(thin), 19 (XdeParameter-class), 3 tuning, 5, 20 tuning, XdeParameter-method (XdeParameter-class), 3 tuning<-(tuning), 20</pre> tuning<-,XdeParameter-method</pre> (XdeParameter-class), 3 updates, 5, 20updates, XdeParameter-method (XdeParameter-class), 3 updates <- (updates), 20 updates<-,XdeParameter-method (XdeParameter-class), 3

```
vector, 1
```

```
xde, 21
XdeMcmc-class, 2, 12, 14, 22
XdeMcmc-class, 2
XdeParameter-class, 2, 3, 6, 8, 10, 12,
        14,22
XdeParameter-class, 3
xmcmc, 22
xsScores, 2, 23
```

zeroNu, 2, 8, 24 (ExpressionSetList-class),