HELP

October 5, 2010

base.stacking.thermodynamics
Base-stacking thermodynamic parameters

Description

Unified thermodynamic parameters (delta-S and delta-H values) for nearest-neighbor base stacking calculations

Usage

data(base.stacking.thermodynamics)

Format

A matrix with 2 columns and 16 rows. Column 1 indicates enthalpic parameters (dH) and column 2 indicates entropic parameters (dS). Rows indicate all possible 2bp combinations of "A", "T", "C", and "G" (e.g. "AC")

Source

Allawi, H.T. and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA, *Biochemistry*, **36**, 10581-10594.

Examples

data(base.stacking.thermodynamics)

calcGC-methods Calculate GC percent (methods)

Description

Methods for calculating GC percent from oligonucleotide sequences

Methods

- **x** = "missing" Handle empty function call
- **x** = "**NULL**" Handle empty function call
- **x** = "character" Handle character input
- x = "ExpressionSet" Handle input of an object of class ExpressionSet

See Also

calcGC

calcGC

Calculate GC percent

Description

Function to calculate GC percent from a nucleotide sequence input

Usage

calcGC(x, ...)

Arguments

Х	characters containing nucleotide sequence (ex: '"ATCGGAA"') or an object of class ExpressionSet
	Other arguments passed to methods:
	<pre>'allow' vector of characters specifying what other characters to allow in se- quence (default is '"N"')</pre>

Value

Returns a numerical value (from '0' to '1') indicating the C+G content of the sequence, corresponding to the fraction of (C+G)/(A+T+C+G...). A value of 'NA' is returned if the function encounters an error that prevents proper calculation of GC percent.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

calcPrototype-methods

See Also

calcGC-methods, calcTm

Examples

```
#demo(pipeline,package="HELP")
```

```
calcGC("AAAACGCG")
calcGC(sequence="cXgXcXgXcXgX",allow="X")
```

calcPrototype-methods

Calculate prototype (methods)

Description

Methods for calculating prototype ([trimmed] mean) across all samples

Methods

x = "**missing**" Handle empty function call

- x = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive data from AssayData.
- **x** = "vector" Handle vector input as a matrix
- **x** = "matrix" Handle matrix input

Author(s)

Mark Reimers (<mreimers@vcu.edu>), Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

calcPrototype

calcPrototype Calculate prototype

Description

Calculates prototype (trimmed mean) across all samples

Usage

```
calcPrototype(x, ...)
```

Arguments

Х	a numeric matrix, where each column represents a different sample
	Arguments to be passed to methods (see calcPrototype-methods):
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'samples' which samples to use as data. Can be a vector of characters match- ing sample names, integers indicating which samples to choose, or a mix- ture of the two. If 'NULL' (default), all samples will be used.
	<pre>'center' logical; if 'TRUE' (default) samples will be mean-centered before protototype calculation. If 'FALSE', this mean-centering step will be skipped</pre>
	'trim' the fraction (0 to 0.5, default is 0.1) of observations to be trimmed from each end of each row and column in x before the mean is computed.
	'verbose' logical; if 'TRUE' (default) progress will be output to screen. If 'FALSE', no output will be displayed.

'...' other arguments to be passed to mean. See mean.

Value

Returns a vector of numerical data, representing the prototype ([trimmed] mean) of all samples in х.

Author(s)

Mark Reimers(<mreimers@vcu.edu>), Reid F. Thompson(<rthompso@aecom.yu.edu>)

See Also

calcPrototype-methods, mean

Examples

```
#demo(pipeline,package="HELP")
```

```
x <- matrix(data=rep(1:1000,10),nrow=1000,ncol=10)</pre>
x <- x*(sample(1:100/100,size=10000,replace=TRUE))</pre>
x <- t(t(x) - 1000 * (1:10))
x[c(1:10,991:1000),]
x.avg <- calcPrototype(x)</pre>
x.avg[c(1:10,991:1000)]
```

```
#rm(x,x.avg)
```

calcTm-methods Calculate Tm (methods)

Description

Methods for calculating melting temperature (Tm) of nucleotide sequences

calcTm

Methods

x = "**missing**" Handle empty function call

x = "**NULL**" Handle empty function call

x = "character" Handle character input

x = "ExpressionSet" Handle input of an object of class ExpressionSet

See Also

calcTm

calcTm	Calculate Tm		
--------	--------------	--	--

Description

Calculate melting temperature (Tm) using the nearest-neighbor base-stacking algorithm and the unified thermodynamic parameters.

Usage

calcTm(x, ...)

Arguments

Х	characters containing nucleotide sequences (ex: '"ATCGGAA"') or an object of class ExpressionSet
	Additional arguments passed to methods:
	<pre>'strandl.concentration' numeric value specifying concentration of strand</pre>
	<pre>'strand2.concentration' numeric value specifying concentration of strand 2 (default is 2e-07)</pre>
	<pre>'method' character value specifying the Tm algorithm to use (default is '"nearest-neighbor"</pre>

Value

Returns a numerical value indicating the predicted melting temperature (Tm) of the sequence in degrees Celsius. A value of 'NA' is returned if the function encounters an error that prevents proper Tm calculation.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

References

Allawi, H.T. and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA, *Biochemistry*, **36**, 10581-10594.

...

See Also

calcTm-methods, base.stacking.thermodynamics, calcGC

Examples

#demo(pipeline,package="HELP")

```
calcTm("GTGTGGCTACAGGTGGGCCGTGGCGCACCTAAGTGAGGACAGAGAACAAC")
calcTm("GTGTGGCTACAGGTGGGCCGTGGCGCACCTAAGTGAGGACAGAGAACAAC", strandl.concentration=1E-5, st
```

combineData-methods

Combine data (methods)

Description

Methods for calculating trimmed and/or weighted means of groups of rows in a given data matrix.

Methods

- x = "missing", y = "missing", w = "missing" Handle empty function call
- **x** = "**vector**", **y** = "**missing**", **w** = "**missing**" Handle partially empty function call. Reinterpret with default parameters instead of missing values.
- **x** = "**vector**", **y** = "**missing**", **w** = "**vector**" Handle partially empty function call. Reinterpret with default parameters instead of missing values.
- x = "vector", y = "vector", w = "missing" Handle partially empty function call. Reinterpret with default parameters instead of missing values.
- **x** = "**vector**", **y** = "**vector**" Handle input of three vectors specifying data, grouping, and weighting information, respectively. Note that the data and weighting inputs are handled as matrices.
- **x** = "**matrix**", **y** = "**vector**", **w** = "**missing**" Handle partially empty function call. Reinterpret with default parameters instead of missing values.
- **x** = "**matrix**", **y** = "**vector**", **w** = "**matrix**" Handle input of one matrix, one vector, and one matrix specifying data, grouping, and weighting information, respectively.
- x = "ExpressionSet", y = "missing", w = "missing" Handle input of an object of class ExpressionSet. Derive grouping and weighting data from featureData and AssayDataElement, respectively.
- x = "ExpressionSet", y = "vector", w = "missing" Handle input of an object of class ExpressionSet and a vector specifying grouping information. Derive weighting data from codeAssayDataElement.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

combineData

combineData Combine data

Description

Calculate trimmed and/or weighted means of groups of rows in a given data matrix.

Usage

combineData(x, y, w, ...)

Arguments

Х	a numeric matrix containing the values whose trimmed and/or weighted mean is to be computed. Each column is treated independently.
У	a vector describing the discrete groups used to divide the elements of x. If y is missing then all elements of x are handled together.
W	a matrix of weights the same dimensions as x giving the weights to use for each element of x. If w is missing then all elements of x are given the same weight.
	Arguments to be passed to methods (see combineData-methods):
	'trim' the fraction (0 to 0.5, default is 0) of observations to be trimmed from each group of rows in x according to y.
	'na.rm' logical; if 'TRUE', missing values are removed from x and y and z. If 'FALSE' any missing values cause an error.
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'feature.group' which element of featureData to use as binning vari- able (default is NULL). Can be a character matching varLabel or simply an integer indicating which feature to choose. See getFeatures.
	'element.weight' which element of AssayData to use for a given ExpressionSet input. If NULL (default), weighting is not performed.
	'feature.weight' which element of featureData to use as weighting variable (default is NULL). Can be a character matching varLabel or simply an integer indicating which feature to choose. See getFeatures.
	'samples' which samples to use as data. Can be a vector of characters match- ing sample names, integers indicating which samples to choose, or a mix- ture of the two. If 'NULL' (default), all samples will be used.
	'' other arguments not handled at this time.

Value

Returns a matrix of combined numerical data, where each row represents the summary of a group of elements from the corresponding column in x.

Note

Each column in data matrix treated separately.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

combineData-methods, mean, weighted.mean

Examples

```
#demo(pipeline,package="HELP")
```

```
x <- 1:100
combineData(x,w=x/100)
weighted.mean(x,w=x/100)
y <- sample(c("a","b","c",1:3),size=100,replace=TRUE)
combineData(cbind(x,x,2*x),y,trim=0.5)
#rm(x,y)
```

createWiggle-methods

Create wiggle track (methods)

Description

Methods for creating wiggle tracks

Methods

- x = "missing", y = "missing" Handle empty function call
- x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Derive features from FeatureData.
- x = "ExpressionSet", y = "matrix" Handle input of an object of class ExpressionSet. Derive features from matrix input

x = "**vector**", **y** = "**matrix**" Handle vector input

x = "matrix", y = "matrix" Handle matrix input

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

createWiggle

createWiggle Create wiggle track

Description

Create and write a wiggle track (UCSC Genome Browser format) to flat file

Usage

createWiggle(x, y, ...)

Arguments

Х	matrix of numerical data, where each column represents data for an individual wiggle track. x can also be of class "ExpressionSet".
У	an additional matrix of numerical data with columns corresponding to chr, start, and end, respectively.
	Arguments to be passed to methods (see createWiggle-methods):
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'feature.chr' which element of featureData to use as chromosomal information (default is '"CHR"'). Can be a character matching varLabel or simply an integer indicating which feature to choose.
	'feature.start' which element of featureData to use as start posi- tions (default is '"START"'). Can be a character matching varLabel or simply an integer indicating which feature to choose.
	<pre>'feature.stop' which element of featureData to use as end positions (default is '"STOP"'). Can be a character matching varLabel or simply an integer indicating which feature to choose.</pre>
	'samples' which sample(s) to use as data. Can be a vector of characters matching sample names, integers indicating which samples to choose, or a mixture of the two. If 'NULL' (default), all samples will be used.
	'colors' vector of colors, indicates which colors to use for which wiggle track
	'file' location of file to write wiggle track information; if '""', wiggle track prints to the standard output connection: see cat.
	'append' logical; if 'TRUE', the output is appended to an existent wiggle track file. If 'FALSE' (default), a new file with a new header is created and any existing file of the same name is destroyed.
	'na.rm' logical; if 'TRUE' (default), missing values are removed from data. If 'FALSE' any missing values cause an error
	<pre>'sep' a string used to separate columns. Using 'sep = "\t"' (default) gives tab-delimited output.</pre>
	'' other arguments to be passed to cat. See cat.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

References

UCSC Genome Browser, http://genome.ucsc.edu/goldenPath/help/customTrack. html: Kent, W.J., Sugnet, C. W., Furey, T. S., Roskin, K.M., Pringle, T. H., Zahler, A. M., and Haussler, D. The Human Genome Browser at UCSC. *Genome Res.* **12**(6), 996-1006 (2002).

See Also

write, cat

Examples

```
#demo(pipeline,package="HELP")
```

```
chr <- rep("chr1", 500)
start <- (1:500)*200
end <- start+199
data <- sample(5*(1:10000/10000)-2, size=500)
data <- cbind(data, abs(data), -1*data)
colnames(data) <- c("data", "abs", "opposite")
createWiggle(data, cbind(chr, start, end))
#rm(chr, start, end, data)</pre>
```

exprs2-methods	Retrieve microarray data (for signal channel 2) from ExpressionSets
	(methods)

Description

Methods for accessing (and/or assigning) data for signal channel 2 in a given ExpressionSet object

Methods

```
object = "missing" Handle empty function call
```

object = "ExpressionSet" Handle input of an object of class ExpressionSet

object = "ExpressionSet", value = "missing" Handle empty function call

object = "ExpressionSet", value = "matrix" Handle input of an object of class ExpressionSete

See Also

exprs2

exprs2

Description

Access (and/or assign) data for signal channel 2 in a given ExpressionSet object

Usage

```
exprs2(object)
exprs2(object) <- value</pre>
```

Arguments

object	Object of class ExpessionSet
value	Matrix with rows representing features and columns representing samples

Value

exprs2 returns a (usually large!) matrix of values

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

Examples

#demo(pipeline,package="HELP")

fuzzyMatches-methods

Fuzzy matching (methods)

Description

Methods for matching and reinterpreting a vector in terms of a second vector, essentially using the second vector as a key to interpreting the first.

Methods

x = "missing", y = "missing" Handle empty function call
x = "vector", y = "missing" Handle empty function call
x = "vector", y = "NULL" Handle empty function call
x = "vector", y = "vector" Handle input of two vectors.

x = "NULL", y = "vector" Handle empty function call

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

fuzzyMatches

fuzzyMatches Fuzzy matching

Description

Match and reinterpret a vector in terms of a second vector, essentially using the second vector as a key to interpret the first.

Usage

fuzzyMatches(x, y, ...)

Arguments

Х	vector, the values to be matched.
У	vector, the values to be matched against.
•••	Arguments to be passed to methods (see getSamples-methods):
	'strict' logical indicating whether or not to allow restrict matching. If 'FALSE', numerical indices in x can reference values in y. If 'TRUE' (default), only exact matches of values in x and y will be used.
	'keep' logical indicating whether or not to preserve non-matching values from x (when strict = FALSE). If 'TRUE' (default), all values in x will be returned with those that match values in y replaced by the corresponding values in y. If 'FALSE', non-matching values will be removed.
	'alias' logical indicating whether or not to return aliased values (default is 'TRUE'). If 'FALSE', numerical indices will be returned with a value of nomatch for non-matching values in x.
	<pre>'match.all' character value, specifying a special value to be interpreted as a match for ALL values in y (default is '" * "'). Any occurrence of match.all in x will be replaced by all values in y.</pre>
	'nomatch' numerical, specifying a value for non-matching values in codex when strict = FALSE, keep = TRUE, and alias = FALSE.
	'na.rm' a logical value indicating whether NA values should be stripped be- fore the computation proceeds (default is 'TRUE'). If 'FALSE' any missing values in x will cause an error and missing values in codey may cause un- expected behavior.
	• • • • • • • • • • • • • • • • • • •

'...' other arguments not handled at this time.

Details

This function employs multiple stages of matching between two vectors. First, the values in x are matched against y to find any exact matches. Next, numerical values in x are used to retrieve the corresponding positions in y. All unmatched values may be retained or dropped (depending on the value of keep), and a list of unique values is returned. Note that a value of match.all in x will be interpreted as a match for ALL values in y, and therefore replaced with the contents of y.

getFeatures-methods

Value

Returns a vector of unique values in x, that match values in y according to the parameters described above.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

fuzzyMatches-methods, match

Examples

```
a <- c(1, "four", "missing")
b <- c("one", "two", "three", "four")
fuzzyMatches(a, b)
fuzzyMatches(a, b, strict=FALSE)
fuzzyMatches(a, b, strict=FALSE, alias=FALSE)
fuzzyMatches(a, b, strict=FALSE, keep=FALSE)
```

getFeatures-methods

Get features (methods)

Description

Methods for fetching a subset of features from a given data structure

Methods

- x = "missing", y = "missing" Handle empty function call
- x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Select all feature data.
- x = "ExpressionSet", y = "NULL" Handle input of an object of class ExpressionSet. Select all feature data.
- x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Select a subset of features.
- x = "AnnotatedDataFrame", y = "missing" Handle input of an AnnotatedDataFrame object. Select all feature data.
- x = "AnnotatedDataFrame", y = "NULL" Handle input of an AnnotatedDataFrame object. Select all feature data.
- x = "AnnotatedDataFrame", y = "vector" Handle input of an AnnotatedDataFrame object. Select a subset of features.
- **x** = "**vector**", **y** = "**missing**" Handle input of a vector (interpreted as a matrix). Select all feature data
- **x** = "**vector**", **y** = "**NULL**" Handle input of a vector (interpreted as a matrix). Select all feature data

- **x** = "**vector**", **y** = "**vector**" Handle input of two vectors specifying feature data and feature subset information, respectively.
- **x** = "**matrix**", **y** = "**vector**" Handle input of a matrix and a vector specifying feature data and feature subset information, respectively.

Author(s)

```
Reid F. Thompson (<rthompso@aecom.yu.edu>)
```

See Also

getFeatures

getFeatures Get features (methods)

Description

Fetch a subset of features from a given data structure

Usage

getFeatures(x, y, ...)

Arguments

Х	the matrix of feature data to subset. If x is a vector it is interpreted as a matrix. x can also be of class "ExpressionSet" or an "AnnotatedDataFrame" object.
У	which feature(s) to use. Can be a vector of characters matching feature names, integers indicating which features to choose, or a mixture of the two. If not supplied (or if equivalent to '" * "'), all features will be used.
	other arguments passed are not handled at this time.

Value

Returns a matrix of values corresponding to a subset of features from the data structure supplied, where columns correspond to features. Function halts if no features to return.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

getFeatures-methods

Examples

```
data(sample.ExpressionSet)
df <- data.frame(x=1:500,y=501:1000, row.names=featureNames(sample.ExpressionSet))
featureData(sample.ExpressionSet) <- new("AnnotatedDataFrame", data=df, dimLabels=c("feat
getFeatures(sample.ExpressionSet, "y")[1:10]</pre>
```

getSamples-methods Get samples (methods)

Description

Methods for fetching subsets of samples from various data structures

Methods

- **x** = "**missing**", **y** = "**missing**" Handle empty function call
- x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Select data for all samples.
- x = "ExpressionSet", y = "NULL" Handle input of an object of class ExpressionSet. Select data for all samples.
- x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Select data for a subset of samples.
- **x** = "**vector**", **y** = "**missing**" Handle input of a vector (interpreted as a matrix). Select data for all samples.
- **x** = "**vector**", **y** = "**NULL**" Handle input of a vector (interpreted as a matrix). Select data for all samples.
- x = "vector", y = "vector" Handle input of two vectors specifying data and sample subset information, respectively.
- x = "matrix", y = "missing" Handle input of a matrix. Select data for all samples.
- x = "matrix", y = "NULL" Handle input of a matrix. Select data for all samples.
- **x** = "**matrix**", **y** = "**vector**" Handle input of a matrix and a vector specifying data and sample subset information, respectively.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

getSamples

getSamples Get samples

Description

Fetch a subset of samples from a given data structure

Usage

```
getSamples(x, y, ...)
```

Arguments

х	the matrix of sample data to subset. If x is a vector it is interpreted as a matrix. x can also be of class "ExpressionSet".
У	which sample(s) to use as data. Can be a vector of characters matching sample names, integers indicating which samples to choose, or a mixture of the two. If not supplied, all samples will be used.
	Arguments to be passed to methods (see getSamples-methods):
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'order' vector of characters, specifying on which column(s) to order the sample data. If 'NULL' (default), the data will be returned without ordering enforced.
	'' other arguments passed are not handled at this time.

Value

Returns a matrix of values corresponding to a subset of samples from the data supplied, where columns correspond to samples. Function halts if no samples to return.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

getSamples-methods

Examples

```
data(sample.ExpressionSet)
se.ABC <- getSamples(sample.ExpressionSet, c("A", "B", "C"), element="se.exprs")
se.ABC[1:10,]</pre>
```

plotBins-methods Plot bins (methods)

Description

Methods for plotting densities of multiple bins of data, divided by a sliding window approach

Methods

x = "**missing**", **y** = "**missing**" Handle empty function call

- **x** = "**matrix**", **y** = "**missing**" Handle matrix input, reinterpret function call with two vector input if matrix has two columns, otherwise handle as empty function call
- x = "vector", y = "missing" Handle empty function call
- x = "vector", y = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive binning information from this class but use data from a vector input.

plotBins

- **x** = "**vector**", **y** = "**vector**" Handle input of two vectors specifying data and binning information, respectively.
- x = "matrix", y = "matrix" Handle matrix input, reinterpret function call with vector input
- **x** = "matrix", **y** = "vector" Handle matrix input, reinterpret function call with vector input
- x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Derive both data and binning information from a single object.
- x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Derive
 data from this class but use binning information from a vector input.
- x = "ExpressionSet", y = "ExpressionSet" Handle input of two objects of class ExpressionSet. Derive data and binning information from each one, respectively.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

plotBins

	plotBins	Plot bins		
--	----------	-----------	--	--

Description

Plot densities of multiple bins of data, divided by a sliding window approach

Usage

plotBins(x, y, ...)

Arguments

Х	the vector of numerical data to be plotted. If x is a matrix it is interpreted as a vector. x can also be of class "ExpressionSet".
У	an additional vector of numerical data to be used for binning. If y is a matrix it is interpreted as a vector. y can also be of class "ExpressionSet".
	Arguments to be passed to methods (see plotBins-methods):
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'sample' which element of sampleNames to use as data (default is 1). Can be a character matching a sample name or simply an integer indicating which sample to choose. See getSamples.
	'feature' which element of featureData to use as binning variable (de- fault is 1). Can be a character matching varLabel or simply an integer indicating which feature to choose. See getFeatures.
	'num.bins' number of bins (default is 10) used to divide the data
	'num.steps' number of steps (default is 3) used to create bin offsets, result- ing in bins of sliding windows

- 'mode' the binning mode to be used. This must be either '"continuous"'
 or '"discrete"'. '"continuous"' mode will divide the data into
 density-dependent bins. '"discrete"' mode will divide the data uniformly by binning data values.
- 'show.avg' logical; if 'TRUE', plots overall density in addition to densities per bin. If 'FALSE' (default), overall density plot is omitted.

'main' an overall title for the plot: see title.

'xlab' a title for the x axis: see title.

- 'ylab' a title for the y axis: see title.
- 'na.rm' logical; if 'TRUE' (default), missing values are removed from x and y. If 'FALSE' any missing values cause an error.
- '...' other arguments to be passed to plot. See plot.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

plotBins-methods, density, quantile

Examples

```
#demo(pipeline,package="HELP")
```

```
x <- 1:1000
y <- sample(1:50,size=1000,replace=TRUE)
plotBins(x,y,show.avg=TRUE,main="Random binning data",xlab="1:1000")</pre>
```

#rm(x,y)

plotChip-methods Plot chip image (methods)

Description

Methods for graphic display of spatially-linked data, particularly applicable for microarrays

Methods

- x = "missing", y = "missing", z = "missing" Handle empty function call
- x = "matrix", y = "missing", z = "missing" Handle matrix input, extract information, and reinterpret function call with appropriate vectors
- x = "ExpressionSet", y = "missing", z = "missing" Handle input of an object of class ExpressionSet. Derive both data and position information from a single object.
- x = "ExpressionSet", y = "vector", z = "missing" Handle input of an object of class ExpressionSet. Derive position information from this object, but the corresponding data from vector input.
- x = "ExpressionSet", y = "ExpressionSet", z = "missing" Handle input of two objects of class ExpressionSet. Derive position information and data from each one, respectively.

- x = "vector", y = "vector", z = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive data from this object, but the corresponding position information from vector input.
- x = "vector", y = "vector", z = "vector" Handle input of three vectors. Derive X and Y positions and data from each one, respectively.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>), Mark Reimers (<mreimers@vcu.edu>)

See Also

plotChip

plotChip Plot chip image

Description

Graphic display of spatially-linked data, particularly applicable for microarrays

Usage

plotChip(x, y, z, ...)

Arguments

х	vector of numerical data determining x-coordinates of data on chip. x can also handle ExpressionSet (see plotChip-methods for more parameter details).
У	vector of numerical data determining y-coordinates of data on chip
Z	the vector of numerical data to be plotted
	Arguments to be passed to methods (see plotChip-methods):
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'sample' which element of sampleNames to use as data (default is 1). Can be a character matching a sample name or simply an integer indicating which sample to choose.
	<pre>'feature.x' which element of featureData to use as X coordinate (de- fault is "X"). Can be a character matching varLabel or simply an integer indicating which feature to choose.</pre>
	<pre>'feature.y' which element of featureData to use as Y coordinate (de- fault is "Y"). Can be a character matching varLabel or simply an integer indicating which feature to choose.</pre>
	'na.rm' logical; if 'TRUE', missing values are removed from x, y, and z. If 'FALSE' (default) any missing values cause an error.
	'main' an overall title for the plot: see title.
	'xlab' a title for the x axis: see title.
	'ylab' a title for the y axis: see title.

- 'colors' vector of colors specifying the color scheme to use (default is rev (rainbow (n=20, start=0, end=1/3))). Also determines the resolution of z such that the more colors that are used allow finer discrimination of differences in z.
- 'range' vector of numerical data of length 2 (default is c (NA, NA)) specifying range used to color-code data in z
- 'nrows' numerical input specifying the number of rows by which to divide the chip; default is 'NULL' which skips the division of data into blocks and results in individual spot resolution
- 'ncols' numerical input specifying the number of columns by which to divide the chip; default is 'NULL' which skips the division of data into blocks and results in individual spot resolution
- '...' other arguments to be passed to plot. See plot.

Author(s)

Reid F. Thompson <rthompso@aecom.yu.edu>, Mark Reimers <mreimers@vcu.edu>

See Also

plotChip-methods

Examples

#demo(pipeline,package="HELP")

```
x <- rep(1:100,100)
y <- rep(1:100,each=100)
z <- x*(1001:11000/1000)
z <- z-mean(z)
z <- z*(sample(1:10000/10000)+1)
plotChip(x,y,z,main="Curved gradient",xlab="x",ylab="y")
plotChip(x,y,sample(1:10000,size=10000),colors=gray(0:50/50),range=c(1,10000),main="Rando
#rm(x,y,z)</pre>
```

plotFeature-methods

Plot feature versus two-color intensity (methods)

Description

Methods for plotting featureData (ex: fragment size) versus two-color signal intensity data

Methods

- x = "missing", y = "missing" Handle empty function call
- x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Derive both data and feature information from a single object.
- x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Derive
 data from this class but use feature values from a vector input.
- **x** = "**matrix**", **y** = "**vector**" Handle matrix input, where each of two columns in matrix represents data from one signal channel. Feature data is derived from values from a vector input.

plotFeature

Description

Graphical display of featureData (ex: fragment size) versus two-color signal intensity data

Usage

plotFeature(x, y, ...)

Arguments

X	matrix of numerical data to be plotted, with two columns (one for each signal channel). x can also be of class "ExpressionSet".
У	an additional vector of numerical data to be used for feature. If y is missing, the function will attempt to fill a value from featureData in x .
	Arguments to be passed to methods (see plotFeature-methods):
	<pre>'element.x' which element of AssayData to use (for signal channel 1) for</pre>
	<pre>'element.y' which element of AssayData to use (for signal channel 2) for</pre>
	'sample' which element of sampleNames to use as data (default is 1). Can be a character matching a sample name or simply an integer indicating which sample to choose.
	'feature' which element of featureData to use as plotting feature (de- fault is 1). Can be a character matching varLabel or simply an integer indicating which feature to choose.
	<pre>'feature.random' which element of featureData to use to identify ran- dom probes (default is '"TYPE"'). Can be a character matching varLabel or simply an integer indicating which feature to choose.</pre>
	<pre>'which.random' an integer vector specifying which rows of data correspond to random probes. if 'NULL' (default), the function will attempt to identify random probes using featureData.</pre>
	<pre>'random.flag' a character specifying the label for random probes in feature.random from featureData. Default is '"RAND"'.</pre>
	'na.rm' logical; if 'TRUE' (default), missing values are removed from x. If 'FALSE' any missing values cause an error.
	'limit' numerical input specifying the maximum number of points to plot (default is 10,000). if 'NULL', all points will be used.
	<pre>'cutoff' a numerical input specifying the value below which signal intensi- ties from channel 1 can be considered "failed" probes. If 'NULL' (default), the function will attempt to calculate a cutoff from random probe informa- tion.</pre>
	'cutoff2' a numerical input specifying the value below which signal intensi- ties from channel 2 can be considered "failed" probes. If 'NULL' (default), the function will attempt to calculate a cutoff from random probe informa- tion.

'main' an overall title for the plot: see title.

- 'xlab' a title for the x axis (default is '"Fragment size (bp) "'): see title.
- 'ylab' a title for the y axis for signal channel 1 (default is '"log (MspI) "'):
 see title.
- 'ylab2' a title for the y axis for signal channel 2 (default is '"log (HpaII) "'):
 see title.
- 'cex' numerical value (default is 0.2) giving the amount by which plotting text and symbols should be scaled relative to the default.
- '...' other arguments to be passed to plot. See plot.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

plotFeature-methods

Examples

#demo(pipeline,package="HELP")

```
msp1 <- sample(8000:16000/1000, size=1000)
msp1 <- msp1[order(msp1)]
hpa2 <- sample(8000:16000/1000, size=1000)
hpa2 <- hpa2[order(hpa2)]
size <- sample((1:1000)*1.8+200, size=1000)
rand <- which.min(abs(msp1-quantile(msp1, 0.25)))
plotFeature(cbind(msp1, hpa2), size, which.random=(rand-20):(rand+20), main="Random")</pre>
```

```
#rm(msp1, hpa2, size, rand)
```

plotPairs-methods Plot tree-pairs (methods)

Description

Methods for pairwise comparison of samples producing a matrix of scatterplots and a corresponding dendrogram

Methods

- **x** = "missing" Handle empty function call
- **x** = "matrix" Handle matrix input
- x = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive data from AssayData.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

plotPairs

See Also

plotPairs

plotPairs	Plot tree-pairs	
-----------	-----------------	--

Description

Pairwise comparison of samples producing a matrix of scatterplots and a corresponding dendrogram

Usage

plotPairs(x, ...)

Arguments

х	a numeric matrix, where each column represents a different sample. x can also be of class "ExpressionSet".
	Arguments to be passed to methods (see plotPairs-methods):
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'samples' which samples to use as data. Can be a vector of characters match- ing sample names, integers indicating which samples to choose, or a mix- ture of the two. If 'NULL' (default), all samples will be used.
	<pre>'scale' logical value indicating whether sample branch lengths should be scaled by distance (default is 'TRUE')</pre>
	'groups' logical value indicating whether the samples should be organized and color-coded by group (default is 'TRUE')
	<pre>'dist.method' the distance measure to be used. This must be one of '"euclidean"' (default), '"maximum"', '"manhattan"', '"canberra"', '"binary"' or '"minkowski"'. Any unambiguous substring can be given: see dist for more details.</pre>
	<pre>'hclust.method' the agglomeration method to be used. This should be (an unambiguous abbreviation of) one of '"ward"' (default), '"single"',</pre>
	'k' an integer scalar or vector with the desired number of groups. If 'NULL' (de- fault), grouping will rely instead on distance measurements: see cutree for more details.
	<pre>'cor.method' the correlation algorithm to be used. This must be one of</pre>
	'' other arguments to be passed to pairs or dist. See pairs, dist.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

```
plotPairs-methods, dist, hclust, dendrogram, cutree, pairs
```

Examples

#demo(pipeline,package="HELP")

```
x <- sample(1:10000,size=10000)
x <- cbind(x,x+5,x*sample((1000:2000)/1000,size=10000,replace=TRUE),sample(-1*(1:10000),s
colnames(x) <- c("x","x+5","spread","random")
plotPairs(x)</pre>
```

#rm(x)

Description

Methods for applying quantile normalization to multiple bins of data, divided by a sliding window approach

Methods

- x = "missing", y = "missing" Handle empty function call
- **x** = "**matrix**", **y** = "**missing**" Handle matrix input, reinterpret function call with two vector input if matrix has two columns, otherwise handle as empty function call
- **x** = "**vector**", **y** = "**missing**" Handle empty function call
- x = "vector", y = "ExpressionSet" Handle input of an object of class ExpressionSet. Derive binning information from this class but use data from a vector input.
- **x** = "**vector**", **y** = "**vector**" Handle input of two vectors specifying data and binning information, respectively.
- x = "ExpressionSet", y = "missing" Handle input of an object of class ExpressionSet. Derive both data and binning information from a single object.
- x = "ExpressionSet", y = "vector" Handle input of an object of class ExpressionSet. Derive
 data from this class but use binning information from a vector input.
- x = "ExpressionSet", y = "ExpressionSet" Handle input of two objects of class ExpressionSet. Derive data and binning information from each one, respectively.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

quantileNormalize

quantileNormalize Quantile normalization

Description

Apply quantile normalization to multiple bins of data, divided by a sliding window approach

Usage

quantileNormalize(x, y, ...)

Arguments

Х	the vector of numerical data to be normalized. If x is a matrix it is interpreted as a vector. x can also be of class "ExpressionSet".
У	an additional vector of numerical data to be used for binning. If y is a matrix it is interpreted as a vector. y can also be of class "ExpressionSet".
	Arguments to be passed to methods (see quantileNormalize-methods):
	<pre>'element' which element of AssayData to use for a given ExpressionSet input (default is '"exprs"')</pre>
	'sample' which element of sampleNames to use as data (default is 1). Can be a character matching a sample name or simply an integer indicating which sample to choose. See getSamples.
	'feature' which element of featureData to use as binning variable (de- fault is 1). Can be a character matching varLabel or simply an integer indicating which feature to choose. See getFeatures.
	'num.bins' number of bins (default is 10) used to divide the data
	'num.steps' number of steps (default is 3) used to create bin offsets, result- ing in bins of sliding windows
	<pre>'mode' the binning mode to be used. This must be either '"continuous"' (default) or '"discrete"'. '"continuous"' mode will divide the data into density-dependent bins. '"discrete"' mode will divide the data uniformly by binning data values.</pre>
	'type' an integer between 1 and 9 (default is 7) selecting one of the nine quan- tile algorithms: see quantile.
	'na.rm' logical; if 'TRUE', missing values are removed from x and y. If 'FALSE' any missing values cause an error.
	'' other arguments to be passed to quantile. See quantile.

Value

Returns a vector of normalized numerical data according to input parameters.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

quantileNormalize-methods, quantile

Examples

```
#demo(pipeline,package="HELP")
```

```
x <- rep(1:100,10)+10*rep(1:10,each=100)
y <- rep(1:20,each=50)
d <- density(quantileNormalize(x,y,num.bins=20,num.steps=1,mode="discrete"))
plot(density(x))
lines(d$x,d$y/3,col="red")
#rm(x,y,d)</pre>
```

readDesign-methods Read NimbleGen design files (methods)

Description

Methods for extracting array design information from corresponding files in the Nimblegen .ndf and .ngd formats.

Methods

- x = "missing", y = "missing", z = "missing" Handle empty function call
- **x** = "**vector**", **y** = "**missing**", **z** = "**missing**" Handle single vector input. If two values specified in vector, reinterpret function call with two character inputs. Otherwise, handle as empty function call.
- **x** = "**vector**", **y** = "**vector**", **z** = "**missing**" Handle two vector input. If vectors of unit length, reinterpret function call with two character inputs. Otherwise, handle as improper function call.
- x = "character", y = "character", z = "ExpressionSet" Handle two character vector inputs, each specifying a filename to use when reading design information. Design information will be written to an ExpressionSet.
- **x** = "character", **y** = "character", **z** = "character" Handle two character vector inputs, each specifiying a filename to use when reading design information. Design information will be written to a database.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

readDesign

readDesign

Description

Function to extract array design information from corresponding files in the Nimblegen .ndf and .ngd formats.

Usage

readDesign(x, y, z, ...)

Arguments

х	path to the Nimblegen design file (.ndf). Each line of the file is interpreted as a single spot on the array design. If it does not contain an absolute path, the file name is relative to the current working directory, getwd(). Tilde-expansion is performed where supported. Alternatively, x can be a readable connection (which will be opened for reading if necessary, and if so closed at the end of the function call). 'file' can also be a complete URL.
У	path to the Nimblegen gene descriptions file (.ngd). Each line of the file is interpreted as a single locus. If it does not contain an absolute path, the file name is relative to the current working directory, $getwd()$. Tilde-expansion is performed where supported. Alternatively, y can be a readable connection (which will be opened for reading if necessary, and if so closed at the end of the function call). 'file' can also be a complete URL.
Z	object in which to store design information from files. Can be an ExpressionSet, in which case design information will be stored in featureData.
	Arguments to be passed to methods (see readDesign-methods):
	'path' a character vector containing a single full path name to which filenames will be appended. If 'NULL', filenames (x and y) are treated as is.
	<pre>'comment.char' character: a character vector of length one containing a sin- gle character or an empty string (default is '"#"'). Use '""' to turn off the interpretation of comments altogether.</pre>
	<pre>'sep' the field separator character (default is '"\t"'). Values on each line of the file are separated by this character. If 'sep = ""' the separator is "white space", that is one or more spaces, tabs, newlines or carriage returns.</pre>
	<pre>'quote' the set of quoting characters (default is '"\""'). To disable quoting altogether, use quote = "". See scan for the behavior on quotes em- bedded in quotes. Quoting is only considered for columns read as character, which is all of them unless 'colClasses' is specified.</pre>
	<pre>'eSet' ExpressionSet input (default is new("ExpressionSet")) in which to store design information in featureData</pre>
	'' other arguments to be passed to read.table. See read.table.

Value

Returns an ExpressionSet filled with featureData containing the following featureColumns:

'SEQ_ID' a vector of characters with container IDs, linking each probe to a parent identifier

'PROBE_ID'	a vector of characters containing unique ID information for each probe
`X'	vector of numerical data determining x-coordinates of probe location on chip
`Y'	vector of numerical data determining y-coordinates of probe location on chip
'TYPE'	a vector of characters defining the type of probe, e.g. random background signals ('"RAND"') or usable data ('"DATA"').
'CHR'	a matrix of characters containing unique ID and chromosomal positions for each container
`START'	a matrix of characters containing unique ID and chromosomal positions for each container
`STOP'	a matrix of characters containing unique ID and chromosomal positions for each container
`SIZE'	a matrix of characters containing unique ID and chromosomal positions for each container
'SEQUENCE'	a vector of characters containing sequence information for each probe
'WELL'	a vector of characters containing multiplex well location for each probe (if present in design files)

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

readDesign-methods, read.table

Examples

#demo(pipeline, package="HELP")

```
chr <- rep("chr1", 500)
start <- (1:500) *200
stop <- start+199
x <- 1:500
seqids <- sample(1:50, size=500, replace=TRUE)</pre>
cat("#COMMENT\nSEQ_ID\tCHROMOSOME\tSTART\tSTOP\n", file="./read.design.test.ngd")
table.ngd <- cbind(seqids, chr, start, stop)</pre>
write.table(table.ngd, file="./read.design.test.ngd", append=TRUE, col.names=FALSE, row.r
cat("#COMMENT\nSEQ_ID\tX\tY\tPROBE_ID\tCONTAINER\tPROBE_SEQUENCE\tPROBE_DESIGN_ID\n", fil
sequence <- rep("NNNNNNN", 500)</pre>
table.ndf <- cbind(seqids, x, x, x, x, sequence, x)</pre>
write.table(table.ndf, file="./read.design.test.ndf", append=TRUE, col.names=FALSE, row.r
x <- readDesign("./read.design.test.ndf", "./read.design.test.ngd")</pre>
seqids[1:10]
pData(featureData(x))$"SEQ_ID"[1:10]
#rm(table.ngd, table.ndf, chr, start, stop, x, seqids, sequence)
#file.remove("./read.design.test.ngd")
```

readPairs-methods Read Nimblegen .pair files (methods)

Description

Methods for extracting data from corresponding files in the Nimblegen .pair format.

Methods

- x = "missing", y = "missing", z = "missing" Handle empty function call
- **x** = "**vector**", **y** = "**missing**", **z** = "**missing**" Handle single vector input. If two values specified in vector, reinterpret function call with two character inputs. Otherwise, handle as empty function call.
- **x** = "**vector**", **y** = "**vector**", **z** = "**missing**" Handle two vector input. If vectors of unit length, reinterpret function call with two character inputs. Otherwise, handle as improper function call.
- x = "character", y = "character", z = "ExpressionSet" Handle two character vector inputs, each specifying a filename to use when reading pair information. Pair data will be written to an ExpressionSet object.
- **x** = "character", **y** = "character", **z** = "character" Handle two character vector inputs, each specifiying a filename to use when reading pair information. Pair data will be written to a database.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

readPairs

readPairs Read Nimblegen .pair files

Description

Function to extract data from corresponding files in the Nimblegen .pair format.

Usage

readPairs(x, y, z, ...)

Arguments

X	the name of the file containing data from signal channel 1. Each line of the file is interpreted as a single data point. If it does not contain an absolute path, the file name is relative to the current working directory, getwd(). Tilde-expansion is performed where supported. Alternatively, x can be a readable connection (which will be opened for reading if necessary, and if so closed at the end of the function call). x can also be a complete URL.
У	the name of the file containing data from signal channel 1. Each line of the file is interpreted as a single data point. If it does not contain an absolute path, the file name is relative to the current working directory, $getwd()$. Tilde-expansion is performed where supported. Alternatively, y can be a readable connection (which will be opened for reading if necessary, and if so closed at the end of the function call). y can also be a complete URL.
Z	object in which to store pair information from files. Can be an ExpressionSet, in which case pair data will be stored in featureData.
	Arguments to be passed to methods (see readPairs-methods):
	'name' character input specifying a sample name to assign to the data from specified pair files. If 'NULL' (default), a value will be extracted from the filename specified in x.
	<pre>'element.x' which element of AssayData (default is '"exprs"') in which to store signal channel 1 data.</pre>
	<pre>'element.y' which element of AssayData (default is '"exprs2"') in which to store signal channel 2 data.</pre>
	<pre>'match.probes' logical specifying whether to match data from pair files by</pre>
	'path' a character vector containing a single full path name to which filenames will be appended. If 'NULL', filenames (x and y) are treated as is.
	<pre>'comment.char' character: a character vector of length one containing a sin- gle character or an empty string (default is '" # "'). Use '" "' to turn off the interpretation of comments altogether.</pre>
	<pre>'sep' the field separator character (default is '"\t"'). Values on each line of the file are separated by this character. If 'sep = ""' the separator is "white space", that is one or more spaces, tabs, newlines or carriage returns.</pre>
	<pre>'quote' the set of quoting characters (default is '"\""'). To disable quoting altogether, use quote = "". See scan for the behaviour on quotes em- bedded in quotes. Quoting is only considered for columns read as character, which is all of them unless 'colClasses' is specified.</pre>
	<pre>'eSet' ExpressionSet input (default is new ("ExpressionSet")) in which to store pair information in assayData</pre>
	'verbose' logical; if 'TRUE' (default) progress will be output to screen. If 'FALSE', no output will be displayed.
	'' other arguments to be passed to read.table. See read.table.

Value

Returns an ExpressionSet filled with assayData containing matrices of data from both signal channels.

and $\ensuremath{\mathsf{featureData}}$ containing the following $\ensuremath{\mathsf{featureColumns:}}$

readSampleKey

	SEQ_ID'	a vector of characters with container IDs, linking each probe to a parent identifier
	PROBE_ID'	a vector of characters containing unique ID information for each probe
and phenoData containing the following sampleColumns:		
	CHIPS'	a vector of characters with .pair file locations for signal channel 1 data
	CHIPS2'	a vector of characters with .pair file locations for signal channel 2 data

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

readPairs-methods, read.table

Examples

#demo(pipeline,package="HELP")

```
x <- 1:500
y <- rev(x)
data <- sample(8000:10000/1000, size=500)</pre>
seqids <- sample(1:50, size=500, replace=TRUE)</pre>
cat("#COMMENT\nSEQ_ID\tPROBE_ID\tX\tY\tPM\n",file="./read.pair.test.1")
table.1 <- cbind(seqids,y,x,x,data)</pre>
write.table(table.1,file="./read.pair.test.1",append=TRUE,col.names=FALSE,row.names=FALSE
cat("#COMMENT\nSEQ_ID\tPROBE_ID\tX\tY\tPM\n",file="./read.pair.test.2")
table.2 <- cbind(seqids,y,x,x,rev(data))</pre>
write.table(table.2,file="./read.pair.test.2",append=TRUE,col.names=FALSE,row.names=FALSE
x <- readPairs("./read.pair.test.1","./read.pair.test.2")</pre>
c(seqids[1],y[1],data[1],rev(data)[1])
pData(featureData(x))$"SEQ_ID"[1]
pData(featureData(x))$"PROBE_ID"[1]
assayDataElement(x, "exprs")[1]
assayDataElement(x, "exprs2")[1]
#rm(table.1,table.2,x,y,data,seqids)
#file.remove("./read.pair.test.1")
#file.remove("./read.pair.test.2")
```

readSampleKey Read sample key

Description

Function to extract sample key data from a file and link chip ID information with aliases if they exist.

Usage

```
readSampleKey(file = NULL, chips = NULL, comment.char = "#", sep = "\t")
```

Arguments

file	the name of the file containing sample key information. Each line of the file
	is interpreted as a single chip-to-sample map. If it does not contain an absolute
	path, the file name is relative to the current working directory, getwd(). Tilde-
	expansion is performed where supported. Alternatively, file can be a readable
	connection (which will be opened for reading if necessary, and if so closed at
	the end of the function call). 'file' can also be a complete URL.
chips	a character vector specifying a specific chip ID lookup in the sample key, for which the function will return the appropriate sample aliases
comment.char	character: a character vector of length one containing a single character or an empty string. Use """ to turn off the interpretation of comments altogether.
sep	the field separator character. Values on each line of the file are separated by this character. If 'sep = ""' the separator is "white space", that is one or more spaces, tabs, newlines or carriage returns.

Value

Returns a character vector of sample alias information corresponding to the chips present in the sample key or a subset thereof, specified by the chips input.

Author(s)

Reid F. Thompson (<rthompso@aecom.yu.edu>)

See Also

read.table

Examples

#demo(pipeline,package="HELP")

```
cat("#COMMENT\nCHIP_ID\tSAMPLE\n",file="./sample.key.txt")
write.table(cbind(1:10,1001:1010),file="./sample.key.txt",append=TRUE,col.names=FALSE,row
readSampleKey(file="./sample.key.txt")
readSampleKey(file="./sample.key.txt",chips=c(7:10,"NA1","NA2"))
```

```
#file.remove("./sample.key.txt")
```

Index

*Topic IO readDesign, 27 readPairs, 29 readSampleKey, 31 *Topic arith calcGC, 2 calcTm, 5 combineData,7 *Topic array calcPrototype, 3 quantileNormalize, 25 *Topic **attribute** getFeatures, 14 getSamples, 15 *Topic **datasets** base.stacking.thermodynamics, 1 *Topic **file** readDesign, 27 readPairs, 29 readSampleKey, 31 *Topic **hplot** plotBins, 17 plotChip, 19 plotFeature, 21 plotPairs, 23 *Topic manip exprs2,11 fuzzyMatches, 12 *Topic methods calcGC-methods, 2calcPrototype-methods, 3 calcTm-methods, 4 combineData-methods, 6 createWiggle-methods, 8 exprs2-methods, 10 fuzzyMatches-methods, 11 getFeatures-methods, 13 getSamples-methods, 15 plotBins-methods, 16 plotChip-methods, 18 plotFeature-methods, 20 plotPairs-methods, 22

```
*Topic print
   createWiggle,9
*Topic utilities
   calcGC, 2
   calcTm, 5
base.stacking.thermodynamics, 1, 6
calcGC, 2, 2, 6
calcGC, character-method
       (calcGC-methods), 2
calcGC, ExpressionSet-method
       (calcGC-methods), 2
calcGC, missing-method
       (calcGC-methods), 2
calcGC, NULL-method
       (calcGC-methods), 2
calcGC-methods, 3
calcGC-methods, 2
calcPrototype, 3, 3
calcPrototype,ExpressionSet-method
       (calcPrototype-methods), 3
calcPrototype, matrix-method
       (calcPrototype-methods), 3
calcPrototype, missing-method
       (calcPrototype-methods), 3
calcPrototype, vector-method
       (calcPrototype-methods), 3
```

calcPrototype-methods, 4

calcPrototype-methods, 3

calcTm, character-method

calcTm, missing-method

calcTm, NULL-method

calcTm-methods, 6

calcTm-methods, 4

(calcTm-methods), 4

(calcTm-methods), 4

(calcTm-methods), 4

(calcTm-methods), 4

calcTm, ExpressionSet-method

calcTm, 3, 5, 5

quantileNormalize-methods, 24

readDesign-methods, 26
readPairs-methods, 29

INDEX

cat, 9, 10 fuzzyMatches, 12, 12 fuzzyMatches,missing,missing-method combineData.6.7 combineData, ExpressionSet, missing, missing-metficed yMatches-methods), 11 (combineData-methods), 6 fuzzyMatches, NULL, vector-method combineData, ExpressionSet, vector, missing-methodszyMatches-methods), 11 (combineData-methods), 6 fuzzyMatches,vector,missing-method combineData, matrix, vector, matrix-method (fuzzyMatches-methods), 11 (combineData-methods), 6 fuzzyMatches, vector, NULL-method combineData,matrix,vector,missing-method (fuzzyMatches-methods), 11 (combineData-methods), 6 fuzzyMatches,vector,vector-method combineData, missing, missing, missing-method (fuzzyMatches-methods), 11 (combineData-methods), 6 fuzzyMatches-methods, 13 combineData, vector, missing, missing-methods, 11 (combineData-methods), 6 combineData, vector, missing, vector-method getFeatures, 7, 14, 14, 17, 25 combineData, vector, vector, missing-method (combineData-methods), 6 getFeatures, AnnotatedDataFrame, NULL-method combineData, vector, vector, vector-method (getFeatures-methods), 13 (combineData-methods), 6 getFeatures, AnnotatedDataFrame, vector-method combineData-methods, 7, 8 (getFeatures-methods), 13 combineData-methods,6 getFeatures, ExpressionSet, missing-method cor.23 (getFeatures-methods), 13 getFeatures,ExpressionSet,NULL-method (getFeatures-methods), 13 (createWiggle-methods), 8 createWiggle, ExpressionSet, missing-method (getFeatures-methods), 13 (createWiggle-methods), 8 getFeatures, matrix, vector-method createWiggle,matrix,matrix-method (getFeatures-methods), 13 (createWiggle-methods), 8 getFeatures, missing, missing-method createWiggle, missing, missing-method (getFeatures-methods), 13 (createWiggle-methods), 8 getFeatures, vector, missing-method createWiggle,vector,matrix-method (getFeatures-methods), 13 (createWiggle-methods), 8 getFeatures, vector, NULL-method createWiggle-methods, 9(getFeatures-methods), 13 createWiggle-methods, 8 getFeatures, vector, vector-method cutree, 23, 24 (getFeatures-methods), 13 getFeatures-methods, 14 dendrogram, 24 getFeatures-methods, 13 density, 18 getSamples, 15, 15, 17, 25 dist, 23, 24 getSamples, ExpressionSet, missing-method exprs2, 10, 11 (getSamples-methods), 15 getSamples, ExpressionSet, NULL-method exprs2, ExpressionSet-method (exprs2-methods), 10 (getSamples-methods), 15 getSamples, ExpressionSet, vector-method exprs2, missing-method (exprs2-methods), 10 (getSamples-methods), 15 getSamples, matrix, missing-method exprs2-methods, 10 exprs2<-(exprs2), 11 (getSamples-methods), 15 exprs2<-, ExpressionSet, matrix-method getSamples, matrix, NULL-method (exprs2-methods), 10 (getSamples-methods), 15 exprs2<-, ExpressionSet, missing-method getSamples, matrix, vector-method (exprs2-methods), 10 (getSamples-methods), 15

INDEX

```
getSamples, missing, missing-method
                                         plotChip-methods, 19, 20
                                         plotChip-methods, 18
       (getSamples-methods), 15
getSamples, vector, missing-method
                                         plotFeature, 21
       (getSamples-methods), 15
                                         plotFeature, ExpressionSet, missing-method
getSamples, vector, NULL-method
                                                 (plotFeature-methods), 20
       (getSamples-methods), 15
                                         plotFeature, ExpressionSet, vector-method
getSamples, vector, vector-method
                                                 (plotFeature-methods), 20
       (getSamples-methods), 15
getSamples-methods, 12, 16
getSamples-methods, 15
getwd, 27, 30, 32
hclust, 23, 24
                                         plotPairs, 23, 23
match, 13
mean, 4, 8
pairs, 23, 24
plot, 18, 20, 22
plotBins, 17, 17
plotBins, ExpressionSet, ExpressionSet-methods, 23, 24
       (plotBins-methods), 16
plotBins, ExpressionSet, missing-method
       (plotBins-methods), 16
                                         quantile, 18, 25
plotBins,ExpressionSet,vector-method
       (plotBins-methods), 16
plotBins, matrix, missing-method
       (plotBins-methods), 16
                                                 24
plotBins,missing,missing-method
       (plotBins-methods), 16
plotBins, vector, ExpressionSet-method
                                                 24
       (plotBins-methods), 16
plotBins, vector, missing-method
       (plotBins-methods), 16
                                                 24
plotBins, vector, vector-method
       (plotBins-methods), 16
plotBins-methods, 17, 18
                                                 24
plotBins-methods, 16
plotChip, 19, 19
plotChip,ExpressionSet,ExpressionSet,missing24pethod
       (plotChip-methods), 18
plotChip, ExpressionSet, missing, missing-methodquantileNormalize-methods),
       (plotChip-methods), 18
                                                 24
plotChip, ExpressionSet, vector, missing quethtddeNormalize, vector, missing-method
       (plotChip-methods), 18
plotChip, matrix, missing, missing-method
                                                 24
       (plotChip-methods), 18
plotChip,missing,missing,missing-method
       (plotChip-methods), 18
                                                 24
plotChip, vector, vector, ExpressionSet-mathedleNormalize-methods, 25
       (plotChip-methods), 18
plotChip, vector, vector, vector-method
                                         read.table, 27, 28, 30-32
       (plotChip-methods), 18
```

35

plotFeature, matrix, vector-method (plotFeature-methods), 20 plotFeature,missing,missing-method (plotFeature-methods), 20 plotFeature-methods, 21, 22 plotFeature-methods, 20 plotPairs, ExpressionSet-method (plotPairs-methods), 22 plotPairs, matrix-method (plotPairs-methods), 22 plotPairs, missing-method (plotPairs-methods), 22 plotPairs-methods, 22 quantileNormalize, 24, 25 quantileNormalize, ExpressionSet, ExpressionSet-(quantileNormalize-methods), quantileNormalize, ExpressionSet, missing-method (quantileNormalize-methods), quantileNormalize, ExpressionSet, vector-method (quantileNormalize-methods), quantileNormalize, matrix, missing-method (quantileNormalize-methods), quantileNormalize, missing, missing-method (quantileNormalize-methods), quantileNormalize, vector, ExpressionSet-method (quantileNormalize-methods), quantileNormalize, vector, vector-method (quantileNormalize-methods), quantileNormalize-methods, 24

```
readDesign, 26, 27
readDesign, character, character, character-method
       (readDesign-methods), 26
readDesign, character, character, ExpressionSet-method
      (readDesign-methods), 26
readDesign,missing,missing,missing-method
      (readDesign-methods), 26
readDesign,vector,missing,missing-method
      (readDesign-methods), 26
readDesign,vector,vector,missing-method
      (readDesign-methods), 26
readDesign-methods, 27, 28
readDesign-methods, 26
readPairs, 29, 29
readPairs, character, character, character-method
       (readPairs-methods), 29
readPairs, character, character, ExpressionSet-method
       (readPairs-methods), 29
readPairs,missing,missing,missing-method
      (readPairs-methods), 29
readPairs, vector, missing, missing-method
      (readPairs-methods), 29
readPairs, vector, vector, missing-method
      (readPairs-methods), 29
readPairs-methods, 30, 31
readPairs-methods, 29
readSampleKey, 31
scan, 27, 30
```

50aii, 27, 50

title, 18, 19, 22

weighted.mean, 8 write, 10