Back to Multiple platform build/check report for BioC 3.19:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2024-05-04 11:37:12 -0400 (Sat, 04 May 2024).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 22.04.3 LTS)x86_644.4.0 beta (2024-04-15 r86425) -- "Puppy Cup" 4753
palomino3Windows Server 2022 Datacenterx644.4.0 beta (2024-04-15 r86425 ucrt) -- "Puppy Cup" 4486
lconwaymacOS 12.7.1 Montereyx86_644.4.0 beta (2024-04-14 r86421) -- "Puppy Cup" 4519
kunpeng2Linux (openEuler 22.03 LTS-SP1)aarch644.4.0 beta (2024-04-15 r86425) -- "Puppy Cup" 4479
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1992/2300HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.14.0  (landing page)
Joshua David Campbell
Snapshot Date: 2024-05-03 14:00:19 -0400 (Fri, 03 May 2024)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_19
git_last_commit: cd29b84
git_last_commit_date: 2024-04-30 11:06:02 -0400 (Tue, 30 Apr 2024)
nebbiolo1Linux (Ubuntu 22.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino3Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 22.03 LTS-SP1) / aarch64  OK    OK    OK  
kjohnson3macOS 13.6.5 Ventura / arm64see weekly results here

CHECK results for singleCellTK on nebbiolo1


To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: singleCellTK
Version: 2.14.0
Command: /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings singleCellTK_2.14.0.tar.gz
StartedAt: 2024-05-04 03:45:17 -0400 (Sat, 04 May 2024)
EndedAt: 2024-05-04 04:00:53 -0400 (Sat, 04 May 2024)
EllapsedTime: 936.5 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings singleCellTK_2.14.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.0 beta (2024-04-15 r86425)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
    GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
* running under: Ubuntu 22.04.4 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  5.6Mb
  sub-directories of 1Mb or more:
    shiny   2.3Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) dedupRowNames.Rd:10: Lost braces
    10 | \item{x}{A matrix like or /linkS4class{SingleCellExperiment} object, on which
       |                                       ^
checkRd: (-1) dedupRowNames.Rd:14: Lost braces
    14 | /linkS4class{SingleCellExperiment} object. When set to \code{TRUE}, will
       |             ^
checkRd: (-1) dedupRowNames.Rd:22: Lost braces
    22 | By default, a matrix or /linkS4class{SingleCellExperiment} object
       |                                     ^
checkRd: (-1) dedupRowNames.Rd:24: Lost braces
    24 | When \code{x} is a /linkS4class{SingleCellExperiment} and \code{as.rowData}
       |                                ^
checkRd: (-1) plotBubble.Rd:42: Lost braces
    42 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runClusterSummaryMetrics.Rd:27: Lost braces
    27 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runEmptyDrops.Rd:66: Lost braces
    66 | provided \\linkS4class{SingleCellExperiment} object.
       |                       ^
checkRd: (-1) runSCMerge.Rd:44: Lost braces
    44 | construct pseudo-replicates. The length of code{kmeansK} needs to be the same
       |                                                ^
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 35.138  0.540  35.675
runDoubletFinder         31.084  0.288  31.372
runSeuratSCTransform     30.479  0.796  31.278
plotScDblFinderResults   29.677  0.695  30.370
runScDblFinder           20.025  0.543  20.570
importExampleData        18.108  2.200  20.828
plotBatchCorrCompare     11.526  0.436  11.957
plotScdsHybridResults     9.258  0.128   8.464
plotBcdsResults           8.635  0.356   8.081
plotDecontXResults        7.986  0.192   8.178
runDecontX                7.447  0.008   7.455
plotUMAP                  7.362  0.059   7.418
runUMAP                   7.179  0.229   7.405
detectCellOutlier         6.940  0.216   7.157
plotEmptyDropsScatter     6.754  0.040   6.794
plotEmptyDropsResults     6.549  0.004   6.553
plotCxdsResults           6.342  0.132   6.471
runEmptyDrops             6.317  0.012   6.329
plotTSCANClusterDEG       5.063  0.064   5.127
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/home/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.19-bioc/R/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.4.0 beta (2024-04-15 r86425) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.171   0.030   0.190 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.4.0 beta (2024-04-15 r86425) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
    union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
276.546   9.993 286.702 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0040.0000.003
calcEffectSizes0.1590.0040.162
combineSCE1.4170.0321.449
computeZScore0.2670.0120.280
convertSCEToSeurat4.5860.1964.781
convertSeuratToSCE0.4790.0040.484
dedupRowNames0.2200.0000.219
detectCellOutlier6.9400.2167.157
diffAbundanceFET0.0650.0040.069
discreteColorPalette0.0080.0000.008
distinctColors0.0020.0000.003
downSampleCells0.5930.0960.689
downSampleDepth0.5010.0080.510
expData-ANY-character-method0.2650.0000.265
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.3130.0000.313
expData-set0.3190.0120.331
expData0.2850.0080.293
expDataNames-ANY-method0.2790.0320.312
expDataNames0.2630.0000.263
expDeleteDataTag0.0310.0040.035
expSetDataTag0.0250.0000.025
expTaggedData0.0260.0000.026
exportSCE0.0230.0000.022
exportSCEtoAnnData0.0910.0080.098
exportSCEtoFlatFile0.0950.0040.099
featureIndex0.0330.0040.037
generateSimulatedData0.0540.0000.055
getBiomarker0.0600.0000.059
getDEGTopTable0.8020.0360.837
getDiffAbundanceResults0.0460.0040.049
getEnrichRResult0.5160.0552.784
getFindMarkerTopTable3.4090.3003.709
getMSigDBTable0.0020.0030.005
getPathwayResultNames0.0250.0000.025
getSampleSummaryStatsTable0.3140.0080.322
getSoupX000
getTSCANResults1.7740.0921.866
getTopHVG1.1720.0681.239
importAnnData0.0020.0000.002
importBUStools0.2520.0120.269
importCellRanger1.1140.1041.219
importCellRangerV2Sample0.2500.0160.265
importCellRangerV3Sample0.3680.0360.403
importDropEst0.3010.0120.313
importExampleData18.108 2.20020.828
importGeneSetsFromCollection0.7380.0840.823
importGeneSetsFromGMT0.1310.0200.151
importGeneSetsFromList0.1170.0120.128
importGeneSetsFromMSigDB2.2840.1842.468
importMitoGeneSet0.0490.0000.050
importOptimus0.0010.0000.002
importSEQC0.2330.0000.233
importSTARsolo0.2610.0200.282
iterateSimulations0.3770.0280.404
listSampleSummaryStatsTables0.4400.0080.447
mergeSCEColData0.4310.0440.475
mouseBrainSubsetSCE0.0370.0000.038
msigdb_table0.0020.0000.001
plotBarcodeRankDropsResults0.8470.0400.887
plotBarcodeRankScatter0.8280.0040.832
plotBatchCorrCompare11.526 0.43611.957
plotBatchVariance0.2910.0360.326
plotBcdsResults8.6350.3568.081
plotBubble0.9590.0561.014
plotClusterAbundance0.8420.0120.853
plotCxdsResults6.3420.1326.471
plotDEGHeatmap2.7570.0642.822
plotDEGRegression3.4140.0683.476
plotDEGViolin4.1650.1444.303
plotDEGVolcano0.9520.0200.985
plotDecontXResults7.9860.1928.178
plotDimRed0.2550.0000.255
plotDoubletFinderResults35.138 0.54035.675
plotEmptyDropsResults6.5490.0046.553
plotEmptyDropsScatter6.7540.0406.794
plotFindMarkerHeatmap4.1970.0244.221
plotMASTThresholdGenes1.4780.0321.510
plotPCA0.4440.0120.456
plotPathway0.7730.0040.777
plotRunPerCellQCResults2.0010.0032.004
plotSCEBarAssayData0.1840.0000.184
plotSCEBarColData0.1370.0000.137
plotSCEBatchFeatureMean0.2070.0000.206
plotSCEDensity0.2420.0000.242
plotSCEDensityAssayData0.1610.0040.165
plotSCEDensityColData0.2040.0120.217
plotSCEDimReduceColData0.6660.0120.678
plotSCEDimReduceFeatures0.3910.0080.399
plotSCEHeatmap0.5850.0000.585
plotSCEScatter0.3300.0000.331
plotSCEViolin0.2330.0000.233
plotSCEViolinAssayData0.2780.0040.281
plotSCEViolinColData0.2190.0030.223
plotScDblFinderResults29.677 0.69530.370
plotScanpyDotPlot0.0250.0000.025
plotScanpyEmbedding0.0190.0040.023
plotScanpyHVG0.0230.0000.024
plotScanpyHeatmap0.0230.0000.023
plotScanpyMarkerGenes0.0190.0040.023
plotScanpyMarkerGenesDotPlot0.0230.0000.023
plotScanpyMarkerGenesHeatmap0.0230.0000.023
plotScanpyMarkerGenesMatrixPlot0.0220.0000.023
plotScanpyMarkerGenesViolin0.0220.0000.023
plotScanpyMatrixPlot0.0230.0000.022
plotScanpyPCA0.0180.0040.023
plotScanpyPCAGeneRanking0.0220.0000.023
plotScanpyPCAVariance0.0220.0000.022
plotScanpyViolin0.0230.0000.022
plotScdsHybridResults9.2580.1288.464
plotScrubletResults0.0240.0000.024
plotSeuratElbow0.0240.0000.024
plotSeuratHVG0.0240.0000.024
plotSeuratJackStraw0.0240.0000.024
plotSeuratReduction0.0240.0000.024
plotSoupXResults0.0010.0000.000
plotTSCANClusterDEG5.0630.0645.127
plotTSCANClusterPseudo2.2240.0042.229
plotTSCANDimReduceFeatures2.2770.0282.306
plotTSCANPseudotimeGenes2.2000.0042.203
plotTSCANPseudotimeHeatmap2.2170.0082.226
plotTSCANResults2.0720.0242.096
plotTSNE0.5320.0080.540
plotTopHVG0.5200.0080.528
plotUMAP7.3620.0597.418
readSingleCellMatrix0.0060.0000.006
reportCellQC0.1710.0000.172
reportDropletQC0.0240.0000.025
reportQCTool0.1770.0000.178
retrieveSCEIndex0.0310.0000.031
runBBKNN000
runBarcodeRankDrops0.4030.0000.402
runBcds2.3520.0161.451
runCellQC0.1710.0000.171
runClusterSummaryMetrics0.6590.0280.687
runComBatSeq0.4280.0040.433
runCxds0.4290.0000.429
runCxdsBcdsHybrid2.3080.0281.448
runDEAnalysis0.6910.0080.699
runDecontX7.4470.0087.455
runDimReduce0.4480.0040.452
runDoubletFinder31.084 0.28831.372
runDropletQC0.0230.0000.024
runEmptyDrops6.3170.0126.329
runEnrichR0.4560.0082.371
runFastMNN1.5890.0211.609
runFeatureSelection0.2050.0000.205
runFindMarker3.3640.2833.648
runGSVA0.8450.1320.977
runHarmony0.0300.0080.038
runKMeans0.4520.0510.504
runLimmaBC0.0780.0130.090
runMNNCorrect0.5910.1080.698
runModelGeneVar0.4480.0150.464
runNormalization2.6110.4013.011
runPerCellQC0.4720.0200.491
runSCANORAMA000
runSCMerge0.0040.0000.005
runScDblFinder20.025 0.54320.570
runScanpyFindClusters0.0250.0000.025
runScanpyFindHVG0.0230.0000.023
runScanpyFindMarkers0.0230.0000.023
runScanpyNormalizeData0.2020.0070.210
runScanpyPCA0.0250.0010.024
runScanpyScaleData0.0240.0000.023
runScanpyTSNE0.0230.0000.023
runScanpyUMAP0.0240.0000.024
runScranSNN0.7720.0830.856
runScrublet0.0250.0000.024
runSeuratFindClusters0.0240.0000.024
runSeuratFindHVG0.8220.0910.913
runSeuratHeatmap0.0250.0010.025
runSeuratICA0.0240.0000.024
runSeuratJackStraw0.0230.0000.024
runSeuratNormalizeData0.0200.0030.023
runSeuratPCA0.0230.0000.023
runSeuratSCTransform30.479 0.79631.278
runSeuratScaleData0.0260.0000.025
runSeuratUMAP0.0240.0000.024
runSingleR0.0310.0040.035
runSoupX000
runTSCAN1.4100.0071.418
runTSCANClusterDEAnalysis1.4920.0161.507
runTSCANDEG1.4590.0401.500
runTSNE0.8690.0000.869
runUMAP7.1790.2297.405
runVAM0.4830.0120.496
runZINBWaVE0.0050.0000.004
sampleSummaryStats0.2660.0000.266
scaterCPM0.1230.0160.138
scaterPCA0.6060.0110.617
scaterlogNormCounts0.2360.0080.245
sce0.0200.0040.024
sctkListGeneSetCollections0.0740.0000.075
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment0.0000.0010.000
setRowNames0.1140.0020.115
setSCTKDisplayRow0.3880.0040.392
singleCellTK000
subDiffEx0.4520.0180.472
subsetSCECols0.1600.0080.167
subsetSCERows0.3870.0080.395
summarizeSCE0.0660.0010.066
trimCounts0.2020.0030.206