Back to Multiple platform build/check report for BioC 3.17:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2023-03-20 11:05:24 -0400 (Mon, 20 Mar 2023).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.1 LTS)x86_64R Under development (unstable) (2023-03-16 r83996) -- "Unsuffered Consequences" 4297
palomino3Windows Server 2022 Datacenterx64R Under development (unstable) (2023-03-15 r83984 ucrt) -- "Unsuffered Consequences" 4286
merida1macOS 10.14.6 Mojavex86_64R Under development (unstable) (2023-03-16 r83985) -- "Unsuffered Consequences" 4150
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on nebbiolo1


To the developers/maintainers of the singleCellTK package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 1900/2189HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.9.0  (landing page)
Yichen Wang
Snapshot Date: 2023-03-19 14:00:12 -0400 (Sun, 19 Mar 2023)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: master
git_last_commit: 4468720
git_last_commit_date: 2022-11-01 11:17:41 -0400 (Tue, 01 Nov 2022)
nebbiolo1Linux (Ubuntu 22.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    ERROR    OK  
merida1macOS 10.14.6 Mojave / x86_64  ERROR    ERROR  skippedskipped

Summary

Package: singleCellTK
Version: 2.9.0
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.9.0.tar.gz
StartedAt: 2023-03-19 23:57:42 -0400 (Sun, 19 Mar 2023)
EndedAt: 2023-03-20 00:12:17 -0400 (Mon, 20 Mar 2023)
EllapsedTime: 874.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.9.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2023-03-16 r83996)
* using platform: x86_64-pc-linux-gnu (64-bit)
* R was compiled by
    gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
    GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
* running under: Ubuntu 22.04.2 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.9.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  5.4Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotScDblFinderResults   31.678  0.716  32.391
plotDoubletFinderResults 31.704  0.472  32.173
importExampleData        18.520  2.624  21.786
runScDblFinder           20.049  0.756  20.805
runDoubletFinder         19.958  0.080  20.038
plotBatchCorrCompare     12.479  0.919  13.390
plotScdsHybridResults    11.989  0.084  10.795
plotBcdsResults          10.894  0.387  10.087
plotDecontXResults        7.818  0.240   8.058
runUMAP                   7.424  0.268   7.690
plotCxdsResults           7.111  0.268   7.376
runDecontX                7.117  0.068   7.185
plotEmptyDropsScatter     6.973  0.032   7.005
plotEmptyDropsResults     6.813  0.028   6.841
plotUMAP                  6.285  0.132   6.415
runEmptyDrops             6.383  0.008   6.391
detectCellOutlier         6.150  0.148   6.299
plotTSCANClusterDEG       5.971  0.040   6.011
getFindMarkerTopTable     4.968  0.440   5.408
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘singleCellTK.Rmd’ using ‘UTF-8’... OK
 NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2023-03-16 r83996) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.158   0.026   0.172 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2023-03-16 r83996) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand


Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, rowsum, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Error in fitdistr(mahalanobis.sq.null[nonzero.values], "gamma", lower = 0.01) : 
  optimization failed
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 22 | SKIP 0 | PASS 221 ]

[ FAIL 0 | WARN 22 | SKIP 0 | PASS 221 ]
> 
> proc.time()
   user  system elapsed 
237.792   8.619 247.234 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0000.003
SEG0.0030.0000.003
calcEffectSizes0.1840.0000.184
combineSCE1.5050.0401.545
computeZScore0.3090.0120.321
convertSCEToSeurat3.2540.1763.430
convertSeuratToSCE0.4340.0160.451
dedupRowNames0.0500.0040.054
detectCellOutlier6.1500.1486.299
diffAbundanceFET0.0490.0000.049
discreteColorPalette0.0070.0000.007
distinctColors0.0030.0000.003
downSampleCells0.6400.1040.743
downSampleDepth0.4920.0000.492
expData-ANY-character-method0.4830.0000.483
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.5570.0360.593
expData-set0.5280.0040.532
expData0.5280.0120.540
expDataNames-ANY-method0.3720.0160.388
expDataNames0.2980.0040.301
expDeleteDataTag0.0440.0040.048
expSetDataTag0.0250.0000.025
expTaggedData0.0260.0000.026
exportSCE0.0230.0000.023
exportSCEtoAnnData0.0850.0120.097
exportSCEtoFlatFile0.0770.0200.097
featureIndex0.0390.0000.039
generateSimulatedData0.0410.0040.046
getBiomarker0.0470.0040.051
getDEGTopTable0.8460.0520.898
getDiffAbundanceResults0.0370.0000.038
getEnrichRResult0.4720.0493.688
getFindMarkerTopTable4.9680.4405.408
getMSigDBTable0.0000.0070.006
getPathwayResultNames0.0300.0010.031
getSampleSummaryStatsTable0.4720.0160.487
getSoupX0.4580.0240.482
getTSCANResults2.2110.1202.332
getTopHVG0.9190.0280.947
importAnnData0.0000.0020.001
importBUStools0.2960.0250.323
importCellRanger1.1780.0431.221
importCellRangerV2Sample0.2840.0040.287
importCellRangerV3Sample0.4450.0080.453
importDropEst0.3400.0320.374
importExampleData18.520 2.62421.786
importGeneSetsFromCollection0.6910.0240.716
importGeneSetsFromGMT0.0630.0000.063
importGeneSetsFromList0.1190.0000.120
importGeneSetsFromMSigDB2.3880.2042.592
importMitoGeneSet0.0490.0040.053
importOptimus0.0010.0000.001
importSEQC0.2890.0560.346
importSTARsolo0.2930.0050.297
iterateSimulations0.3440.0160.360
listSampleSummaryStatsTables0.4430.0280.471
mergeSCEColData0.4540.0520.507
mouseBrainSubsetSCE0.0260.0030.029
msigdb_table0.0020.0000.002
plotBarcodeRankDropsResults0.8950.0880.982
plotBarcodeRankScatter0.7210.0880.810
plotBatchCorrCompare12.479 0.91913.390
plotBatchVariance0.3370.0360.374
plotBcdsResults10.894 0.38710.087
plotClusterAbundance1.1240.0521.176
plotCxdsResults7.1110.2687.376
plotDEGHeatmap3.0480.0963.144
plotDEGRegression3.7080.1043.806
plotDEGViolin4.2590.1804.434
plotDEGVolcano0.9670.0000.967
plotDecontXResults7.8180.2408.058
plotDimRed0.2780.0000.278
plotDoubletFinderResults31.704 0.47232.173
plotEmptyDropsResults6.8130.0286.841
plotEmptyDropsScatter6.9730.0327.005
plotFindMarkerHeatmap4.6180.0724.690
plotMASTThresholdGenes1.5210.0871.609
plotPCA0.6280.0040.634
plotPathway0.8420.0040.846
plotRunPerCellQCResults1.4220.0081.429
plotSCEBarAssayData0.1760.0000.175
plotSCEBarColData0.1390.0040.143
plotSCEBatchFeatureMean0.3420.0040.345
plotSCEDensity0.2270.0040.231
plotSCEDensityAssayData0.1620.0080.170
plotSCEDensityColData0.2010.0080.209
plotSCEDimReduceColData0.9360.0040.940
plotSCEDimReduceFeatures0.4090.0080.417
plotSCEHeatmap0.7580.0000.758
plotSCEScatter0.4340.0160.450
plotSCEViolin0.2540.0040.258
plotSCEViolinAssayData0.2780.0000.278
plotSCEViolinColData0.2520.0040.256
plotScDblFinderResults31.678 0.71632.391
plotScdsHybridResults11.989 0.08410.795
plotScrubletResults0.0240.0000.024
plotSeuratElbow0.0230.0000.024
plotSeuratHVG0.0250.0000.025
plotSeuratJackStraw0.0250.0000.024
plotSeuratReduction0.0250.0000.025
plotSoupXResults0.220.000.22
plotTSCANClusterDEG5.9710.0406.011
plotTSCANClusterPseudo2.4710.0202.491
plotTSCANDimReduceFeatures2.360.002.36
plotTSCANPseudotimeGenes2.0850.0562.141
plotTSCANPseudotimeHeatmap2.1310.0082.140
plotTSCANResults1.9630.0081.971
plotTSNE0.4720.0040.476
plotTopHVG0.3840.0000.384
plotUMAP6.2850.1326.415
readSingleCellMatrix0.0040.0000.004
reportCellQC0.1650.0000.165
reportDropletQC0.0230.0000.023
reportQCTool0.1650.0000.165
retrieveSCEIndex0.0280.0000.029
runBBKNN0.0000.0000.001
runBarcodeRankDrops0.3940.0200.415
runBcds2.3870.0001.470
runCellQC0.190.000.19
runComBatSeq0.4610.0160.477
runCxds0.6030.0080.612
runCxdsBcdsHybrid2.3310.0171.509
runDEAnalysis0.6490.0000.649
runDecontX7.1170.0687.185
runDimReduce0.4280.0080.436
runDoubletFinder19.958 0.08020.038
runDropletQC0.0160.0080.023
runEmptyDrops6.3830.0086.391
runEnrichR0.3570.0201.758
runFastMNN1.6660.0521.718
runFeatureSelection0.1920.0200.212
runFindMarker3.3470.3723.720
runGSVA0.6210.1040.725
runHarmony0.0390.0000.039
runKMeans0.4020.0400.442
runLimmaBC0.0680.0120.080
runMNNCorrect0.5640.0280.592
runModelGeneVar0.6310.1000.731
runNormalization0.5450.0390.584
runPerCellQC0.4330.0200.453
runSCANORAMA000
runSCMerge0.0040.0000.004
runScDblFinder20.049 0.75620.805
runScranSNN0.7530.0800.833
runScrublet0.0250.0000.025
runSeuratFindClusters0.0240.0000.023
runSeuratFindHVG0.5310.0240.555
runSeuratHeatmap0.0240.0000.025
runSeuratICA0.0230.0000.022
runSeuratJackStraw0.0190.0040.023
runSeuratNormalizeData0.0190.0040.023
runSeuratPCA0.0200.0040.024
runSeuratSCTransform3.3160.3043.621
runSeuratScaleData0.0250.0000.025
runSeuratUMAP0.0230.0000.024
runSingleR0.0370.0000.036
runSoupX0.1700.0080.178
runTSCAN1.4380.0361.473
runTSCANClusterDEAnalysis1.4960.0161.512
runTSCANDEG1.4070.0121.420
runTSNE0.8750.0080.883
runUMAP7.4240.2687.690
runVAM0.5090.0000.509
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.2680.0080.277
scaterCPM0.1260.0080.134
scaterPCA0.4090.0120.421
scaterlogNormCounts0.2270.0200.247
sce0.0230.0000.023
sctkListGeneSetCollections0.0700.0040.073
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0010.0000.001
setRowNames0.0870.0000.087
setSCTKDisplayRow0.4410.0040.444
singleCellTK0.0010.0000.000
subDiffEx0.4140.0040.418
subsetSCECols0.1630.0080.171
subsetSCERows0.3870.0000.387
summarizeSCE0.0580.0000.058
trimCounts0.2310.0160.247